当前位置:文档之家› 液压系统中气泡的来源及处理的对策(正式)

液压系统中气泡的来源及处理的对策(正式)

液压系统中气泡的来源及处理的对策(正式)
液压系统中气泡的来源及处理的对策(正式)

编订:__________________

审核:__________________

单位:__________________

液压系统中气泡的来源及处理的对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-8706-24 液压系统中气泡的来源及处理的对

策(正式)

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

随着现代化生产和科学技术的进步,液压传动领域向着低成本、小体积、长寿命、自动化程度高、可靠性好等方向发展已成为一种必然趋势。然而油品对液压系统的影响及可靠性起着至关重要的作用,如何解决油品中的气泡,也是我们使用过程中维护的首要任务。

1液压系统中油液气泡的来源及其对液压系统的危害

1.1气泡的来源

液压油在生产、储运及出厂前的过滤等工作都是

在大气压力下进行的,因此油液中含有空气是不可避免的。我们把油中空气称之为掺混空气,掺混空气是以直径很小的球状气泡悬浮于油中,掺混空气的生成有两种方式:

(1)油品在生产、储运等过程中在与大气相接触,大气与液压油相互浸润融合。实践证明溶解于油液中的空气,对油的物理性质没有什么直接的影响。但溶解了一定数量的空气处于饱和状态的油液,流经节流口或泵入口段,当绝对压力下降到油液的空气分离压时,油中过饱和的空气就被析出,使本来溶解于油中的微细气泡聚集成较大的气泡出现在系统中。

(2)主要是通过油箱和泵的进油管掺混入油内,如油箱油面太低,泵吸入管口半露于油面或淹深很浅时,均可将空气吸入;若泵的进油管路漏气,则大量的空气会被吸入;再如系统回油管口高于油箱油面时,高速喷射的系统回油卷带着空气进入油中,又再度经

油泵带入系统。

1.2对系统的危害

从经济性和系统工作质量的角度来看,油中气泡对系统的危害是相当大的,主要有以下几个方面:

(1)系统工作不良。油液是液压传动系统中动力的传递介质,纯净的液压油,其压缩率约为(5~7)×10-10m3/N,即压力增加10MPa时,容积仅被压缩减少为0.625%。因而在一般的液压系统中可以认为油是非压缩性流体,而不考虑其压缩性。一旦油中混入空气,其压缩率就会大幅度增加,油液本身具有相当高的大的体积弹性系数,严重地危害着系统的工作可靠性,如自动控制失灵、工作机构产生间歇运动等。由于气泡引起的装置误动作还会发生机械、人身事故及加工效益等。

(2)油温升高。气体在瞬间压缩之后,其温度会急剧升高。气泡在达到高温之后,其周围的油便会产生燃烧,成为系统油温骤然升高的主要原因。然而空气是不宜导热的,油中存有气泡时,其导热系数降低,严重地影响着油的冷却效果。油温升高带来的不良后果有以下几个主要方面:

a.加速油的氧化。根据氧化的机理可知,油温在60℃以上时每升高10℃,其氧化速度成倍递增。油温的升高是促进油液氧化的主要原因。氧化后的油液通常都会生成酸性化合物,引起系统中金属件的腐蚀现象。所以更容易产生渣泥,连同铁锈、金属屑等机械杂质又作为氧化过程的催化剂,使油液加速氧化。一般希望油温能在90℃以下,使其具有好的化学稳定性。

b.油的润滑性能下降。性能良好的油液能在金属摩擦表面形成牢固的油膜。油膜的强度和厚度主要取决于油液的质量。变质后的油液其油膜强度不足以承

受工作负载的压力,致使金属表面互相接触,从而导致摩擦力急剧增加,加速零件的磨损,所以说油液的润滑性对于液压装置具有重要意义。

c.加速密封件老化。液压系统中采用的密封件均由不同化学成分的材料制成各种形式的密封圈、垫,不但要求与油液有好的相容性,而且还要要求有适当的工作油温,如油温超过密封件的正常耐热温度,便会使其加速老化,失去应有的弹性,而导致过早地丧失密封性能。

(3)导致气蚀的发生。油中气泡被油液带到高压区时,体积急剧缩小,气泡又重新凝聚为液体,使局部区域形成真空,周围液体质点以高速来填补这一空间,质点互相碰撞而产生局部高压,形成液压冲击,使局部压力升高可达数百甚至上千个大气压力。如果这个局部液压冲击作用在固体壁面上,可引起固体壁面的剥蚀,即气蚀现象,它对系统的危害性很大。

油中气泡还能起系统的振动和噪声的增加以及泵的容积效率减低等不良影响。2传统气泡去除方法的剖析

人们对气泡研究及其危害性的认识虽然存在不同的看法,但在液压装置的设计制造过程中均考虑了气泡的去除问题,那就是利用系统中必备的油箱进行气泡的去除,尽管油箱的结构上采取了多种措施,如水平截面积大于油液深度、设置隔板而延长油在油箱内的停留时间、进出油口尽量设置得远些以及体积要大等。但从气泡去除效果以及装置结构方面来看仍有下列不足:

2.1气泡去除效果差

采用油箱自然去除法,就是靠气泡自身的浮力而自行浮至油面溶入大气的方法。如果气泡界面的油液

没有作向上运动的话,完全要靠自身浮力克服油液的摩擦阻力而向上运动。由于泵的搅拌作用,微细化后的气泡再经阀口高速喷出成为乳化液状气泡,即使在油箱内滞留相当长的时间,靠自行浮上也是极其困难的。因此,仅靠油箱来去除气泡,其效果是相当差的,研究和开发强制式气泡去除装置势在必行。

2.2液压装置结构增大

油箱除具有储油、冷却功能之外,体积大的一个根本原因就是考虑气泡的去除,我国油箱的体积一般为泵流量的3~5倍,美国行业规定油箱的体积不得小于泵流量的3倍。由于采用大体积油箱,往往使装置整体结构变大,且不经济。

3强制式气泡去除器

3.1基本结构与原理

强制式气泡去除器主要由进油腔、工作腔、导向叶轮、出油腔及排气管等组成。当油液从切线方向进入油腔时,以一定的动能冲向导向轮叶片,在导向轮的作用下,液体作螺旋加速运动,由于油液质量大于气泡质量,在离心力的作用下,气泡向中心轴线处集聚,中心轴线上的压力是随着液流螺旋加速度的增加而递减的,在工作腔最小直径处的中心压力最低,气泡在中心轴线上的压差和接近中心液流的连带作用下向工作腔最小直径处运动而集合,在工作腔与出油腔结合处的右侧附近,液流由于没有螺旋运动,所以此处的压力高于出油腔入口处的压力,大量聚积起来的气体在压力的作用下通过排气管排出装置之外。

