当前位置:文档之家› 纳米材料制备及其表征

纳米材料制备及其表征

纳米材料制备及其表征
纳米材料制备及其表征

MXene的制备及其相关性能研究

1.1 MXene研究背景及现状

石墨烯是一种由碳原子以sp2杂化轨道组成的具有二维蜂窝状晶体结构的单原子层晶体,具有相当优异的力学、电子、热及磁学性能,而且被视为当今在纳米技术这个领域很有前景的材料[1]。石墨烯是二维晶体这一类的其中一种。二维晶体是指仅有单个或者多个原子厚度的二维材料,这种材料因为其绝对的二维结构而具备独有的特性与功能。石墨烯是最为典型的二维晶体结构,具有优异的性能,不过石墨烯却不是二维原子晶体材料的尽头,一些具有特殊性能并且包含其它元素的二维晶体成为当今的研究焦点。二维晶体材料可分为石墨烯基和类石墨烯这两大类材料。石墨烯基材料[2]是指包括石墨烯在内的二维原子晶体或化合物,例如单原子层的六方BN、MoS2、WS2等[3]。大部分的二维晶体材料是通过化学刻蚀或机械剥离等方法剥离层间结合力较弱(范德华力)的三维层状前驱物得到的,而剥离层间结合力较强的三维层状化合物似乎是不可能的。但是,2011 年Naguib和Barsoum等利用氢氟酸(HF)选择性刻蚀掉三维层状化合物Ti3AlC2中的Al原子层得到具有类石墨烯结构的二维原子晶体化Ti3C2材料,2012年他们采用同样的方法刻蚀若干与Ti3AlC2具有类似结构的陶瓷材料MAX相,成功的制备出了Ti2C、Ta4C3( Ti0.5Nb0.5)2C(V0.5Cr0.5)3C2、Ti3CN等相应的二维过渡金属碳化物或碳氮化物[4]。这种具有类石墨烯结构的新型二维晶体化合物被命名为MXene。其化学式为M n + 1X n,n =1、2、3,M为早期过渡金属元素,X为碳或氮元素[5]。MXene的母体材料MAX相是一类化学式为M n + 1AX n的三元层状化合物,其中M、X、n与上述一样,A为主族元素。目前已知MAX相大约有60多种,Ti3AlC2是其代表性化合物[6]。由于MAX相数量众多,且包含多种元素,所以通过刻蚀MAX相可以制备出大量具有特殊性能的MXene,这对于二维晶体材料的制

1.2 MXene的制备

制备MXene的前驱体是MAX相。MAX相是一类集陶瓷和金属的优良特性于一身的三元层状材料,既像陶瓷一样,具有高弹性模量、低密度、良好的热稳定性和抗氧化性能;又像金属一样,具备优良的导热和导电性能,以及较低的硬度,可以像金属和石墨一样进行机械加工,并在高温下具有良好的塑性,及自润滑性能。研究表明,MAX的晶体结构中,X原子填充于M原子形成的八面体空

隙中,A 原子层通过类似插层的方式存在于M和X形成的交替片层中,即过渡金属碳化物或氮化物层与纯A原子片层按照···/[M n + 1X n]/A/[M n + 1X n]/A···交替排列。在MAX相中,共价键、离子键和金属键共存。一般情况下MAX相具有良好的耐酸碱腐蚀性,但是,M-X键主要是共价键与离子键,结合键的强度很高;M-A键及A-A键有比较多的金属键成分,则相对较弱。因此,A层原子反应活性也最高。Xie等研究表明MAX相的化学反应活性强烈的依赖于A原子的化学活性,并随着MAX层厚度的增加而降低。而且在高温环境下,A原子发生扩散脱离M n + 1AX n基体,导致MAX相发生部分分解[12]。因此可以选择适当的方法选择性刻蚀MAX相中的A层原子就可以获得M n + 1X n。尽管M-A键与M-X键相比较弱,但是其结合力仍然很强,所以不能利用微机械剥离法制备MXene,只能利用化学液相法刻蚀MAX相制备MXene。基于这种分析,2011年Naguib和Barsoum等用酸腐蚀的方法,制备出MXene二维晶体。以含铝元素(Al)的MAX相为例,与HF反应生成二维MXene的反应可以分为两步。第一步,如式1,MAX相中的Al元素与HF反应,生成AlF3与H2。MAX相被解离成二维的Mn + 1X n,存在于HF水溶液中。

M n + 1AlX n+ 3HF = AlF3+ M n + 1X n+ 1+ 3/2H2(1)

第二步,刚生成的M n + 1X n具有非常高的表面活性,外层M离子为了平衡价态,与周围的水或者HF反应,生成带有F基团或OH基团的二维M n + 1X n(OH)2(式2) 或M n + 1X n F2(式3) 。请注意,式2或式3的反应是平行发生。

M n + 1Xn+ 2H2O = M n + 1X n(OH)2+ H2 (2)

M n + 1X n+ 2HF = M n + 1X n F2+ H2 (3)

1.3MXene的应用

1.3.1 MXene作为电极的应用

在恒定扫描速率为0.2 mV/s下,Ti2CT x电极锂电池首次放电过程出现不可逆还原峰,推测可能形成了固体电解质中间相(SEI)。在C/25倍率下,Ti2CT x 稳定的比容量为225 mAh/g[14]。Ti2CT x非水系非对称电容电池具有高倍率充放电、高能量密度和良好的循环性能等特点,充放电过程未出现充放电平台,证明MXene电池储锂机制为锂离子插层,而非两相转变机制。Nb2CT x和V2CT x锂电池也具有良好的高倍率充放电性能[15]。在1C循环速率下,Nb2CT x和V2CT x电

