当前位置:文档之家› 检测课后习题答案

检测课后习题答案

检测课后习题答案
检测课后习题答案

1.1检测的概念是什么?

检测是人们借助于专门设备,通过一定的技术手段和方法,对被测对象收集信息、取得数量概念的过程。它是一个比较过程,即将被检测对象与它同性质的标准量进行比较,获得被检测量为标准量的若干倍的数量概念。

1.2检测有哪些分类方法?

1.按检测过程分类检测方法可分为直接法、间接法和组合法。

2.按检测方式分类根据获取数据的方式,检测可分为偏差式、零位式和微差式。

3.按接触关系分类根据检测敏感元件与被测介质的接触关系,检测方法可分为接触式和非接触式两种。

4.按被测量的变化快慢分类

根据被测量的变化的快慢,可分为静态检测和动态检测两类。

5.按检测系统是否施加能量分类

根据检测系统是否需要向被测对象施加能量,检测系统可分为主动式和被动式两类。

1.3什么是误差?误差产生的原因是是什么?

误差:检测结果偏离真值的大小称为误差。检测误差的大小反映了检测结果的好坏,即检测精度的高低。

产生测量误差的原因主要有以下四个方面:(1)理论误差与方法误差;(2)仪器误差;(3)影响误差;(4)人为误差。

1.4检测系统由哪几部分组成,各部分的作用是什么?

检测系统主要由敏感元件、信号的转换与处理电路、显示电路和信号传输电路组成。

敏感元件:将非电量转换为电信号;

信号处理电路:将代表被测量特征的信号变换成能进行显示或输出的信号;

显示电路:将被测对象以人能感知的形式表现出来;

信号传输电路:将信号(数据)从一点(或一个地方)送另一点(或地方)。

2.1 什么叫温标?什么叫国际实用温标?

用来衡量温度的标准尺度,简称为温标。为了使用方便,国际上协商确定,建立一种既使用方便、容易实现,又能体现热力学温度(即具有较高准确度)的温标,这就是国际实用温标,又称国际温标。

3.1 测量放大器的基本要求有哪些?

答:一般来说,对放大器的基本要求是:增益高且稳定,共模抑制比高,失调与漂移小,频带宽,线性度好,转换速率高,阻抗匹配好,功耗低,抗干扰能力强,性价比高等。

3.2 程控增益放大器的量程可由软件自动切换,其工作原理是什么?

答:可编程增益放大电路的增益通过数字逻辑电路由给定的程序来控制。其内部有多对增益选择开关,任何时刻总有一对开关闭合。通过程序改变输入的数字量,从而改变闭合的开关以选择不同的反馈电阻,最终达到改变放大电路增益的目的。

3.3 传感器输入与输出之间的耦合方式有哪些?各有什么特点?

答:输入与输出之间的隔离方式主要有:变压器耦合(亦称电磁耦合)、光电耦合等。变压器耦合的线性度高、隔离性好、共模抑制能力强,但其工作频带窄、体积大、成本高,应用起来不方便。光电耦合的突出优点是结构简单、成本低、重量轻、转换速度快、工作频带宽,但其线性度不如变压器耦合。光电耦合目前主要用于开关量控制电路。

3.4 信号传输过程中采用电压、电流和频率方式传输各有什么优缺优点?各适用于什么场合?

答:(1)采用电压信号传输,模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。原因是电压信号经过发送电路的输出阻抗,电缆的电阻以及接触电阻形成了电压降损失。由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。要求不增加信号发送方的费用又要所提及的电阻可忽略,就要求信号接收电路有一个高的输入阻抗。

(2)采用电流信号传输,电流源作为发送电路,它提供的电流信号始终是所希望的电流而与电缆的电阻以及接触电阻无关,也就是说,电流信号的传输是不受硬件设备配置的影响的。同电压信号传输的方法正相反,由于接收电路低的输入阻抗和对地悬浮的电流源(电流源的实际输出阻抗与接收电路的输入阻抗形成并联回路)使得电磁干扰对电流信号的传输不会产生大的影响。如果考虑到有电磁干扰比如电焊设备和其他信号发射设备,传输距离又必须很长,那么电流信号传输的方法是合适的。

(3)采用频率信号传输,可将电压信号变换为数字信号进行传送,可以很好地提高其抗干扰能力。V/F转换电路

将输入的电压信号转换成相应的频率信号,输出信号的频率与输入信号的电压成比例。频率信号传输广泛应用于数据测量仪器及遥测遥控设备中。

3.5 在滤波电路中为什么普遍采用RC有源滤波器?