3.2本装置的主要特点

(1)由于液流的在工作腔的旋流半径很小,气泡很容易向中心方向移动。还有在工作腔的液体,有较

三梁四柱液压机结构图

三梁四柱液压机结构(图) 三梁四柱液压机由主机及控制机构两大部分组成,通过主管道及电气装置联系起来构成一体。主机包括机身、主油缸、顶出油缸及允液系统等。现将各部分结构和作用分述如下 (1)机身(见外形图) 机身由上横梁、滑块、工作台、立柱、锁紧螺母、调节螺母等组成,上横梁和工作台用四根立柱与锁紧螺母联成一刚性桁架,滑块则由四根立柱导向,上下运动。通过调节四个调节螺母,调节滑块下平面对工作台台面的不平行度及行程时的不垂直度。在滑块下平面及工作台上平面上,设有T形槽,可配M24的螺栓专供安装工模具用。 在工作台中央有一圆孔,顶出缸由压套紧压于圆孔内的台阶上,在上横梁中央孔内,装有主油缸。主油缸由缸口端的台阶和大螺母紧固于横梁上。滑块中央的大孔,是用来装主活塞杆的,由螺栓和螺纹法兰把滑块与主活塞杆联成一体。在滑块四立柱孔内,装有铜导套,以便于磨损后更换,在外部均装有压配式的压注油杯,用以润滑立柱——导套运动付,在孔口端均装有防尘圈,以防止污物进入运动付,保持运动的洁净。 在锁紧螺母和调节螺母上,均配有紧定螺钉的紫铜垫,机器调整好后,拧紧螺钉可防止螺母松动。 (2)主油缸 主油缸为双作用活塞式油缸,缸底为封底式整体结构,在缸体内装有活塞头,在活塞头的外圈上,装有一道向上,一道向下的进口Y形密封圈与缸壁密封;活塞头的内圈与活塞杆的密封,是由两道O形密封圈来实现,从而使缸内形成上下两个油腔。 在缸口装有导向套,以保证活塞运动时有良好的导向性能。在导向套内孔装

有一道轴用Yx形密封圈,在导向套外圆上装有两道O形密封圈,以保证缸口部分的密封性能。缸口端采用可拆卸式的卡环联接,在端部装有防尘圈,以防止污物进入油缸内,保持油液的清洁。 在主油缸的缸底上装有充液阀,以螺纹联接,并由O形密封圈密封。在缸体的上端面,装有充液筒,用螺栓坚固联接,并用耐油橡胶圈密封。 (3)顶出油缸 顶出油缸的形式和作用原理与主油缸相同。缸底采用了螺纹结构,可以拆卸。 在活塞头的外圈,只布置两道(一上一下)方向相反的孔用Yx形密封圈。 在活塞杆外伸端的端面上,设有一个螺纹孔,以供配置顶杆用。 (4)充液系统 充液系统由充液阀和充液筒两部分组成。 当滑块快速下行时,由于主油缸上腔的负压而吸开充液阀的主阀,使充液筒内的大量油液流入主缸上腔,以使滑块能顺利的快速下行。卸压时,控制油首先进入控制阀内,使其控制活塞克服弹簧力,推动卸荷阀芯下行,使主缸上腔的高压油通过卸荷阀芯与充液筒内接通,达到卸压的目的。 在充液筒上部设有长形油标,用来观察油位。充液筒旁的溢流管,把充液筒的容积分为两部分:下部油液是供滑块快速下行用的,上部容积则是容纳滑块回程时,主缸上腔排出的油液。在充液筒的侧下部,装有一闸阀,用于定期更换油液。 充液阀是用阀座上的螺纹与油缸缸底紧固联接的,并用O形密封圈密封。充液筒是由中部平面与主缸上端面相联接,并用螺栓紧固,耐油橡胶垫密封的。在筒的盖上设有通气孔,在充液筒内设有吊钩。 (5)动力机构 动力机构是由油箱。高压油泵、电动机、集成阀块等组成。它是产生和分配工作油液,使主机能完成各项预定动作的机构。

液压系统调节方法

拖泵及泵车液压系统调节方法 一、目的: 本调节方法适用所有砼泵系列产品,其中调试前的准备要求有质保人员确认后方可进行下一步。 二、应用范围: 所有砼泵系列产品 三、调节步骤 (一)调试前准备 1、加注AW46液压油,应用滤油机进行加油。 2、加注润滑脂,夏季用"00"型,冬季用"000"型,摇动润滑脂泵,使润滑脂达到各润滑点 3、水箱(洗涤室)必须加满清水 4、泵车及柴油机拖泵:旋转减速机加注齿轮油,将柴油箱加满柴油,向柴油机中加入机油至规定高度,向柴油机水箱中加入防冻液 5、电动机拖泵:电机输出轴旋转方向的确定,点动启动按钮,电机运转1-2秒,从泵座的观察口看电机输出轴的旋转方向——从电机轴端看电机为逆时针方向旋转,若电机旋转方向不对,则将电源任意两相交换位置接上即可 6、在主阀块至主油缸之间串入滤油车(左右各一台) 7、检查主油泵吸油自封装置是否处于开启位置。 8、检查臂架泵吸油管路上闸阀是否处于全开位置。 9、拧开主油泵、臂架泵壳体上的螺堵,排出空气,直到螺口冒油时再将螺堵拧紧。 10、蓄能器充氮气至气压为6MPa,并将蓄能器泄油球阀关死。 11、将主溢流阀及辅阀组上溢流阀全部拧松。 (二)、限幅脉冲值、时间及日期的设定 1、近控操作

控制面板图 Ⅰ、DS300文本显示器+车下操作盒界面 DS300A文本显示器操作 控制面板上装有触摸式按钮的文本显示器其中正泵、反泵、遥控/近控切换、讯响、油压表开关(ALM)可以直接操作,其它功能都由ESC键、Enter键、上翻键、下翻键、左翻键、右翻键结合文本显示器画面进行操作。现将各功能操作分述如下: 1、按钮操作 (ALM)按钮:(ALM)按钮为压力表开关按钮。主系统压力表及臂架系统压力表平时是处于关闭状态,需要观察主系统或臂架系统压力时,按下(ALM)按钮,压力表开关打开,压力表开始指示,延时2分钟后自动关闭。 遥控/近控切换按钮:用来进行遥控与近控的切换,每按一下,就改变当前工作状态,文本显示器的屏幕上显示“当前状态:遥控状态或近控状态”,表示系统已处于遥控或近控状态。 正泵按钮:当按下正泵按钮时,发动机升速,当转速升至设定转速时,开始正泵,再次按时,正泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:正泵”表示系统处于正泵工作状态。 反泵按钮:当按下反泵按钮时,发动机升速,当转速升至设定转速时,开始反泵,再次按时,反泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:反泵”表示系统处于反泵工作状态。按钮左上角信号灯亮时,表示系统处于反泵工作状态。反泵有优先,即在正泵工作状态时,按反泵按钮,系统立即转入反泵,再次按反泵按钮,系统又恢复到正泵状态。此功能主要是保证在出现堵管时能以最快的速度处理。 讯响按钮:按住按钮,喇叭和蜂鸣器鸣叫,松开按钮,讯响停止。 2.文本显示器画面操作 根据画面上的提示进行相应的操作:初始化设定、参数设定和功能操作: 1)初始化设置 当向PLC中新输入程序后,文本显示器立即显示下列信息: A)请选择底盘:五十铃、volvo、奔驰 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: B)请选择分动箱类型:进口分动箱、国产分动箱 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: C)请选择水泵马达类型:低速水泵马达、高速水泵马达 按提示选择正确的底盘型号,按ENTER确认后,进入下一个提示界面:

液压机操作规程

液压机操作安全规程 一. 注意事项 1、操作前要穿工作服,扣紧衣扣、袖口,不得敞开工作服操作,严禁带手套。 2、机体压板上下滑动时,严禁将手和头部伸进压板、模具工作部位。 3、液压机操作者必须经过培训,掌握设备性能和操作技术后,才能独立作业。 4、作业前,应先清理模具上的各种杂物,检查各部电气设施、手柄、传动部位、防护、限位装置齐全、可靠、灵活。 5、液压机安装模具必须在断电情况下进行,禁止碰撞启动按钮、手柄和用脚踏在脚踏开关上。 6、装好上下模具对中,调整好模具间隙,不允许单边偏离中心,确认固定好模具后再试压。 7、液压机工作前首先启动设备空转5分钟,同时检查油泵声响是否正常、液压单元及管道、接头、活塞是否有泄露现象。 8、开动设备试压,检查压力是否达到工作压力,设备动作是否正常可靠,有无泄露现象。 9、液压机工作完毕,应切断电源、将压机液擦试干净,将模具、工件清理干净,摆放整齐。 二、开机前点检 a.查验“交接班记录”,查看有无异常事项,避免液压机“带病工作”; b.检查油位位置,不得低于最低液位线,否则加注液压油

c.检查液压机各紧固件是否牢靠、限位装置及安全防护装置是否完整、可靠,其中紧固件包括模具扣压抓、限位开关、光幕传感器等固定和定位螺栓、螺钉; d.确认模具是否正确,如需更换模具,必须在停机状态下进行,避免碰触启动开关,装好上下模具对中,调整好模具间隙,不允许单边偏离中心,保证滑块中心线和模具中心线重合,模具应符合技术要求,并紧固牢靠,模具紧固要求四角紧固,严谨两端或三角紧固,即4X 扣压爪均应压紧模具; e.填写点检记录表。 三、工作前开机检查 a.开机顺序:开启电源(控制台侧面)旋转松开紧急停止按钮根据工艺要求,调整好各工艺参数按下电机启动按钮,此时液压泵处于空负荷循环状态; b.压板动作顺序:快下慢下工作放气停机保压慢回快回慢顶抽芯退回。 c.工作状态 调模:“工作状态选择”开关置于调模状态,各动作需手动完成; 手动:“工作状态选择”开关置于手动状态,各动作需手动辅助完成;自动:“工作状态选择”开关置于自动状态,各动作自动完成; d.工作状态旋至手动,双手同时按下“双手运行”按钮,滑块快下,达到设定限位后,滑块慢下,上下磨具闭合保压,达到设定时间。动作完成后,滑块慢回至设定限位后,快回复位,此时滑块处于静止泄

连铸机扇形段远程自动调节辊缝的液压系统及其控制方案的分析_百(精)

?专题综述? 收稿日期:2006-02-23; 修订日期:2006-04-11 作者简介:谷振云(1940- , 男, 西安重型机械研究所研究员 级高级工程师。 连铸机扇形段远程自动调节辊缝的液压系统及其控制方案的分析 谷振云, 李生斌 (西安重型机械研究所, 陕西西安710032 摘要:分析了近年来从国外引进的板坯连铸机采用液压电气控制实现扇形段辊缝自动调节的基本工作要求, 液压控制原理及各控制方案的特点。开关阀的控制方式已成功用于西安重型机械研究所设计制造的攀钢2#大方坯连铸机的轻压下系统。 关键词:辊缝; 自动调节; 轻压下; 液压控制 中图分类号:TF77711文献标识码:A :1001- -05 Analysis of the control of CCM roll gap adjusting GU Zhen 2yun , L I Sheng 2bin (Xi πan Heavy Machinery Research Institute , Xi πan 710032, China Abstract :The basic requirement , hydraulic control mechanism and features of various solutions of CCM se g 2ment automatic roll gap adjusting hydraulic system introduced from abroad are discussed. The on 2off valve control has been successfully

四柱液压机工作原理解读

四柱液压机工作原理 四柱液压机四柱液压机是油泵把液压油输送到集成插装阀块,通过各个单向阀和溢流阀把液压油分配到油缸的上腔或者下腔,在高压油的作用下,使油缸进行运动。液压机是利用液体来传递压力的设备。液体在密闭的容器中传递压力时是遵循帕斯卡定律。 四柱液压机由主机及控制机构两大部分组成。液压机主机部分包括液压缸、横梁、立柱及充液装置等。动力机构由油箱、高压泵、控制系统、电动机、压力阀、方向阀等组成。[1](二用途8 该液压机适用于可塑性材料的压制工艺。如粉末制品成型、塑料制品成型、冷(热挤压金属成型、薄板拉伸以及横压、弯压、翻透、校正等工艺。 四柱液压机具有独立的动力机构和电器系统,采用按钮集中控制,可实现调整、 手动及半自动三种操作方式。 (三特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及 半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 液压机简介 (又名:油压机利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机要用模具,而自由锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。 工作原理

四柱液压机[2]的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。动力机构通常采用油泵作为动力机构,一般为积式油泵。为了满 足执行机构运动速度的要求,选用一个油泵或多个油泵。低压(油压小于2.5用齿轮泵;中压(油压小于6.3用叶片泵;高压(油压小于32.0用柱塞泵。各种可塑性材料的压力加工和成形,如不锈钢板钢板的挤压、弯曲、拉伸及金属零件的冷压成形,同时亦可用于粉末制品、砂轮、胶木、树脂热固性制品的压制。 安全操作 1、液压机操作者必须经过培训,掌握设备性能和操作技术后,才能独立作业。 2、作业前,应先清理模具上的各种杂物,擦净液压机杆上任何污物。 3、液压机安装模具必须在断电情况下进行,禁止碰撞启动按钮、手柄和用脚踏在脚踏开关上。 4、装好上下模具对中,调整好模具间隙,不允许单边偏离中心,确认固定好后模具再试压。 5、液压机工作前首先启动设备空转5分钟,同时检查油箱油位是否足够、油泵声响是否正常、液压单元及管道、接头、活塞是否有泄露现象。深圳油压机系列引 &开动设备试压,检查压力是否达到工作压力,设备动作是否正常可靠,有无泄露现象。 7、调整工作压力,但不应超过设备额定压力的90%,试压一件工件,检验合格后再生产。 8、对于不同的液压机型材及工件,压装、校正时,应随时调整压机的工作压力和施压、保压次数与时间,并保证不损坏模具和工件。