极的首次充放电比容量分别为422 mAh/g和380 mAh/g,两者均比Ti2CT x电极表现出更高的比容量和更好的稳定性。但是目前Nb2CT x和V2CT x还没分层成功,可以预测“Nb2CT x纸”和“V2CT x纸”电极的电学性能会更出色。其次不同的MXenes电化学窗口不同,可选择性作为电池正负电极使用。层厚对MXene电化学性能具有重要的影响作用。在1 C循环速率下,“Ti3C2T x纸”为负极的锂电池比容量高达410 mAh/g,相当于每三个锂离子嵌入到一个Ti3C2T x晶胞中,是相同条件下多层Ti3C2T x电极比容量的四倍[16]。在KOH电解液中,“Ti3C2T x纸”电容器的比电容为340 F/cm3,是碳化物衍生炭电极的2倍左右,在1 A/g下,经过10000次循环之后仍能基本保持初始比电容。官能团对MXenes电化学性能也具有重要的影响作用。Tang等理论计算结果表明,锂原子在Ti3C2表面扩散速率较大,Ti3C2Li2的理论嵌锂容量为320 mAh/g,而Ti3C2T2(T = F或OH)表面锂原子扩散速率较小,理论嵌锂容量也较低。Xie等理论计算结果表明: MXene含氧官能团结构能够吸附多层锂,能显著提高MXenes的储能容量。由于过渡金属原子质量通常都比较大,导致MXenes的比表面积很小,即使“Ti3C2Tx纸”的比表面积也只有98 m2/g[17]左右。然而,MXenes却对多种离子具有极高的体积比容量,可用于多种离子电池、超级电容器以及新型杂化储能元件等领域,.在储能领域的应用将是未来备受关注的研究热点。

1.3.2MXene在催化领域的应用

Xie等尝试将Ti3C2T x替代碳黑作为铂纳米晶载体,用于催化氧化还原反应。结果表明,在稳定性和循环性能方面,Pt/Ti3C2T x要比Pt/C催化剂更加优越。此外,Ivanovskii等[18]利用分子动力学研究发现,羟基修饰的MXenes化学反应活性高,易与CH2OH发生取代反应,说明MXene有望用于酯化催化反应。

1.3.3 MXene 的吸附性能

Peng等[19]研究表明:碱金属插层的Ti3C2对重金属Pb2 +具有很好的吸附性能,可有效实现饮用水的净化,该吸附行为与MXene表面的活化羟基密切相关,具有吸附速率快,吸附量大,灵敏度高和可逆吸附的特点。即使当溶液中含有较高浓度的Ca2 +、Mg2 +等竞争离子时,MXene对Pb2 +的吸附所受影响也很微弱。独特的层状结构使得MXene有望在重金属、有害阴离子和有机污染物的治理等方

面具有一定的应用前景。

1.3.4MXene在复合材料领域的应用

Gan等[20]理论结果表明,MoS2/Ti2C复合材料界面的相互作用属于化学力,Ti2的诱导作用使MoS2表现出金属特性。而MoS2/Ti2CF2和MoS2/Ti2C(OH)2复合材料界面的相互作用属于物理吸附,保留了MoS2半导体的特性。Ma等理论研究发现,TMDs/Sc2CF2复合材料的带隙宽度在0.13 ~1.18 eV范围内,属于Ⅱ-型异质结构半导体,其中价带顶位于Sc2CF2上,导带底位于TMDs上,可实现电子-空穴对的有效分离。氧化物纳米颗粒经与石墨烯复合之后性能能够大大提高[21],同样,本课题组研究发现,MXene/Cu

O复合材料能够明显降低高氯酸铵热

2

分解温度,提高分解速率,Cu2O的催化性能进一步提高。良好的导电性、磁性和力学性能以及丰富可调的表面官能团,使得MXene在有机/无机复合材料和增强改性聚合物等领域的应用研究具有重要的现实意义和价值[22]。

1.3.5MXene在润滑材料方面的应用

层状晶体结构润滑剂是常见的润滑材料,以石墨烯和MoS2为代表。润滑剂应具有低的摩擦系数和高的粘着强度,容易在对偶表面形成转移膜,从而起到减摩作用。石墨烯作为一种新型的二维晶体材料由于其优异的承载能力和高的机械强度使其具有优良的摩擦学性能。然而石墨烯的制备工艺复杂,成本高且易被氧化,而MXene作为二维碳化物或氮化物晶体除了具有优异的力学能之外,还具有良好的抗氧化性且制备工艺简单。再者,化学液相刻蚀法制备的MXene表面带有羟基官能团,为共价改性奠定了基础,可采用表面改性或修饰利用异氰酸根、硅烷偶联剂、SOCl2及长链羧酸等与MXene表面的羟基反应使MXene稳定分散在有机或无极溶剂中。所以MXene在润滑领域具有很高的潜在应用价值。

1.3.6MXene在电子领域的应用

电子领域:过渡金属碳化物或氮化物具有良好的导电性,低扩散系数,键合强度大,较高的硬度和熔点,比传统的铜、铝及其合金更适合制备电子器件。石墨烯[23]、MoS2等已被成功应用于晶体管等电子领域,尽管文献研究证明官能团的存在使MXene由金属态转变为半导体,但这并不影响其在电子领域的应用,

反而为制备更多的具有特殊性能的纳米半导体材料指明方向。

1.4研究领域所存在的问题及展望

(1)氢氟酸刻蚀MAX相的制备方法存在多种弊端,大量制备高纯度MXene 的技术还不成熟制备技术的改进是实现MXene长远发展的重要环节。

(2)MXene的导电性、力学、光学、磁性、热电和吸附等性能多限于理论研究,实验研究较少,且目前仅Ti3C2体系的实验研究取得了阶段性成果,其他MXene 的性能和应用研究甚少或尚未起步。

(3)MXene作为电极材料时的嵌锂机制,固体电解质中间相的组成、性质和作用,以及如何解决首次充放电循环容量损失过高等问题,都有待进一步研究,在未来几年MXene在新能源领域的应用是研究的热点。