答:RC有源滤波器是目前普遍采用的一种滤波器,在RC无源滤波器的基础上引入晶体管、运算放大器等具有能量放大作用的有源器件,补偿电阻R上损失的能量,具有良好的选频特性。

3.6 非线性硬件校正方法有哪几种?各自的工作原理是什么?

答:硬件校正的方法有很多,归纳起来有3大类。第一种方法是插入非线性器件,即在非线性器件之后另外插入一个非线性器件(亦称为线性化器或线性补偿环节),使两者的组合特性呈线性关系。第二种方法是采用非线性A/D转换器。对于逐次比较型,可以利用按非线性关系选取的解码电阻网络;对双积分型A/D转换器,可以通过逐次改变积分电阻值或基准电压值来改变第二次反向积分时间,从而获得非线性A/D转换电路。第三方法是采用标度系数可变的乘法器。由于A/D转换器和乘法器通常是多路测试系统中所有通道的共同通道,很难做到使所有非线性传感器都线性化,因此不常用。

4.1 简述传感器的组成及其各部分的功能?

通常,传感器由敏感元件和转换元件组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。由于传感器输出信号一般都很微弱,需要有信号调理与转换电路,进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助的电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部分。随着半导体器件与集成技术在传感器中的应用,传感器的信号调理转换电路与敏感元件一起集成在同一芯片上,安装在传感器的壳体里。

4.2 传感器静态特性性能指标及其各自的意义是什么?

传感器的静态特性指标主要有线性度、迟滞、重复性、灵敏度、分辨力、阈值、稳定性、漂移等,其中,线性度、灵敏度、迟滞和重复性是四个较为重要的指标。

线性度

传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。

灵敏度

灵敏度是传感器静态特性的一个重要指标。其定义是输出量增量

y

?

与引起输出量增量

y

?

的相应输入量增量

x?之比。

迟滞

传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞

重复性

重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度

分辨力

分辨力是用来表示传感器或仪表装置能够检测被测量最小变化量的能力,通常以最小量程的单位值来表示。

漂移

传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移

稳定性

稳定性有短期稳定性和长期稳定性之分,对于传感器,常用长期稳定性来描述其稳定性,即传感器在相当长的时间内仍保持其性能的能力。

阈值

阈值是指传感器产生可测输出变化量时的最小被测输入量值。

4.3 传感器的动态特性常用什么方法描述?有哪些特点?

传感器的动态特性,可以通过传感器的动态数学模型及传感器的动态特性指标来描述。

动态模型是指传感器在动态信号作用下,其输出和输入信号的一种数学关系。动态模型通常采用微分方程和传递函数来描述。

用微分方程作为传感器的数学模型,其优点是:通过求解微分方程,容易分清暂态响应与稳态响应,因为其通解只与传感器本身的特性及起始条件有关,而特解则还与输入量x有关。但是,求解微分方程很麻烦,为了求解方便,常采用传递函数来研究传感器的动态特性。

尽管大多数传感器的动态特性可近似用一阶或二阶系统来描述,但这仅仅是近似的描述而已,实际的传感器往往比简化的数学模型要复杂。因此,传感器的动态响应特性一

般并不是直接给出其微分方程或传递函数,而是通过实验给出传感器的动态特性指标。通过这些动态特性指标来反映传感器的动态响应特性。

4.4 描述二阶传感器系统阶跃响应的主要指标及其定义?

1)时间常数τ:一阶传感器输出上升到稳态值的63.2%所需的时间,称为时间常数。

2)延迟时间d t :传感器输出达到稳态值的

50%所需的

时间。

3)上升时间r t :传感器输出达到稳态值的90%所需的时间。

4)峰值时间

p

t :二阶传感器输出响应曲线达到第一个

峰值所需的时间。

5)超调量σ

:二阶传感器输出超过稳态值的最大值。

6)衰减比d :衰减振荡的二阶传感器输出响应曲线第一个峰值与第二个峰值之比。

5.1 什么是自感传感器?为什么螺管式自感式传感器比变气隙式的测量范围大?