液压平板硫化机,的设计方案

液压平板硫化机,的设计方案 (总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

液压硫化平板 电加热控制电气的设计 一、设计要求 1.要求安全可靠的完成动平板上行、下行、加压、保压、手动连续卸压、加压的往复运动。 2.特殊需要时的手动下行、紧急停机。 3.恒温设定、恒温恒压的时间设定,硫化完成自动下行停车报警。 4.电加热恒温温差±5℃,设定温度0~300℃(实际使用温度200℃左右)。 二、设计元器件的选用 根据上述的要求,选用的元件为:电磁继电器、时间继电器、接触器、温度控制仪、固态继电器及热继电器,700W铁管添充加热器、电接点压力表。 三、设计思路 为了使设备操作方便,节约能源、提高生产效率,我利用一个急停按钮做特殊情况下的紧急停机,一个常开按钮完成上述所有运动过程。 四、设计的电原理图及工作原理(见图1.运行控制、2.加热控制) 1.运行设计 工作时动平板要上行合模、接触工件时,需要根据实际情况,

连续往复加压卸压,上下运动最后恒温保压。 共5页第1页 工作前首先设定恒温、恒压需要的时间,按动按QA,继电器J1吸合并自保,时间继电器SJ3延时导通J2不动作.继电器J3吸合并自保,常开常闭反转,接触器CZ1吸合油泵电动机D1起动(根据泵说明配备电动机功率),电磁阀DT3动作,动平板开始上行,同时时间继电器SJ开始按设定的时间计时,当动平板接触模具时,按住按钮QA,SJ3按设定的时间t延时闭合,继电器J2吸合.继电器J1释放,电磁阀DT1、DT2动作,动平板下行,当放开按钮QA时,继电器J2释放,下行停止,继电器J1吸合上行,连续往复多次合模完成,开始加压,压力到达设定的压力值时,电接点压力表的常开点闭合,触发固态继电器导通,继电器J0吸合,继电器J1释放,加压停止,当压力小于设定值时,固态继电器再次被触发,完成恒压要求。 为了克服电接点压力表常点接触不良的缺点,安全可靠的工作,我在固态继电器的触发处,并联了一只470μF电解电容器,大大提高了可靠性。硫化完成按设定的恒温恒压时间开始下一步的动作,时间继电器SJ闭合,SJ3动作,继电器SJ2吸合,动平板下行,平行于工作台面时,行程式开关XK动作,时间继电器St失电下行停止。时间继电器SJ2动作报警t时间,提醒操作者工作完成。当工作需要下行时,按住QA即可,放开即停。 本设计采用时间继电器的目的是为了使电磁继电器能更可靠的工作,不发生误动作,及在实际运行中做必要的时间设定和调试。2.电加热的设计

重调机液压系统使用说明书

重调机液压系统 使用说明书 一、概述 1、用途 该液压系统适用于翻车机配套设备重车调车机以及其它列车牵引设备的牵车臂的提升和落下。另外它也可适用于各种不同需要提升或落下重物的场合。 2、组成 该液压系统主要由15kW卧式电机、双联叶片泵、换向阀、执行机构、油箱、蓄能器等装臵组成。该液压系统采用集成式设计,体积小,结构紧凑,无渗漏,易维护,操作简便、可靠。 二、液压系统主要性能参数 1、系统额定压力 16MPa 2、系统流量 57L/min (前泵) 18L/min (后泵) 3、起落臂工作压力 10-12MPa 4、制动工作压力 4MPa 5、摘钩工作压力 2MPa 6、充氮压力 4.5MPa 7、电机功率 15kW

8、电机转速 1460r/min 9、抬臂时间 10S 10、落臂时间 8S 11、摘钩时间 <2S 12、制动时间 <1S 13、有效容积 605L 14、油液 YA-N46 三、液压系统工作原理及概况 1、原理(参见原理图) 本系统主要有以下三个作用:抬落臂、摘钩、制动。 双联泵(10)通过弹性联轴器(11)从电机(12)得到机械能后,经滤油器(9)从油箱(1)吸油然后泵的两个出口分别输出压力

油P1、P2。P1、P2的压力分别由卸荷阀(14)和(15)调定。压力油P1经卸荷阀(14)至集成块(20),压力油分两路,一路经叠加阀(21)(22)(23)(24)至摆动油缸;另一路经叠加阀(34)(33)(32)(31)至平衡油缸,摆动油缸、平衡油缸联动,完成大臂抬落。压力油P2经卸荷阀(14)分两路,分别完成提销和制动。蓄能器(26)在抬臂时蓄能,落臂时释放能量,并为平衡油缸提供背压及补充循环油。 2、工作概况(参见原理图) (1)启动电机(12)5DT得电,车臂落下,到位后5DT失电,3DT得电制动抱闸打开调车机接车。 (2)将重车牵至翻车机上定位3DT失电制动。2DT得电提后钩销到位,2DT失电。3DT得电调车前行一段,将车辆送到迁车台后3DT失电,1DT得电提前钩,到位后1DT失电,调车机停止,3DT得电调车机返回3DT失电调车机停止,4DT,6DT得电,车臂抬起到位,4DT、6DT失电,调车机返回,开始下一循环。 四、液压系统调试 1、泵站接通电源,并将泵站电机接上地线。 2、取下泵站空气滤清器,由此口向油箱注入清洁工作油(粘度18—38mm2/S),至油位计上限(油箱容积约605升)。 3、拧松(不准拧下)整个液压系统中最高一处或几处管道连接螺纹,作液压系统排空气用。 4、将泵站卸荷阀、溢流阀全开(即反时针转动手柄至极限位臵),