(4)选择特定官能团设计并制备特殊性能的MXene是一个巨大的挑战。

(5)目前只有Ti3C2T x成功分层,研究其他MXene的插层和分层机制,制备高性能单层MXene片和纳米管,以及扩充MXene成员仍需投入大量的时间和精力。

(6)MXene的实际应用是一个庞大而漫长的工作,MXene在储氢、电化学、催化、气敏、复合材料和储能电子器件等领域的应用是未来几年研究发展的方向。

1.5研究思路与创新

在MXene的制备方面,我们研究刻蚀时间和刻蚀温度对MXene制备效果的影响,找出最佳刻蚀时间及其温度。由于HF易挥发且随着刻蚀过程的进行,HF溶液浓度会下降,这可能会影响刻蚀效果。在反应过程中,在相同的时间间隔间歇加入反应原液(将该时间段反应的溶液离心后,倒掉上层清液,再加入原液)。

另外,在HF溶液中加入一些盐类如LiF或其他一些物质会有助于刻蚀效果的改善。

MXene插层及单层的制备。用二甲基亚砜处理的MXene经过超声后将会得到单层MXene。由于MXene具有电负性,很容易被阳离子或带正电的基团插层,研究同周期不同族元素金属阳离子的插层效果和同族不同周期金属元素的插层效果,以及在有机离子液中的插层效果,还有浓度和时间对插层效果的影响。

MXene与其他材料的复合。MXene与石墨烯和碳纳米管等其他碳材料的复合,与单个材料相比,复合材料的电化学性能将会更加优越。例如,MXene层

与层之间的导电性较差,复合之后MXene的导电性将会的到改善。比电容也会相应提高。

在光催化方面,对Ti3C2T x进行氧化,在其层状结构上会出现TiO2颗粒。测试所得样品得光催化效果,并与纯TiO2颗粒的光催化效果比较。

由于MXene的电负性,可以吸附重金属离子,也可以吸附一些有机染料,MXene可应用于污水处理。

参考文献

[1] Novoselov K,Fal V,Colmbo L,et al . A roadmap for graphene [J]. Nature . 2012,

490 (7419):192,200.

[2] Huang X,Yin Z,Wu S,et al. Graphene-based

materials:synthesis,characterizatio,properties,and applications

[J].Small,2011,7( 14) : 1876-902.

[3] Liu Y,Bhowmick S,Yakobson B I. BN white graphene with "colorful" edges: the

energies and morphology [J].Nano letters,2011,11( 8) :3113-6.

[4] Naguib M,Mashtalir O,Carle J,etl. Two-dimensional transition metal carbides[J].

ACS nano,2012,6( 2) :1322-31.

[5] Anasori B,Naguib M,Gogotsi Y,et al. Look again

[J].MRSBULLETIN,2012,37:176.

[6] Shein I,Ivanovskii A. Graphene-like titanium carbides and nitrides Ti n + 1N n( n

=1,2,and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability Computational Materials

Science,2012,65:104-14.

[7] Lane N J,Barsoum M W,Rondinelli J M. Electronic structure and magnetism in

two- dimensional hexagonal 5d transition metal carbides,Ta n + 1C n( n = 1,2,3) [J].

European Physics Letters,2013,101( 5) : 1-5.

[8] Kurtoglu M,Naguib M,Gogotsi Y,et al.First principles study of two-dimensional

early transition metal carbides [J].MRS Communications,2012,1( 1) : 1-5. [9] KIhazae M,Arai M,Sasaki T,et al. Novel electronic and magnetic properties of

two- dimensional transition metal carbides and nitrides [J].Advanced Functional Material , 2012 , onlinepublished.

[10] 孙丹丹,胡前库,李正阳,王李波,周爱国,吴庆华.新型二维晶体MXene的研究

进展[J].人工晶体学报,2014,11:2950-2956.

[11] 储能界的一颗新星——MXene材料[J].上海化工,2015,02:38-39.

[12] Barsoum M,Buschow K,Cahn R,et al. Physical properties of the MAX phases

[J]. Encyclopedia of Materials: Science and Technology,2006,1-11.

[13] Naguib M,Mashtalir O,Carle J,et al.Two-dimensional transition metal carbides

[J]. ACS nano,2012,6( 2) :1322-31.

[14] Naguib M,Come J,Dyatkin B,et al.MXene: a Promising Transition Metal

Carbide Anode for Lithium-ion Batterie [J]https://www.doczj.com/doc/ad8812845.html,mun.2012,16( 1) : 61-64.

[15] Naguib M,Halim J,Lu J,et al. New Two-Dimensional Niobium and Vanadium

Carbides as Promising Materials for Li-ion Batteries [J].J.Am Chem.Soc.

2013,135( 43) : 15966-15969.

[16] Mashtalir O,Naguib M,Mochalin V N,et al. Intercalation and Delamination of

Layered Carbides and Carbonitrides [J]. Nat. Commun. ,2013,4:1716-1723. [17] Lukatskaya M R,Mashtalir O,Ren C E,et al. Cation Intercalation and High

V olumetric Capacitance of Two-Dimensional Titanium Carbide [J]. Science,

2013,341( 6153):1502- 1505.

[18] Enyashin A N,Ivanovskii A L. Structural,Electronic Properties and Stability of

MXenes Ti2C and Ti3C2Functionalized by Methoxy Groups[J]. J. Phys. Chem.

C,2013,117( 26) : 13637-13643.

[19] Peng Q,Guo J,Zhang Q,et al.Unique Lead Adsorption Behavior of Activated

Hydroxyl Group in Two-Dimensional Titanium Carbide[J]. J. Am. Chem. Soc.

2014,136( 11) : 4113 -4116.

[20] Gan L Y,Zhao Y J,Huang D,etal.First-principles Analysis of MoS2/Ti2C and

Ti2CY2 (Y=F and OH) All-2D Semiconductor/Metal Contacts [J]. Phys. Rev.

B,2013,87( 24) : 245307.

[21] Maletin Y,StrizhakovaN,KozachkovS,MironovaA,PodmogilnyS,DanilinV,

KolotilovaJ,IzotovV,KonstantinovichG.S,Aleksandrovna J.K VasilevitjV.S, Efi movitjA.K,PerksonA,AruleppM, Leis J,WallaceC.L, ZhengJ,Super-

capacitor and a method of manufacturing such a supercapacitor.[J] US Patent 6,697,249, 2004.