答:自感式传感器是把被测量转换成线圈的自感L 变化,通过一定的电路转换成电压或电流输出的装置。由于转换原理的非线性和衔铁正、反方向移动时自感变化的不对称性,变气隙式自感传感器(包括差动式结构),只有工作在很小的区域,才能得到一定的线性度。

而差动螺管式自感传感器的自感变化量L ?与衔铁的位移量

c l ?成正比,其灵敏度比单线圈螺管式提高一倍,线性

范围和量程较大。

5.2 在使用自感式传感器时,为什么电缆长度和电源频

率不能随便改变?

答:等效电感变化量为

L L

LC L LC L L ?ωω??2e 22e 1)1(-=

-=

上式表明自感式传感器的等效电感变化量与传感器的电感L 、寄生电容C 及电源角频率ω有关。因此在使用自感式传感器时,电缆长度和电源频率不能随便改变,否则会带来测量误差。若要改变电缆长度或电源频率时,必须对传感器重新标定。 5.3 什么是互感传感器?为什么要采用差动变压器式结构?

互感式传感器也称为变压器式传感器,把被测位移转换为传感器线圈的互感变化。这种传感器是根据变压器的基本原理制成的,并且次级线圈绕组采用差动式结构,故称之为差动变压器式传感器,简称差动变压器。

当衔铁处于中间位置时,由于两个次级线圈完全对称,

通过两个次级线圈的磁力线相等,互感21M M =,感应电

2221e e =,总输出电压为0。当衔铁向左移动时,总输出电压

022212>-=e e u 。当铁芯向右移动时,总输出电压

022212<-=e e u 。两种情况的输出电压大小相等、方向相

反。大小反映衔铁的位移量大小,方向反映衔铁的运动方向,其特性曲线为V 形特性曲线。

5.4 分析开关式全波相敏检波电路的工作过程,它是如何鉴别被测信号的极性?

答:图 (a)为开关式全波相敏检波电路,取

2/765432R R R R R R =====,1A 为过零比较器,参考

信号

r u 经过1A 后转换为方波u ,u 为u 经过反相器后的输出。若

0r >u ,则u 为低电平,u 为高电平,1V 截止,2

V 导通,运算放大器

2A 的反相输入端接地,传感器信号2u 从

2A 的同相输入端输入,输出电压0u 为

2

24

765260)1(u u R R

R R R R u =+++=

当0>x ?时,

2u 与r u 同频同相,0r >u ,02>u ,

00>u 。当0u ,02

2u 从2A 的反相输入端输入,输出电压0u 为

2

24

37

0u u R R R u -=+-

=

同理可得,当0>x ?时,

00>u 。当0

由上述分析可知,相敏检波电路的输出电压

0u 不仅反映

了位移变化的大小,而且反映了位移变化的方向。输出电压

0u 的波形如图 (b)所示。

u u u

(a) (b) 5.5 零点残余电压产生的原因是什么?如何消除? 答:零点残余电压由基波分量和高次谐波构成,其产生原因主要有以下几个方面。

1)基波分量主要是传感器两次级线圈的电气参数和几何尺寸不对称,以及构成电桥另外两臂的电器参数不一致,从而使两个次级线圈感应电势的幅值和相位不相等,即使调整衔铁位置,也不能同时使幅值和相位都相等。

2)高次谐波主要由导磁材料磁化曲线的非线性引起。当磁路工作在磁化曲线的非线性段时,激励电流与磁通的波形不一致,导致了波形失真;同时,由于磁滞损耗和两个线圈磁路的不对称,产生零位电压的高次谐波。

3)激励电压中包含的高次谐波及外界电磁干扰,也会产生高次谐波。

可以从以下几方面消除:

1)从设计工艺上保证结构对称性。首先,要保证线圈和磁路的对称性,要求提高衔铁、骨架等零件的加工精度,线圈绕制要严格一致。采用磁路可调式结构,保证磁路的对称性。其次,铁芯和衔铁材料要均匀,应选高导磁率、低矫