液压硫化机液压原理的设计

1140液压硫化机液压原理的设计 随着我国交通运输事业的迅速发展,高速公路不断铺设,这就对对汽车轮胎的均匀性提出了越来越高的要求,因此对硫化机的工作精度要求也随之提高。 目前我国轮胎行业广泛应用的是50年代发展起来的机械式硫化机,由于本身结构的原因,机械式硫化机存在如下问题: 1. 上下热板的平行度、同轴度、机械手卡爪圆度和对下热板内孔的同轴度等精度等级低,特别是重复精度低; 2. 连杆、曲柄齿轮等主要受力件上的运动副,是由铜套组成的滑动轴承,易磨损,对精度影响较大。 3. 上下模受到的合模力不均匀,对双模轮胎定型硫化机而言,两侧的受力,大于两内侧的受力; 4. 合模力是在曲柄销到达下死点瞬间由各受力构件弹性变形量所决定的,而温度变化使受力构件尺寸发生变化,合模力也随之发生变化,因此,生产过程中温度的波动将造成合模力的波动。 由于机械式轮胎硫化机存在的不可克服的弱点,已不能满足由于高速公路的发展,对汽车轮胎质量要求的日益提高。因而世界上主要轮胎公司已逐步采用液压式硫化机代替传统的机械式硫化机,这是因为液压式硫化机结构上具有如下特点: 1. 机体为固定的框架式,结构紧凑,刚性良好。虽然液压式硫化机也是双模腔,但从受力角度看,只是两台单模硫化机连结在一起,在合模力作用下,机架微小变形是以模具中心线对称的; 2. 开合模时,上模部分仅作垂直上下运动,可保持很高的对中精度和重复精度;另一方面,对保持活洛模的精度也较为有利; 3. 上下合模力均匀,不受工作温度影响; 4. 整机重量减轻,仅为机械式硫化机的1/3; 5. 由于取消了全部蜗轮减速器、大小齿轮、曲柄齿轮和连杆等运动部件和易损件,使维护保养工作量减少。 一、液压式轮胎定型硫化机的工作程序 液压硫化机工作时,升降油缸带动上模沿导向柱上升,在机架内形成空腔,装胎装置转进装胎,中心机构的上下环上升,胎胚定位,装胎装置卸胎后退出,升降油缸带动上模沿导向柱下降合模,胎胚定型后合模到位,在模座下面的4个短行程加力油缸作用下,产生要求的合模力。轮胎硫化结束后,加力油缸卸压,升降油缸带动上模上升,轮胎脱出上模,上模上升到位后,中心机构囊筒上升,轮胎脱下模,中心机构的上下环下降,胶囊收入囊筒中,同时,卸胎机构转进,囊筒下降,卸胎机构将轮胎翻转而出,送至后充气冷却。 从各国实践经验看,液压式硫化机在升降驱动装置、活络模装置、加力装置、中心机构、囊筒升降装置上采用液压驱动。可以说除卸胎装置和装胎装置采用气动控制外,其它均采用液压驱动。因此,作为动力源的液压系统设计十分重要。 二、硫化机液压动力源的设计 1140 液压式轮胎硫化机硫化胎圈直径范围12"~18",最大合模力为1360KN。合模力的获得完全来源于油压。一般采用低压力、较快速度、较长行程的油缸控制开合模。合模后,用高压、短行程的油缸使上下模受到合模力。由于负载和速度变化较大,要求相应的液压系统能提供较大范围变化的压力和流量。 液压系统各缸工作时所需流量计算如下: 缸的几何流量Q= 式中: Q-几何流量 l/min A-有效面积 S-缸的行程 m

四柱液压机技术参数

四柱液压机技术参数 四柱液压机是各类铝、镁合金压铸制品的毛边冲切及整形,塑料制品的整切;也适用于塑性材料的成形如板料的落料、拉伸等、是TM106普通型的升级产品, 四柱液压机采用先进的子母缸液压回路.无论是噪音,速度, 耗电功率,均优于普通液压冲床是款高效率高速度,高出力,高环保的新一代液压冲床本机在压铸行业应用最为广泛。(欢迎来电咨询:400-6626-500) 四柱液压机特点: 1、采用四柱三板式结构,活动板与工作面平行精度高,四个精密导套使下压垂直精度高。 2、安全设计周全,双手操作,设有紧急按钮(光电保护装置需另加装)及上下寸动调模按钮; 3、工作台面配有落料槽及吹气装置,提高生产效率; 4、压力、行程、速度、保压时间、闭合高度均可按需求调整,方便操作; 5、工作台下方装有脚轮和脚杯,可轻便移动,省力高效; 四柱液压机适用范围: 各类铝、镁合金压铸制品的毛边冲切及整形,塑料制品的整切;也适用于塑性材料的成形如板料的落料、拉伸、压印等以及塑料、粉末制品的压制等多种用途。汽车和摩托车配件行业用途最广泛; 四柱液压机 适用范围:(精密压铸品切边机,精密四柱三板液压机,50吨油压冲切机,30吨快速油压机,铝镁制品切边机,五金制品冲边机,按键切割机)。本系列油压机是各类铝、镁合金压铸制品的毛边冲切及整形,塑料制品的整切;也适用于塑性材料的成形如板料的落料、拉伸等、是TM106普通型的升级产品, 采用先进的子母缸液压回路.无论是噪音,速度, 耗电功率,均优于普通液压冲床是款高效率高速度,高出力,高环保的新一代液压冲床本机在压铸行业应用最为广泛. 四柱液压机产品技术特点: 1.该系列液压机床以2-20MPA的液体压力为动力源,外接三相AC380V 50HZ或三相 AC220 60HZ交流电源. 2.该系列设备以液体作为介质来传递能量, 采用先进的子母缸液压回路,油温低,空行程速度均在150MM/秒以上, 工进速度30 MM/秒以下 3. 设备待机,滑快上下移动时噪音均不超过75分贝. 4.采用四柱三板式结构,活动板的垂直精度由四个精密导套控制,下工作面与上工作面任意点的平行精度达到0.1MM以下. 5.冲床具有废料吹气装配.并在下工作台中央开有废料落料槽. 6.冲床的冲切下止点位置一般通过压力开关,位置感应器进行控制. 7.具有自动计数功能,分手动和半自动两种控制方式,手动可将压装上模停在任意行程范围内,配有紧急回升按钮,也可加装红外线护手装置 8.压力、行程、冲切速度、吹气时间、闭合高度客户均可自行调整,方便操作; 9.液压系统内置油箱底部,外观整洁,稳重。