[22] Zhang X,Xu J,Wang H,et al.Ultrathin Nanosheets of MAX Phases with Enhanced

Thermal and Mechanical Properties in Polymeric Compositions: Ti3Si0. 75A l0.

C2[J]. Angew Chem. Int Ed,2013,52( 16) :4361-4365.

25

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的制备与表征摘录(打印)

纳米材料的制备与表征方法摘录 作者姓名:彭家仁 单位:五邑大学广东江门 摘要:被誉为“21世纪最有前途的材料”的纳米材料同信息技术和生物技术一样已经成为21世纪社会经济发展的三大支柱之一和战略制高点。由于纳米材料的特殊结构以及所表现出来的特异效应和性能,使得纳米材料具有不同于常规材料的特殊用途。本文就纳米材料的结构特性和性能、应用及制备方法与表征进行了综述。旨在为纳米材料的应用及其制备提供理论指导。 关键词:纳米材料;结构特性;特异效应;应用;制备方法 Methods of Preparation and Characterization of nano-materials Kevin Peng (WUYI University Jiangmen Guangdong) Abstract:The nano-materials known as“the most promising material in the21st century”along with the information technology and the biotechnology has become one of the three pillars of the socio-economic development and the strategic high ground in the21st century.Because of the special structure of the nano-materials,as well as its specific effects and performance,thenano-materials have the special purposes other than the conventional materials. In this paper,we search for the structural properties,specific effect and the performance and the Synthesis and Characterization of nano-materials.The purpose is to provide theoretical guidance for the application and preparation of nano-materials. Keywords:nano-materials;structural properties;specific effect;applications;preparation methods 0前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。

纳米材料的制备以及表征教学总结

纳米材料的制备以及表征 纳米科技作为21世纪的主导科学技术,将会给人类带来一场前所未有的新的工业革命。纳米科技使我们人类认识和改造物质世界的手段和能力延伸到原子和分子。纳米材料是目前材料科学研究的一个热点,纳米材料是纳米技术应用的基础。科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。 低维纳米材料因其具有独特的物理化学特性以及在各个同领域的广泛应用 而受到国内外许多科研小组的广泛关注。钒氧化物纳米材料因为具有良好的催化性能、传感特性及电子传导特性而成为研究低维纳米材料物理化学现象的理想体系。尤其是对钒氧化合物纳米线、纳米带、纳米管的结构与性能的研究日益深入。另外,稀土正硼酸盐纳米材料因其独特的发光性能、电磁性能引起了广大科研小组的浓厚兴趣,是低维纳米材料领域研究的一个热点内容。 1.绪论 1.1纳米材料的发展概况 早在60年代,东京大学的久保良吾(Kubo)就提出了有名的“Kubo效应”, 认为金属超微粒子中的电子数较少,而不遵守Femri统计,并证实当结构单元变得比与其特性有关的临界长度还小时,其特性就会发生相应的变化。70年代末80年代初,随着干净的超微粒子的制取及研究,“Kubo效应”理论日趋完善, 为日后纳米技术理论研究打下了基础。人们对纳米颗粒的结构、形态和特性进行了比较系统的研究,描述金属微粒费密面附近电子能级状态的久保理论日趋完善,并且用量子尺寸效应成功地解释了超微粒子的某些特性[3]。最早使用纳米颗粒 制备三维块体试样的是德国萨尔兰大学教授H.Gletier,他于1984年用惰性气体蒸发、原位加压法制备了具有清洁表面的纳米晶Pd、cu、Fe等[4],并从理论及性能上全面研究了相关材料的试样,提出了纳米晶材料的概念,成为纳米材料的创始者。1987年美国Argon实验室sigeel博士课题组用相同方法制备了纳米陶 瓷TIOZ多晶体。纳米技术在80年代末和90年代初得到了长足发展,并逐步成为一个纳米技术体系。1990年7月,第一届国际纳米科技会议在美国巴尔的摩 召开,标志着纳米科学技术的正式诞生;正式提出了纳米材料学、纳米生物学、

二氧化锰纳米材料的制备与表征

二氧化锰纳米材料的制备与表征 [摘要] 研究以KMnO4为氧化剂用水热合成法制备MnO2不同纳米晶型的过程,并以X射线衍射(XRD),透射电镜(TEM)等方法对其进行了表征。结果表明,在水热反应过程中,反应时间改变会使MnO2晶型及其形貌发生转变。 [关键词] 二氧化锰晶型水热合成纳米结构α-MnO2 β-MnO2 1.引言 纳米结构无机材料因具有特殊的电、光、机械和热性质而越来越受到人们的重视。锰氧化合物不仅资源丰富、价格低廉、对环境无污染,而且具有多变的组成、复杂的结构、奇特的功能,因而在电子、电池、催化、高温超导、巨磁阻材料、陶瓷等领域显示出广阔的应用前景,所以其制备方法、结构表征、反应机理及应用的研究备受瞩目。其中MnO2作为一种重要的无机功能材料,在催化和电极材料等领域中已得到广泛的应用。 Xie 等证实空壳海胆结构的α-MnO2作为锂电池的阴极材料比实心海胆状α-MnO2和单分散α-MnO2 纳米棒更有效;Yang等报道氧化锰纳米棒对甲基蓝的氧化分解反应具有良好的催化效果;Ma等也证明了层状二氧化锰纳米带是充电锂电池理想的阴极材料。目前研究较多的是MnO2和锰酸盐,常用的制备方法有固相合成法、溶胶凝胶法、沉淀法等。 通常MnO2的活性随其所含结晶水的增加而增强,结晶水能促进质子在固体相中的扩散,因此γ- MnO2是各种晶型MnO2中活性最佳的。但在非水溶液中, MnO2 所含的结晶水反而会使它的活性下降。如在Li-MnO2电池正极材料中,以α-MnO2性能最差,含少量水分的γ-MnO2较差,无结晶水的β-MnO2较好,γβ-MnO2(混合)最好。所以γ-MnO2 在作为阴极材料之前,必须对其进行热处理,并且要除去水分,使晶型结构从γ-MnO2 转变为γβ-MnO2相(混合,以β相含量为65%~80%为最优)。再者,在固体二氧化锰有着较为复杂的晶型结构,如α、β、γ等5种主晶及30余种次晶,因此需要深入理解二氧化锰晶型转变机制。MnO2材料的微观形貌对于其应用有着重要的意义。 本实验以KMnO4和MnSO4·H2O为原料,采用水热合成法在高温反应釜条件下制备MnO2纳米晶型,并借助XRD、SEM、IR等技术对其进行了表征。 2.实验部分 2. 1 试剂与仪器 硫酸锰(分析纯),中国上海通亚精细化工厂;高锰酸钾(分析纯),宿州化学试剂厂;盐酸(分析纯),上海博河精细化学品有限公司。