顽磁力、低剩磁的导磁材料。另外,减小激励电压的谐波成分或利用外壳进行电磁屏蔽,也能有效地减小高次谐波。

2)选用合适的信号调理电路。消除零点残余电压的最

有效的方法是在放大电路前加相敏检波电路。

3)在线路补偿方面主要有:加串联电阻消除零点残余电压的基波分量;加并联电阻、电容消除零点残余电压的高次谐波;加反馈支路消除基波正交分量或高次谐波分量。

5.6 为什么说涡流式传感器也属于电感传感器? 答:涡流式传感器是基于电涡流效应原理制成的,即利用金属导体中的涡流与激励磁场之间进行能量转换的原理

工作的。被测对象以某种方式调制磁场,从而改变激励线圈的电感。因此,电涡流式传感器也是一种特别的电感传感器。

5.7 被测材料的磁导率不同,对涡流式传感器检测有哪

种影响?试说明其理由。

答:线圈阻抗的变化与金属导体的电阻率

ρ、磁导率

μ、几何形状、线圈的几何参数、激励电流以及线圈到金属

导体之间的距离x 等参数有关。假设金属导体是匀质的,则金属导体与线圈共同构成一个系统,其物理性质用磁导率

μ、电阻率ρ、尺寸因子r 、距离x 、激励电流强度I 和

角频率ω等参数来描述,某些参数恒定不变,只改变其中的一个参数,就构成了阻抗的单值函数,由此就可以通过阻抗的大小来测量被测参数。

穿透深度h 与线圈的激励频率f 、

金属导体材料的导电

性质有关,即

f

h πμρ=

由式可以看出,当激励频率f 一定时,电阻率ρ越大,

磁导率

μ越小,穿透深度越大。

5.8 感应同步器按其用途可分为哪两类?各用在何种场合?试举例说明。

答:感应同步器按其用途可分为直线感应同步器和圆感应同步器两大类,前者用于直线位移的测量,后者用于角位移的测量。

直线感应同步器已经广泛用于大型精密坐标镗床、坐标铣床及其他数控机床的定位、数控和数显;圆感应同步器则常用于军事上的雷达天线定位跟踪等,同时在精密机床或测量仪器设备的分度装置上也有较多应用。

5.9 感应同步器输出的感应电势进行如何处理?简述

各处理方式的原理。

答:定尺绕组输出的感应电势,能够准确地反映—个空间周期内的位移(或角度)的变化。为了使输出感应电势与位移(或角度)呈一定函数关系,必须对输出的感应电势进行处理。感应同步器输出的感应电势是一个交变信号,可以用幅值和相位两个参数来描述。因此感应电势的测量电路有鉴幅型和鉴相型两种。

鉴幅型电路是在滑尺的正弦、余弦绕组上供给同频率、同相位但不同幅值的激磁电压,通过输出感应电势的幅值来鉴别被测位移的大小。在x ?较小的情况下,感应电势的幅值与x ?成正比。当x 变化一个节距W 时,感应电势的幅值变化一个周期。通过检测感应电势的幅值变化,即可测得滑尺与定尺之间的相对位移x 。

鉴相型电路是在滑尺的正弦、余弦绕组上供给频率相同、幅值相同、相位差为90°的交流激磁电压,通过检测感应电势的相位来鉴别被测位移量的大小。感应电势的相位角

x ?随x 的变化规律,当x 变化一个节距W 时,感应电势的

相位角

x ?变化一个周期,通过鉴别感应电势的相位角x ?,

例如同激磁电压s u 相比较,

即可以测出定尺与滑尺之间的相

对位移。

6.1 什么是压电效应?压电效应的特点是什么?以石英晶体为例,说明压电元件是怎样产生压电效应的?