挖掘机液压系统原理

一、主液压回路系统的构成 日立挖掘机主液压回路系统是由主液压系统和先导回路系统构成。主液压回路将泵的液压油供给各操作机能的促动器。 二、先导回路液压操作系统的组成 液压系统是由发动机、主泵、先导泵、控制阀各1台和四个液压缸、1台旋转马达及2台行走马达组合而成、泵通过输入轴由发动机所驱动。主泵的液压油通过控制阀流到各促动器。先导泵的液压油流入先导回路内。 三、主回路 1、主液压回路 主液压回路系由吸引回路、输出回路、回油路及牌友回路所构成。液压系统由主泵、控制阀、行走马达各一台及四个液压缸。 主泵是斜轴式排量可变型轴向活塞泵,是由发动机驱动的(发动机转速比为1.0) 2、吸引回路和输出回路 泵通过吸引滤油器吸引液压油箱的油,油从泵流入控制阀,然后由油箱口放出,主泵放出的油通过控制阀流至各促动器。 控制阀控制各种液压机能,从各促动器流出的回油通过控制阀和液压油冷却器流回液压油箱。 3、回油路 每个促动器放出的油全部通过控制阀流回液压油箱内。回油路内有旁道单向阀,其设定压力分别为9.8×10^4pa及4×9.8×10^4pa。通常回油通过液压油冷却器及左侧控制阀流回液压油箱, 油温低时,粘度变高,通过油冷却器时的阻力也随着增大。 油压超过9.8×10^4pa时,回油直接流回液压油箱,可在短时间内把油温提高到适当的高度。 油冷却器被阻塞时,回油通过旁道单向阀直接流回液压油箱。 旁道单向阀被阻塞时设在冷却器和液压油箱之间,其设定压力为4×9.8×10^4pa。 液压箱内设有直流式滤油器,从左右两侧的控制阀流出的油合流后经直流式滤油器过滤,直流式滤油器内有旁道安全阀。当滤芯阻塞使差压达9.8×10^4pa时,旁道安全阀就打开,油直接流回液压油箱。 4、排油回路 马达及刹车阀等内部漏的油以及润滑油回路内的油,全部都积蓄起来,经过排油回路流回操作油箱。 5、行走马达排油回路 左右两行走马达漏的油由各个马达壳的排油口排出,合流后通过中心接头,经过直流式滤油器流回液压油箱。 6、旋转马达排油回路 旋转马达漏的油排出后,与行走回路排出的油一起通过直流式滤油器流回液压油箱。 7、输出压控制 控制阀内的卸载安全阀控制泵的输出压力保持一定。全部操作均在330×9.8×10^4Pa设定压力操作。 在挖掘操作时,设定压力变为370×9.8×10^4Pa。 狼涌截止安全阀把高压油释放到液压油箱内,以免油压系统及发动机承受过负荷。 8、先导回路 先导回路是由吸引、出油回路构成的。先导系统有先导泵、换冲阀、保险阀、2个高速电

连铸机液压系统故障诊断研究

目录 第一篇绪论 (1) 第一章课题背景 (1) 第二章变电站综合自动化系统存在的问题及改进措施 (4) 第三章变电站自动化技术现状 (9) 第四章变电站综合自动化系统发展方向 (10) 第一节智能电子装置(IED)的发展和光电互感器的应用 (11) 第二节监控系统的发展和遥视系统的应用 (11) 第三节人工智能技术的发展应用 (12) 第四节通信方式的发展和工业以太网的发展应用 (12) 第五节蓝牙技术的发展应用 (12) 第二篇现场总线的应用现状 (13) RS-458 (13) LonWorks (13) F-NET (13) WorldFIP (13) 第一章 IEC61850标准的应用现状 (14) 第二章现场总线在变电站综合自动化系统应用中的不足 (14) 第一节现场总线作为工控领域的专用网络 (14) 第二节现场总线的拓扑结构多为总线型 (14) 第三节数据通信带宽 (14) 第四节总线产品众多 (14) 第三章变电站综合自动化系统中现场总线应用的发展趋势 (15) 第三篇现场总线的变电站自动化系统 (22) 第一章系统功能 (22) 第二章通讯网络 (24) 第四篇硬统设计件系 (25) 第一章系统总体结构 (25) 第二章系统设计要点 (25) 第五篇系统组态监控软件的设计 (27) 第一章开发工具的选取 (27) 第二章变电站对象模型分析 (27) 第三章面向程序思想方法构建监控组态软件 (28) 结论 (29) 参考文献 (30) 致谢 (31)

第一篇绪论 随着计算机技术、通信技术和网络技术的飞速发展和广泛应用,传统的集中、低速、专用封闭式的远动系统已向开放、高速、综合的网络化方向发展,通过局域网互联和广域网互联,实现系统信息资源共享。变电站自动化技术也得到了较快的发展,全分散式变电站自动化系统是变电站自动化的主要发展方向[1].由于现场总线可靠性高、稳定性好、抗干扰能力强、通讯速率高、维护成本低的特点,变电站综合自动化系统已普遍采用现场总线作为系统的通讯手段,以满足自动化系统全分散、全数字化、双向、多点多站的要求。现场总线是近几年发展起来的应用于自动化领域的互联通信网络,由它构成的各种智能电器网络表现出强大的优势.现场总线作为设备层间的基础 通信网络,具有协议简单、容错能力强、安全性好、成本低的特点,具有较高的实时性,并能适应于信息的频繁交换,因而不同于间隔层和变电站层的数据通信网络[2].目前,国际上现场总线技术发展很快,本文重点从现场总线的功能和性能阐述在电力系统控制的要求,探讨应用现场总线技术提高变电站的综合自动化水平,说明总线技术是综合自动化变电站现场通讯网络的发展方向。 第一章课题背景 变电站自动化系统名词,国际电工委员会解释为在变电站内提供包括通信基础设施在内的自动化系统。在国内,我们所说的变电站自动化系统,包含传统的自动化监控系统,继电保护、自动装置等设备。 自20世纪90年代以来,变电站自动化技术一直是我国电力行业的热点技术之一。目前全国已投入运行的35~500kV变电站约20000座(不包括用户变),而且每年新增变电站的数量约为3%~5%,也就是说每年都有千百座新建变电站投入电网运行,新建变电站基本上都采用了自动化系统模式,同时每年还有许多老变电站的技术改造,也基本上以自动化系统模式为主。 在已采用自动化技术的变电站中,早期采用较多的国外产品有:如ABB、SIEMENS、GE等公司的产品。但随着国内厂家的产品技术含量、工艺水平的提高以及

平板硫化机的几大故障及处理

平板硫化机的几大故障及处理 平板硫化机的主要功能是提供硫化所需的压力和温度。压力由液压系统通过液压缸产生,温度由加热介质(通常为蒸汽)所提供。平带平板硫化机按机架的结构形式主要可分为柱式平带平板硫化机和框式平带平板硫化机两类;按工作层数可有单层和双层之分:按液压系统工作介质则可有油压和水压之分。 在橡胶工业中,柱式平带平板硫化机是使用较早的一种机型,我国过去使用的平带平板硫化机也多为柱式结构,但目前则多采用框式结构。 平板硫化机故障及处理方法如下: 1、开机后柱塞不上升 原因:①油泵不出油,可能油泵转向相反或损坏②回油阀手柄处于开模位置③电机反转 处理方法:①电气接试或拆出检修油泵②将手柄扳到正确位置 ③把火线调换 2、异常噪声 原因:①管路内有大量空气②滤油器堵塞③油箱内油位过低,空气呼入管道④油泵损坏 处理方法:①使压机上下数次,排出空气②拆出清洗③添加油液④拆出修理或更换 3、不会升压或升压很慢 原因:①高压泵故障②高压溢流阀未关住③管道上有泄漏④压力表失灵 处理方法:①拆出检查修复②拆出清洗后正确调压③查出漏点并清除④更换压力表 4、不能保压 原因:①放油阀阀座、阀瓣密封不严②单向阀内阀芯密封不业③管路或油缸漏减 处理方法:①拆出清洗研磨或更改②检查进油缸管是否松动,后旋紧