纳米材料的表征方法

纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。 纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。

1 、结构表征 XRD,ED,FT-IR, Raman,DLS 2 、成份分析 AAS,ICP-AES,XPS,EDS 3 、形貌表征 TEM,SEM,AFM 4 、性质表征-光、电、磁、热、力等 … UV-Vis,PL,Photocurrent

1. TEM TEM为透射电子显微镜,分辨率为~,放大倍数为几万~百万倍,用于观察超微结构,即小于微米、光学显微镜下无法看清的结构。TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。 The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1]. 一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。

纳米材料的测试与表征

报告 课程名称纳米科学与技术专业班级电气1241 姓名张伟 学号32 电气与信息学院 和谐勤奋求是创新

纳米材料的测试与表征 摘要:介绍了纳米材料的特性及测试与表征。综合使用各种不同的分析和表征方法,可对纳米材料的结构和性能进行有效研究。 关键词:测试技术;表征方法;纳米材料 引言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米材料的化学组成及其结构是决定其性能和应用的关键因素,而要探讨纳米材料的结构与性能之间的关系,就必须对其在原子尺度和纳米尺度上进行表征。其重要的微观特征包括:晶粒尺寸及其分布和形貌、晶界及相界面的本质和形貌、晶体的完整性和晶间缺陷的性质、跨晶粒和跨晶界的成分分布、微晶及晶界中杂质的剖析等。如果是层状纳米结构,则要表征的重要特征还有:界面的厚度和凝聚力、跨面的成分分布、缺陷的性质等。总之,通过对纳米材料的结构特性的研究,可为解释材料结构与性能的关系提供实验依据。 纳米材料尺度的测量包括:纳米粒子的粒径、形貌、分散状况以及物相和晶体结构的测量;纳米线、纳米管的直径、长度以及端面结构的测量和纳米薄膜厚度、纳米尺度的多层膜的层厚度的测量等。适合纳米材料尺度测量与性能表征的仪器主要有:电子显微镜、场离子显微镜、扫描探测显微镜Χ光衍射仪和激光粒径仪等。 紫外和可见光谱是纳米材料谱学分析的基本手段,分为吸收光谱、发射光谱和荧光光谱。吸收光谱主要用于监测胶体纳米微粒形成过程;发射光谱主要用于对纳米半导体发光性质的表征,荧光光谱则主要用来对纳米材料特别是纳米发光材料的荧光性质进行表征。红外和喇曼光谱的强度分别依赖于振动分子的偶极矩变化和极化率的变化,因而,可用于揭示纳米材料中的空位、间隙原子、位错、晶界和相界等方面的信息。纳米材料中的晶界结构比较复杂,与材料的成分、键合类型、制备方法、成型条件以及热处理过程等因素均有密切的关系。喇曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的喇曼频移。喇曼频率特征可提供有价值的结构信息,利用喇曼光谱可以对纳米材料进行分子结构、键态特征分析和定性鉴定等。喇曼光谱具有灵敏度高、不破坏样品、方便快速等优点,是研究纳米材料,特别是低维纳米材料的首选方法。 目前对纳米微观结构的分析表征手段主要有扫描探针显微技术,它包括扫描隧道电子显微镜、原子力显微镜、近场光学显微镜等。利用探针与样品的不同相互作用,在纳米级至原子级水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质。例如用STM不仅可以观察到纳米材料表面的原子或电子结构,还可以观察表面存在的原子台阶、平台、坑、丘等结构缺陷。高分辨电子显微镜用来观察位错、孪晶、晶界、位错网络等缺陷,核磁共振技术可以用来研究氧缺位的分布、原子的配位情况、运动过程以及电子密度的变化;用核磁共振技术可以研究未成键电子数、悬挂键的类型、数量以及键的结构特征等。 测试技术的发展 纳米测试技术的研究大致分为三个方面:一是创造新的纳米测量技术,建立新理论、新方法;二是对现有纳米测量技术进行改造、升级、完善,使它们能适应纳米测量的需要;三是多种不同的纳米测量技术有机结合、取长补短,使之能适应纳米科学技术研究的需要。纳米测试技术是多种技术的综合,如何将测试技术与控制技术相融合,将探测、定位、测量、控制、信号处理等系统结合在一起构成一个大系统,开发、设计、制造出实用新型的纳米测量系统,是亟待解决的问题,也是今后发展的方向。随着纳米材料科学的发展和纳米制备技术的进步,将需要更新的测试技术和手段来表征、评价纳米粒子的粒径、形貌、分散和团聚

TiO2纳米材料的制备与表征

TiO 2纳米材料的制备与表征 医药化工学院 化学教育专业 学生:xxx 指导老师:xxx 1前言 纳米TiO 2在各个领域中的应用,如:制造氧敏元件、电子陶瓷材料、防晒剂、防紫外线透明塑料薄膜、农用塑料薄膜、防紫外纤维和抗菌纤维、抗菌涂料、抗菌釉面砖、效应颜料、光催化剂和催化剂载体、超双亲性玻璃等。这些材料在电子工业、涂料工业、轿车工业、建筑工业、纺织工业、食品包装、化妆品、环境保护、废水处理等领域中有着广泛的用途。 2实验部分 2.1 实验目的 了解TiO2纳米材料制备的方法;掌握用溶胶-凝胶法制备TiO2纳米材料的原理和过程;掌握纳米材料的标准手段和分析方法 2.2 实验原理 水解缩聚陈化涂层、成纤、成型干燥热处理金属醇盐 溶剂、水 抑制剂溶胶湿凝胶干凝胶 成品 Ti(OC4H9)4 + H2O ----> TiO2 + C4H9OH 实验装置图 2.3 实验仪器和试剂 2.3.1 主要仪器 常用常压化学合成仪器一套,电磁搅拌器,烘箱,马弗炉,粒度分布测定仪,比表面仪,差热-热重分析仪