答:当沿着一定方向对某些电介质施加压力或拉力而使其变形时,内部就产生极化现象,在某两个表面上产生符号相反的电荷;当外力去掉后,又重新恢复到不带电状态;当作用力方向改变时,电荷的极性也随着改变;产生的电荷量与外力的大小成正比。这种现象称为正压电效应。压电效应的特点是具有可逆性。当在电介质的极化方向施加电场时,电介质本身将产生机械变形,外电场撤离,变形也随着消失。

石英晶体的压电特性与其内部分子的结构有关。其化学式为SiO2。在一个晶体单元中有3个硅离子Si4+和6个氧离子O2--,后者是成对的。所以一个硅离子和两个氧离子交替排列。当没有力作用时,Si4+与O2--在垂直于晶轴Z 的XY 平面上的投影恰好等效为正六边形排列。如图6-4(a)所示;这时正、负离子正好分布在正六边形的顶角上,它们所形成的电偶极矩PI 、P2和P3的大小相等,相互的夹角为120°。因为电偶极矩定义为电荷q 与间距l 的乘积.即P =ql ,其方向是从负电荷指向正电荷,是一种矢量,所以正

负电荷中心重合,电偶极矩的矢量和为零,即Pl+P2+P3=0。当晶体受到沿X 轴方向的压力作用时,晶体沿X 轴方向产生压缩,正、负离子的相对位置也随之发生变化,如图6-4(b)中虚线所示。此时正负电荷中心不重合.电偶极矩在X 方向上的分量由于P1减小和P2、P3的增大面不等于零,在X 轴的正向出现正电荷。电偶极矩在Y 方向上的分量仍为零(因为P2、P3在Y 方向上的分量大小相等方向相反),不出现电荷。由于Pl ,P2和P3在z 轴方向上的分量都为零,不受外作用力的影响,所以在Z 轴方向上也不出现电荷。

当晶体受到沿Y 轴方向的作用力时,晶体的变形如图6-4(c)中虚线所示。与图6-4(b)的情况相似,P1增大,P2和P3减小,在X 轴方向上出现电荷,它的极性与图6-4(b)的相反。而在Y 和Z 轴方向上则不出现电荷。

6.2压电传感器为什么只适用于动态测量?

答:压电传感器可以看作是一个带电的电容器,当外接负载时,

只有外电路负载无穷大,内部也无漏电时,受力所产生的电压

才能长期保存下来,若负载不是无穷大,则电路以时间常数

RLCa 按指数规律放电,无法测量。所以不能测量频率低或静止的参数。

6.3常见的压电元件的组合形式有哪些?这些组合形式各适用于哪些场合?

答:常见的压电元件的组合形式有串联和并联两种方式。其中并联接法输出电荷大,本身电容也大,时间常数大,

适用于测量慢变信号,当采用电荷放大器转换压电元件上的

输出电荷q 时,并联方式可以提高传感器的灵敏度,所以并联方式适用于以电荷作为输出量的地方。串联接法的输出电压大,本身电容小,当采用电压放大器转换压电元件上的输出电压时,串联方法可以提高传感器的灵敏度,所以串联方式适用于以电压作为输出信号,并且测量电路输入阻抗很高的地方。

6.4压电传感器为什么要接前置放大器?常用的前置放大电路有几种?各有什么特点?

答:由于压电传感器的输出信号非常微弱,一般将电信号进行放大才能测量出来。但因压电传感器的内阻抗相当高,不是普通放大器能放大的,而且,除阻抗匹配的问题外,连接电缆的长度、噪声都是突出的问题。为解决这些问题,通常,传感器的输出信号先由低噪声电缆输入高输入阻抗的前置放大器。前置放大器也有两种形式:电压放大器和电荷放大器。电压放大器的输出电压与输入电压(即传感器的输出电压)成比例,这种电压前置放大器一般称为阻抗变换器;电荷放大器的输出电压与输入电荷成比例。这两种放大器的主要区别是:使用电压放大器时,整个测量系统对电缆电容的变化非常敏感,尤其是连续电缆长度变化更为明显;而使用电荷放大器时,电缆长度变化的影响差不多可以忽略不计。

8.1.电容式传感器有哪三大类?分别适用于测量哪些物理量?