5、升温比正常慢 1)接触器在升温过程中经常开路 2)某一块平板不热或温度低 3)升到规定值后继续升温 原因:①温控调节仪失灵②温控调节仪失灵或部分加热管损坏③温控调节仪失灵 处理方法:①更换温控调节仪②更换温控调节仪或加热管③更换温控调节仪 6、柱塞周边大量漏油 原因:密封圈坏了 处理方法:更换密封圈 7、平板升温不正常 原因:热电阻损坏 处理方法:对温度较低的平板电热管,逐个测量通断情况,对损坏表调换 8、温控失灵 原因:①控温仪失灵或控制线路断②电热熔断器断路或接线断路 处理方法:可把控温仪表芯拆下,用交换法比较,对损坏表调换 9、加温不显示 原因:①可能原因是电流表坏了②可能是加热管有损坏 处理方法:观察控温仪指针情况,如指针顺时针转到底,说明热电阻接线断路或热电阻烧断。 10、平板不升温 原因:①热电阻有损坏②热电阻的两端连接线可能烧断 处理方法:①用交换方法检查或在控温仪动作时观察电热接触器是否动作,后接通断线,计换控温仪②调换快速熔芯或接通线路

四柱液压机的安全操作规程

行业资料:________ 四柱液压机的安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共5 页

四柱液压机的安全操作规程 1、禁止无工作经验人员控制液压机,新员工要培训后再上岗。 2、发现机械、模具异常及时上报,待修理合格后方可生产。 3、克服麻痹大意违规操作,禁止二人以上同时操作液压机。 (开动前应先检查各紧固件是否牢靠,各运转部分及滑动面有无障碍物,限位装置及安全防护装置是否完善。) 4、机械维修、保养必须切断电源,垫上枕木。 5、液压机运转中,严禁进入模腔内修理模具,进出产品要严格注意安全。用安全器先把产品往边上移,等确认安全后再用手拿。 6、安装模具必须规范,压板压好后再检查一次,压机的闭合高度要控制在能调节的范围内,压机的压力要由小到大调节,首件必须要点动作业。 7、工具、压板、螺杆、螺帽、垫块要轻拿轻放,用后要放在架子上摆放好。 8、按照润滑图表的规定加注润滑油,检查油量、油路是否畅通,油质是否良好。 (严禁乱调调节阀及压力表,应定期校正压力表。保持液压油的油质,工作油温度不许超过45℃,若出现异常,即停机。) 9、检查液压机各紧固件是否牢靠、限位装置及安全防护装置是否完整、可靠。 10、液压机作空行程试运转;检查各按钮、开关、阀门、限位装置等是否灵活可靠;确认液压系统压力正常、工作横梁运动灵活后,方可工作。 第 2 页共 5 页

四柱裁断机安全操作规程 1注意事项: 1.1四柱裁断机操作人员必须经过相关培训,掌握操作技能,并严格遵守本安全操作规程进行作业; 1.2必须遵守通用机床安全操作规程的相关要求。 2工作前认真做到: 2.1工作前按规定穿戴好防护用品,扎好袖口,不准戴围巾、戴手套。女工发辫应挽在帽子内; 2.2按点检表要求仔细检查设备,润滑相应加油部位。并空转试车12分钟。 3工作中认真做到: 3.1裁刀设定时,一定要先放松设定手轮,使设定杆接触到裁断点控制开关,否则裁刀设定开关转至ON时,无法产生设定的动作; 3.2工作时裁刀尽量置于上压板的中央位置,以免造成机械之单边磨损,影响其寿命; 3.3更换新裁刀,如高度不一样时,应按设定方法重新设定; 3.4裁断动作时,双手请离开裁刀或斩板,严禁用手去扶助刀模而来裁断,以免产生危险; 3.5操作人员如需暂离岗位时,请务必关闭电机开关,以免他人不当操作而导致损坏机台和他人受伤; 第 3 页共 5 页

压力机液压系统全解

湖南工业大学 机电控制技术 课程设计 资料袋机械工程学院(系、部) 2015 ~ 2016 学年第二学期课程名称机电控制技术指导教师职称副教授 学生姓名专业班级班级学号 题目压力机液压系统的电气控制设计 成绩起止日期 2016 年 6 月 25 日~ 2016 年 7月 1 日

课程设计任务书 2015—2016学年第二学期 机械工程学院(系、部)机械设计制造及其自动化专业机设1301 班级课程名称:机电控制技术 设计题目:压力机液压系统的电气控制设计 完成期限:自 2016 年 6 月 25日至 2016 年 7月 1日共 1 周 指导教师(签字): 2016年 7 月 1 日 系(教研室)主任(签字): 2016年 7月 1 日

机床电气控制技术 设计说明书 压力机液压系统的电气控制设计 起止日期: 2016年 6 月 25 日至 2016 年 7 月 1 日 学生姓名: 班级: 学号: 成绩: 指导教师(签字): 机械工程学院 2016年7月1日

目录 一、课程设计的内容与要求 (1) 1.1课程设计对象简介 (1) 1.2压力机结构及工作要求 (2) 1.3液压系统工作原理及控制要求 (5) 1.4课程设计的任务 (6) 二、电气控制电路设计 (6) 2.1继电器-接触器电气控制电路的设计 (7) 2.1继电器-接触器电气控制电路图分析及介绍 (10) 2.3选择电气元件 (13) 三、压力机的可编程控制器系统的设计 (14) 3.1可编程控制器控制系统设计的基本原则 (16) 3.2可编程控制器系统的设计 (18) 四、设计体会与总结 (19) 五、参考资料 (20)

连铸机施工方案(1)

首钢京唐钢铁厂炼钢连铸工程 连铸设备、电气、仪表安装工程 施工方案 编码:Q R_50 编号:2006年第号 中国十三冶 2006年8月10日

7.7主要工艺设备安装与单体试运转 7.7.1工程概况 7.7.1.1工程简介 连铸车间是炼钢系统的一个重要组成部分,该车间由浇注跨、切割跨、板坯横移跨、第一出坯跨及第二出坯跨组成,布置有两台2180mm双流连铸机、两台1750mm双流连铸机和车间各跨天车等主要工艺设备,年产合格铸坯970万吨。 1)浇注跨 浇注跨(E—F)厂房全长524米,宽33米,分三个区域,1~7号柱间为1750连铸机中间罐维修区,7~18号柱间有1750连铸机和2180连铸机浇注平台,18~22柱间为2180连铸机中间罐维修区。 浇注跨配备2台160/80t桥式起重机(轨面标高+30m),主要用于连铸机更换中间罐及结晶器扇形段等设备;此外连铸机两侧维修区内还配备2台低轨面(+16m)80/20t桥式起重机,分别用于中间罐维修区及设备维修区维修作业操作。 浇注平台为连铸生产主操作平台,其上有大包回转台、中间罐车等设备,平台下有连铸机二冷室、液压站、配水室等设施。 2)切割跨 切割跨(D—E)厂房全长524米,宽40米,跨间内有引锭杆提升装置、出坯辊道、切割机等在线设备;此外还布置有设备维修台架等离线设施。 切割跨配备3台80/20t桥式起重机,主要用于连铸机设备存放及辅助维修作业。 切割操作室也布置在该跨。 3)板坯横移跨 铸坯横移跨(C—D)厂房全长524米,宽40米,跨间内有出坯辊道、铸坯横移装置、铸坯称重装置、喷号机等在线设备。 铸坯横移跨配备2台80/20t桥式起重机,主要用于铸坯事故下线及辅助维修作业。 4)出坯跨一、二 出坯跨厂房全长524米,两跨宽度均为42米,跨间内有出坯辊道、推钢机、垛板台、卸垛台等在线设备。