2.3.2实验试剂 钛酸正丁酯,无水乙醇,乙酰丙酮,强酸 2.4 实验方法 2.4.1溶胶-凝胶法制备TiO 2 (1)水浴加热集热式恒温磁力搅拌器至65℃左右,安装三颈烧瓶装置、温度计和滴液漏斗,量取60ml的无水乙醇置于三颈烧瓶中。 (2)将30ml的钛酸四丁酯(Ti(OC4H9)4)装入滴液漏斗,自滴液漏斗缓慢滴加钛酸四丁酯(Ti(OC4H9)4)至装有无水乙醇三颈烧瓶中,保持反应温度为65℃左右,约0.5h滴加完毕。(3)滴加完毕后,将3ml乙酰丙酮装入入滴液漏斗,自滴液漏斗缓慢滴加乙酰丙酮至三颈烧瓶中,滴加完毕。再搅拌0.5小时。 (4)将1.1ml硝酸、9ml去离子水、32ml的无水乙醇预先混合,装入滴液漏斗,再缓慢加入到三颈烧瓶中,0.5小时滴加完毕,再搅拌3小时,得到二氧化钛溶胶,陈化12小时。(5)制备的二氧化钛溶胶至于60℃的真空干燥箱中干燥24小时,得到二氧化钛凝胶。(6)将制备的凝胶至于坩埚中,按照一定的升温曲线,600℃烧成保温2小时,得到二氧化钛粉末。 3.结果与讨论 mTiO2 =7.4g 颜色灰色 产率为 7.4/6.8=108.82% 4结束语 本实验溶胶-凝胶法制备TiO2通常以钛醇盐Ti(OR)4 为原料,合成工艺为:钛醇盐溶于溶剂中形成均相溶液,逐滴加入水后,钛醇盐发生水解反应,同时发生失水和失醇缩聚反应,生成1 nm 左右粒子并形成溶胶,经陈化,溶胶形成三维网络而成凝胶,凝胶在恒温箱中加热以去除残余水份和有机溶剂,得到干凝胶,经研磨后煅烧,除去吸附的羟基和烷基团以及物理吸附的有机溶剂和水,得到纳米TiO2 粉体。 通过两人一组实验,在实验过程中,培养了两人的合作精神。在指导老师的细心指导下,实验顺利进行,完成。在实验过程中,巩固了实验操作的基本技能,复习了课堂上的理论知识。实验过程中收获很大,感谢指导老师的悉心指导,同时也感谢同学们,因为有他们的合作,实验遇到的困难才一一得以解决,实验才顺利进行。 参考文献: 1) 北京师范大学, 等. 无机化学实验[M ]. 北京: 高等教育出版社, 1991.

纳米ZnO的制备及表征

化学化工学院材料化学专业实验报告实验实验名称:纳米ZnO的制备及表征. 年级:2015级材料化学日期:2017/09/20 姓名:汪钰博学号:222015316210016同组人:向泽灵 一、预习部分 1.1氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 3.1共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

物理在纳米材料测试表征中的应用讲解

物理在纳米材料测试表征中的应用 摘要:介绍了纳米材料的特性及一般的测试表征技术,主要从纳米材料的形貌分析,成分分析以及结构分析入手,介绍了扫描电子显微镜,透射电子显微镜,X 射线衍射,X射线荧光光谱分析,能谱分析等分析测试技术的工作原理及其在纳米粒子结构和性能分析上的应用和进展。 关键词:纳米材料;测试技术;表征方法 Abstract:The characterization and testing of nano-materials was described. Depend on the morphology, component and structure of nano-materials, the mechanism and applications of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy, energy dispersive x-ray spectroscope (EDS) technology was presented. Further, the application and development of those technologies were described. Keyword: nano-materials; testing technology; characterization 0. 前言 分析科学是人类知识宝库中最重要、最活跃的领域之一,它不仅是研究的对象,而且又是观察和探索世界特别是微观世界的重要手段[ 1 ]。随着纳米材料科学技术的发展,要求改进和发展新分析方法、新分析技术和新概念,提高其灵敏度、准确度和可靠性,从中提取更多信息,提高测试质量、效率和经济性[ 2 ]。纳米科学和技术是在纳米尺度上(0. 1~100nm)研究物质(包括原子、分子)的特性及其相互作用, 并且对这些特性加以利用的多学科的高科技。纳米科技是未来高技的基础,而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此,纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用[ 3 ]。 1. 纳米材料的形貌分析 1.1 形貌分析的重要性

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

材料的表征方法总结

2.3.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径, 由X 一射线衍射法测定的是粒子的晶粒度。样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o 2.3.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法 ( Thermogravimetry, TG ),简称为DSC-TG 法。采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。升温速率为10 0C.1 min - . 2.3.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制 的纳米Fe203粉末分散在乙醇溶液中,超声分散30 min 得红色悬浊液,用滴管吸取 悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E 场发射扫 描电子显微镜旧本理学),JSM-6700E 场发射扫描电子显微镜分析样品形貌和粒 径,加速电压为5.0 kV o 2.3.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM 样品。本研究采用 JEM-3010E 高分辨透射电子显微镜(日本理学)分析晶体结构, 加速电压为200 kV o 2.3.5 X 射线能量弥散谱仪 每一种元素都有它自己的特征X 射线,根据特征X 射线的波长和强度就能得