答:电容式传感器分为变面积式电容传感器、变间隙式电容传感器、变介电常数式传感器。变面积式电容传感器可用于检测位移、尺寸等参量;变间隙式电容传感器可以用来测量微小的线位移;变介电常数式传感器可以用来测定各种

介质的物理特性(如湿度、密度等)。

8.2.推导差动式变间隙电容传感器的灵敏度,并与单一型传感器进行比较。

答:

可见,灵敏度比非差动类型提高一倍。

8.3.电容式传感器的寄生电容是怎样产生的?对传感器的输出特性有什么影响?

答:寄生电容CP 主要指电缆寄生电容,它与传感器电容C 相并联。电容式传感器由于受结构与尺寸的限制,一般电容量都很小,几个皮法到几十皮法,属于小功率、高阻抗器件,极易受外界干扰,尤其是电缆寄生电容。寄生电容比电容传感器的电容大几倍至几十倍,且具有随机性,又与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没传感器的有用信号,使传感器无法使用。因此消灭寄生电容的影响,是电容式传感器实用化的关键。

8.4.电容式传感器能否用来测量湿度?试说明其工作原理。

答:采用变介电常数型的电容传感器即可测量湿度。被测物质作为介质处于电容的两个因定极板之间,湿度改变时,介电常数发生变化,电容相应发生变化,通过检测电路检测电容的变化,即可反映湿度的变化。

9.1磁电式传感器的基本原理是什么?

答:磁电式传感器是通过磁电作用将被测量(如振动、位移、转速等)转换成电信号的一种传感器。磁电感应传感器的工作原理可认为是发电机原理。

磁电传感器以导体和磁场发生相对运动而产生电动势为基础。根据电磁感应定律。具有ω匝的线圈,其内的感应电动势e 的大小取决于贯穿该线圈的磁通Φ的变化速率.即

dt d e Φ

-=ω

9.2磁电式传感器产生非线性误差的原因是什么? 答:磁电式传感器非线性误差产生的原因是由于传感器线圈内有电流i 经过时,将产生一定的变化磁通

i

Φ,这种

交变磁通使得永久磁铁所产生的工作磁通减弱。当传感器线圈相对于永久磁铁的运动速度增大时,将产生较大的感应电势u 和较大的电流i ,因此减弱磁场的作用也将加强,从而u 、线圈电流i 及磁

v 数值的

S

2 220

00d d C x C K ε==?=

波的能量增加,既这种非线性特性同时伴随着传感器输出的谐波失真。

9.3试举一磁电式传感器的应用的例子,并画简图说明其工作原理。

答:任何非电量只要能转换成位移量的变化,均可利用霍尔式位移传感器的原理变换成霍尔电势。霍尔式压力传感器就是其中的一种。它首先由弹性元件将被测压力变换成位移,由于霍尔元件固定在弹性元件的自由端上,因此弹性元件产生位移时将带动霍尔元件,使它在线性变化的磁场中移动,从而输出霍尔电势。霍尔式压力传感器结构原理如图(a)所示。弹性元件可以是波登管或膜盒或弹簧管。图中弹性元件为波登管,其一端固定,另一自由端安装霍尔元件之中。当输入压力增加时,波登管伸长,使霍尔元件在恒定梯度磁场中产生相应的位移,输出与压力成正比的霍尔电势。

9.4什么是霍尔效应?为什么半导体材料适合于做霍尔元件?

答:霍尔效应为若在某导体薄片的两端通过控制电流I,并在薄片的垂直方向上施加磁感应强度为B的磁场,则,在垂直于电流和磁场的方向上将产生电动势,称为霍尔电势或霍尔电压,这种现象称为霍尔效应。

霍尔系数:K=1/(n*q)式中,n为载流子密度,一般金属中载流子密度很大,所以金属材料的霍尔系数系数很小,霍尔效应不明显,而半导体中的载流子的密度比金属要小得多,所以半导体的霍尔系数系数比金属大得多,能产生较大的霍尔效,故霍尔元件不用金属材料而是用半导体!

9.5霍尔元件产生不等位电势的主要原因有哪些?怎样补偿?