2000kN四柱液压机液压系统工作原理

2000kN四柱液压机液压系统工作原理 作者殷洪福 2000kN四柱液压机是一台宽工作台的压力机,工作台尺寸为2000mm(左右)×1500mm(前后)。这台机的设计目标是大尺寸薄板零件的拉深、翻边、冲裁工艺。这台机的液压系统有几个特点:1.设置高压、低压两个可以根据工艺力的大小而自动切换的油源;2.上下油缸可以单独运行,也可以差动运行;3.主油缸的柱塞内包含顶出油缸,可以进行上顶出(脱模)操作。 为说明液压系统的工作原理,以设备的典型运作过程(凹模在上方、凸模在下方的反向拉深工艺过程)为例。 图示液压系统是完成一次工作循环之后的状态。下一次工作循环从系统升压开始。系统工作原理说明如下。 1.系统升压 先导式溢流阀12原处于卸荷状态,高压油源失效。低压油源仍处于供油状态。 将手动换向阀11的手柄推到位置Ⅰ,控制油路X1升压,使溢流阀12恢复正常工作状态,高压油源恢复供油,系统压力升高至设定数值。 2.滑块快速下降 将手动换向阀9的手柄拉到位置Ⅲ,支承滑块的油缸4的下腔回油路接通,滑块在自重的作用下,快速下降,直至上模(凹模)接触工件。滑块在下降过程中一方面将上油缸3的柱塞向下拉,使上油缸3内腔产生负压,造成正向打开液控单向阀(大流量的充液阀)2的趋势;另一方面压迫油缸4下腔的油,使之压力升高,压力油通过控制油路X2迫使液控单向阀2彻底打开(正反向都处于开启状态),于是,充液过程开始,油箱1内的油通过大直径油管被吸进上油缸3。与此同时,另一部分来自两个油源的油通过换向阀9进入上油缸3。

有一个问题需要说明:滑块快速下降主要靠自重作用,但是,自重作用并不可靠,如果滑块下降受阻(或许是因为滑块与立柱之间的滑动付力学异常),就可能发生下降不顺甚至卡死的现象。这种现象通常不会发生。然而,这种现象一旦发生,就会进入如“工作行程”那样的过程,滑块被上油缸3的柱塞强迫下降,系统依然正常工作。 单向节流阀13的作用是增加油缸4下腔回油路上的阻力,以求提高控制油路X2的压力,以便打开液控单向阀2。 3.滑块工作行程 滑块快速下降,直至上模接触工件,之后,滑块工作行程开始,下降阻力(包括拉深力、压边力)增加,下降速度降低,致使油缸4下腔的压力迅速降低(因为通过单向节流阀13的流量减少, 节流阀前后压力差减小),控制油路X2的压力亦随之降低,以至无力保持液控单向阀2反向开启状态,此时两个油源(低压油)继续通过换向阀9进入上油缸3,使上油缸3的压力升高,液控单向阀2关闭,充液停止。随后,上油缸3的压力迅速升高,如果此时低压油仍不足以克服工作阻力(通常是这样),那么,系统即时自动切换油源,高压油将接着进入上油缸3,升压,工作行程继续进行。 4.滑块回程 工作行程终止后,将换向阀9的手柄推到位置Ⅰ,油缸4上腔以及上油缸3的压力消失,而油缸4下腔的压力升高,通过油路X2使液控单向阀2再次反向打开,接通上油缸3的回油路,滑块被油缸4顶推上升,上油缸3的油通过大直径油管返回油箱。 滑块上升到适当高度后,将换向阀9的手柄拉回位置Ⅱ(放开手后,手柄会自动回复到位置Ⅱ),滑块停止上升,并由油缸4支承。 5.上顶出行程 上油缸3柱塞的中部装有顶出油缸。该油缸活塞由换向阀8控制顶出、退回,并由单向调速阀15调节顶出速度。 6.下油缸动作 下油缸5在本例工艺过程中的作用是压边。滑块下降之前,下油缸5处于顶出状态,即换向阀10的手柄处于位置Ⅰ,并且在滑块下降过程中(包括快速行程和工作行程),换向阀10的手柄位置始终保持不变。因此,在滑块工作行程中,下油缸5始终与上油缸3“对着干”,从而产生压边力。但由于上油缸3的截面积远大于下油缸5下腔的截面积,在相等的油压下,上油缸3向下的推力远大于下油缸5向上的顶力,以至除了克服拉深力、油缸4的阻力外,剩余推力还足以克服下油缸5的对抗力,迫使下油缸5的活塞向下退缩。在下油缸5的活塞退缩过程中,下油缸5下腔的油通过换向阀10(反向流动)、换向阀9进入上油缸3,使上油缸3获得“额外”的高压油,提高工作行程速度(提高90 %)。上下油缸如此运行称为“差动运行”。 滑块完成工作行程之后转入回程时,换向阀10的手柄位置可以保持不变,即仍处于位置Ⅰ,这时下油缸5的活塞将随着滑块上升而顶出(使工件脱出凸模),这样,下油缸5将会耗用部分压力油,从而降低滑块回程速度。为了提高滑块回程速度,应关闭下油缸5的进油路,即将换向阀10的手柄拉到回位置Ⅱ,待滑块上升到终点后,再将手柄推回到位置Ⅰ。 换向阀10的手柄位置Ⅲ是为适应其它工艺操作而设的(实施本例操作时,位置Ⅲ实为空置)。 溢流阀14用来调节下油缸5的顶出力(压边力)。实施本例操作时,如前面所述,上下油缸的运行方式为“差动运行”,此时溢流阀14的设定压力大于溢流阀12的设定压力(供油压力),这样,下油缸5下腔的油就不可能通过溢流阀14排出,而是全部进入上油缸3。当要实施拉深力较大而压边力较小的工艺操作时,就应采用“非差动运行”方式,即令溢流阀14的设定压力小于溢流

相关主题
文本预览
相关文档 最新文档