BiOBr纳米材料的制备与应用研究进展

2018年第18期广东化工 第45卷总第380期https://www.doczj.com/doc/ad8812845.html, ·235 ·BiOBr纳米材料的制备与应用研究进展 代弢1,汪露2 (1.西南民族大学化学与环境保护工程学院,四川成都610041;2.西南民族大学生命科学与技术学院,四川成都610041) Progress of Preparation and Application of BiOBr Nanomaterials Dai Tao1, Wang Lu2 (1. College of Chemistry & Environment Protection Engineering, Southwest Mizu University, Chengdu 610041; 2. College of Life Science & Technology, Southwest Mizu University, Chengdu 610041, China) Abstract: BiOBr nanomaterials have a unique electronic structure, a suitable band gap width and good catalytic performance. In this paper, the preparation and modification methods of BiOBr are summarized. And the application of BiOBr in energy and environment is expounded. We also described the prospect of BiOBr in photocatalysis. Keywords:BiOBr;nanomaterials;preparation and anapplication 近年来,由于环境和能源的问题不断突出,BiOBr纳米材料作为一种新型的光催化纳米材料,对解决能源和环境这一世界性的难题具有重要的意义。BiOBr具有独特的电子结构和良好的催化活性。目前纳米BiOBr材料已采用多种方法成功制备,本文重点归纳了BiOBr纳米光催化材料的制备以及在能源和环境领域的应用研究进展,为今后的研究提供方向和指导。 1 BiOBr的结构特性 BiOBr属于典型的横跨五、六、七三主族三原子复合半导体材料,它一般的结构通式是Bi l O m Br n[1]。一般来说,它的晶型属于四方氟氯铅矿(PbFCl-型)结构。Bi3+周围的O2-和Br-成反四方柱配位。对于Bi l O m Br n来说,其价带主要是通过O 2p和Br 4p态形成以及其导带主要是通过Bi 6p态形成。Bi l O m Br n的稳定性主要依赖于其制备条件、结构尺寸和反应环境等[2-4]。 2 BiOBr纳米材料的设计与合成 随着合成技术的迅速发展,纳米材料得到进一步发展。发展了众多BiOBr纳米材料的方法。现对近年来BiOBr纳米材料的合成方法进行归纳: 2.1 水解法 水解法是利用Bi3+的水解特性[5],利用BiBr3在碱性条件下合成BiOBr沉淀。该方法操作简单,可以规模化生产。但获得的BiOBr纳米材料尺寸不均一,活性较差。 2.2 水热法 水热法是在密闭的容器内高压条件下合成的方法。将Bi源和Br源在反应釜内反应合成BiOBr晶体。反应时间和温度会对催化剂的活性产生一定的影响。水热法可以获得结晶相对较好的BiOBr晶体。 2.3 溶剂热法 溶剂热法是水热法的发展,它与水热法的区别是使用有机溶剂。Wu等人通过调控溶剂乙醇和水的体积比合成出了9 nm厚的BiOBr薄片[6],当溶剂热反应温度为333 K,溶剂为纯水溶液时,得到约32 nm厚,当反应溶剂变为乙醇:水=4:3时,BiOBr纳米片的厚度变为9 nm左右,并且形貌均匀分布,同时表现出良好的结晶性。乙二醇,甘油和甘露醇等也常用作溶剂制备BiOBr。 2.4 离子液法 离子液体是在室温下呈液态的物质,具有蒸汽压低,难挥发,热稳定性高,溶解性好等优点。与水和溶解相比,离子液体可以看成是一种优良的溶剂。因此利用离子液辅助溶剂合成BiOBr纳米材料,在可见光下可以有效降解污染物。 2.5 共沉淀法 采用共沉淀法可得到粒径约500 nm的BiOBr纳米催化剂,这种先调配前驱体溶液再高温处理的合成方法,易于通过调控温度处理条件来调控产物形貌。且共沉淀法制备得到的BiOBr纳米材料的催化活性是水热法制备的材料活性的5倍左右[7]。 2.6 微波超声法 通过微波辅助方法可以获得具有优异可见光降解能力的BiOBr纳米材料。Li等人通过自组装过程[8],采用一种简单的微波合成法制备了一种均匀分散的多级结构的BiOBr纳米材料,其形貌为花状结构的BiOBr材料。该材料对Cr6+在较广pH值范围内表现出优异的吸附去除能力。与其他方法相比,微波加热的反应体系由于受热更均匀体系分散更好制备得到的BiOBr粒径更为均匀因而广泛应用于无机纳米材料BiOBr的合成制备。 2.7 静电纺丝法 Veluru等人通过静电纺丝的方法合成的BiOBr纳米纤维[9],通过调控溶剂的粘性得到不同长度的BiOBr以及不同直径的BiOBr纳米材料。同时对茜素红表现出极高的光催化降解活性。 3 BiOBr纳米材料在光催化中的应用进展 3.1 在能源问题中的应用 3.1.1 光解水制氢 目前,氢气是一种公认的最重要的清洁的新能源。所谓的氢经济的成功在很大程度上依赖于找到一种有效的实际批量生产氢气的途径。自1967年发现使用光电化学电池组成的单晶二氧化钛阳极和铂阴极在紫外光照射下可以使水裂解为氢气以来,光催化水裂解反应已被广泛认为是大量获得氢气最具发展前景的一种手段。利用Cr掺杂的Bi系纳米材料有效的降低了禁带宽度,从而提升了在可见光下催化剂产氢的效率[10-12]。 3.1.2 光催化合成氨 目前氮气的固定主要是通过Haber-Bosch反应,但是严苛的反应条件(Fe基催化剂、15-25 MPa、573-823 K )使得消耗极大的其他能源并且释放出大量的温室气体。人们在催化合成氨领域没有停下奋斗的脚步。Zhang等人通过向BiOBr进行表面改性使得在BiOBr材料表面产生氧空位,而氧空位极大的有利于N2的吸附,进而进一步促使光固氮这一过程的发生,从而极大地提升了固氮效率[13,14]。 3.1.3 光催化二氧化碳还原 光催化二氧化碳还原是指模拟太阳光的光合作用将CO2转换为其他的含碳燃料,比如甲醇、甲醛以及一些其他的精细化学品[15-19]。Chai等人通过向多级结构的BiOBr纳米材料引入表面氧空缺以提高CO2向CH4的转化效率差,同时进一步的比较了不含氧空位的BiOBr纳米材料其转化产物主要为CO。 3.2 在环境问题中的应用 随着工业化进程的不断加快,工业废水所造成的水体污染问题越来越严重。其中,一些抗生素类的药物和有机染料造成的废水因为具有高毒性、强致癌性等危害,对日常生活带来极大的安全隐患。近年来,大量的研究发现铋系半导体光催化材料由于具有较好的可见光响应并且能够使有机污染深度矿化而被广泛的应 [收稿日期] 2018-08-30 [作者简介] 代弢(1992-),男,博士,四川省雅安市人,讲师,主要研究方向为类贵金属催化剂的可控合成及在催化中的应用。

纳米材料AlOOH的合成与表征

纳米材料AlO(OH)的制备与表征 刘琦媛吉大物理学院2011级光信六班32110635 摘要:利用超声水合合成法使电爆炸法制成的纳米Al粉和去离子水反应制备纳米纤维AlO(OH)粉末,然后用投射电镜观察其结构样貌,并用氮吸附法测定其BET比表面。 关键词:超声水合合成法,一维纳米纤维,AlO(OH),氮吸附法,BET比表面 1.引言 纳米材料,是科学界中正冉冉升起的一颗新星。自20世纪70年代初发现和应用纳米效应以来。人们对于它的研究,越发深入:贯穿物理、化学、生物、材料等多个层次。因为各种性质的特殊,纳米材料的作用越来越大。随着纳米技术的发展,它在人们生产、生活中的地位终将无可取代。 从广义上讲,纳米材料是指在三围空间尺寸中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数,纳米材料大致可分为量子点,量子线和量子阱。从狭义上讲,则只要包括纳米微粒及由它构成的纳米固体都可称为纳米材料。纳米材料尺寸进入纳米量级(1~100nm)时,其本身具有的量子尺寸效应、表面效应和宏观量子隧道效应因而展现出许多特有性质。在催化、滤光、光吸收、医药、磁介质及新材料方面有广阔的应用前景。

本实验研究的是一维纳米纤维AlO(OH)的制备与表征,这种纳米纤维材料纯度高,比表面积大,活性很高,吸附能力强且制备工艺简单,是很有发展前景的一种净水材料。 2. 实验 2.1实验试剂与仪器 试剂:1.电爆炸法制成的纳米铝粉 2.去离子水 仪器:1.电子天平 2.超声波清洗器 3.电热鼓风干燥箱 4.ZHP-100智能恒温震荡培养箱 5.透射电镜(TEM) 6.比表面及孔径分析仪(BET) 2.2纳米纤维的制备 本实验采用超声水合合成法制备一维纳米纤维AlO(OH)。 实验中使用的原料为电爆炸法所制成的纳米铝粉和去离子水。电爆炸法是利用高密度脉冲电流通过导体金属的瞬间,导体发生爆炸性破坏爆炸的产物——金属蒸汽在导体周围高速飞溅,在分散过程中爆炸产物被冷激而形成高弥散粉体。 实验过程:将0.8g纳米Al粉和200ml去离子水放入烧杯混合,放在超声波清洗器里进行反应,反应时间为120min,温度为80℃。 反应方程为: AlN+H2O=AlO(OH)+H2↑+NH3↑ 反应结束后关闭超声波清洗器,将烧杯取出放在温度为80℃的恒温水浴箱里6小时。之后过滤,将得到的物质放进电热鼓风干燥箱进行烘干。烘干条件为温度60℃,时长6小时。取出烘干物即得到纳米

纳米材料的表征与测试技术

纳米材料的表征与测试技术 作者:马翔(08级理学院材料化学系学生081132班) 摘要 虽然许多研究人员已经涉足纳米技术这个领域的工作,但还有很多研究人员以及相关产业的从业人员刘一纳米材料还不是很熟悉,尤其是如何分析和表征纳米材料,如何获得纳米材料的一此特征信息。该文对纳米材料的一此常用分析和表征技术做了概括。主要从纳米材料的成分分析、形貌分析、粒度分析、结构分析以及表面界面分析等几个方而进行了简要阐述。 关键词:纳米材料;表征;测试技术 1纳米材料的表征方法 纳米材料的表征主要包括: 1化学成分; 2纳米粒子的粒径、形貌、分散状况以及物相和晶体结构; 3纳米粒子的表面分析。 1. 1化学成分表征 化学成分是决定纳米粒子及其制品性能的最基本因素。常用的仪器分析法主要是利用各种化学成分的特征谱线,如采用X射线荧光分析和电子探针微区分析法可对纳米材料的整体及微区的化学组成进行测定。而且还可以与扫描电子显微镜SEM配合,使之既能利用探测从样品上发出的特征X 射线来进行元素分析,又可以利用二次电子、背散射电子、吸收电子信号等观察样品的形貌图像。即可以根据扫描图像边观察边分析成分,把样品的形貌和所对应微区的成分有机的联系起来,进一步揭示图像的本质。此外,还可以采用原子l发射光谱AES、原子吸收光谱AAS对纳米材料的化学成分进行定性、定量分析;采用X射线光电子能谱法XPS可分析纳米材料的表一面化学组成、原子价态、表面形貌、表面微细结构状态及表面能态分布等。 1.2纳米徽粒的衰面分析 (1)扫描探针显徽技术SPM 扫描探针显徽技术SPM以扫描隧道电子显微镜STM ,原子力显徽镜AFM、扫描力显微镜SFM 、弹道电子发射显徽镜BEEM、扫描近场光学显微镜SNOM等新型系列扫描探针显徽镜为主要实验技术,利用探针与样品的不同相互作用,在纳米级乃至原子级的水平 上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质,在纳米尺度上研究物质的特性。 (2)谱分析法

相关主题
文本预览
相关文档 最新文档