答:不等位电势是一个主要的零位误差。造成不等位电势的主要原因是:在制作霍尔元件时,不可能保证将霍尔电极焊在同一等位面上,如图9-13所示。此外,霍尔元件材料的电阻率不均匀,霍尔片的厚度、宽度不一致,电极与片子的接触不良等也会产生不等位电势

在分析不等位电势时,可以把霍尔元件等效为一个电桥,如图9-14所示。电桥的四个桥臂为r1、r2、r3、r4。若两个霍尔电极在同一等位面上时,r1=r2=r3=r4,则电桥平衡,输出电压U0为零。当霍尔电极不在同一等位面上时,四个桥臂电阻不相等,电桥处于不平衡状态,输出电压U0不为零。可见,补偿的方法就是让电桥平衡起来,一般情况下,采用补偿网络进行补偿,效果良好。

上图给出了几种常见的补偿网络。(a)(b)(c)(d)均为控制电流为直流的情况下的补偿。可见,虽然在电路上有所不同,但基本的补偿思想都是一致的,都是通过并联的可调电阻通过阻值的调整而使得电桥电阻达到平衡。

9.6温度变化对霍尔元件输出电势有什么影响?如何补偿?

答:霍尔元件与一般半导体器件一样,对温度的变化是很敏感的,这是因为半导体材料的电阻率、载流子浓度等都随温度而变化。因此,霍尔元件的输入电阻、输出电阻、灵敏度等也将受到温度变化的影响,从而给测量带来较大的误差。

为了减小测量中的温度误差、除了选用温度系数小的霍尔元件,或采取一些恒温措施外,也可使用以下的一些温度补偿方法;

1)采用恒流源提供控制电流和输入回路并联电阻 2)合理选择负载电阻

3)采用热敏电阻进行温度补偿

4)具有温度补偿及不等位电势补偿的典型电路 9.7若一个霍尔器件的KH=40mV/(mA ·T),控制电流I=3mA ,将它置于10-4~0.5T 变化的磁场中,它输出的霍尔电势范围多大?

解:由已知条件可知:

V IB K U H H 5

43max 102.11010340---?=???==

V

IB K U H H 23max 1065.010340--?=???==

因此它输出的霍尔电势范围为

V

V 25106102.1--?-?

9.8简述霍尔式压力传感器的工作原理。

答:首先由弹性元件将被测压力变换成位移,由于霍尔元件固定在弹性元件的自由端上,因此弹性元件产生位移时将带动霍尔元件,使它在线性变化的磁场中移动,从而输出霍尔电势。霍尔式压力传感器结构原理如图(a)所示。弹性元件可以是波登管或膜盒或弹簧管。图中弹性元件为波登管,其一端固定,另一自由端安装霍尔元件之中。当输入压力增加时,波登管伸长,使霍尔元件在恒定梯度磁场中产生相应的位移,输出与压力成正比的霍尔电势。

9.9有一霍尔元件,其灵敏度KH=1.2mV/mA ·kGs ,把它放在一个梯度为5kGs/mm 的磁场中,如果额定控制电流是20mA ,设霍尔元件在平衡点附近做±0.1mm 的摆动,问输出电压范围是多少?

答:由已知条件可知:

V

IB K U H H 12.0102052.13max =???==-

V

IB K U H H 12.010)1(2052.13max -=?-???==-

因此它输出的霍尔电势范围为V 12.0-~0.12V 。 10.1光敏电阻、光电二级管和光电三极管是根据什么原理工作的?光电特性有何不同?

光敏电阻是一种基于半导体光电导效应、由光电导材料制成的没有极性的光电元件,也称为光导管。光电二级管根据反偏电压pn 结光伏效应工作的探测器;光电三极管是根据无偏压pn 结光伏效应工作的探测器;光敏电阻用于测光的光源光谱特性必须与光敏电阻的光敏特性匹配,要

防止光敏电阻受杂散光的影响;光电三极管有电流放大作

用,它的灵敏度比光电二极管高,输出电流也比光电二极管

大,多为毫安级。

10.2 试拟定用光敏三极管控制的、用交流电压供电的

明通与暗通直流电磁继电器原理图。

10.3 概括光纤弱导条件的意义。

从理论上讲,光纤的弱导特性是光纤与微波圆波导之间的重要差别之一。实际使用的光纤,特别是单模光纤,其掺杂浓度都很小,使纤芯和包层只有很小的折射率差。所以弱导的基本含义是指很小的折射率差就能构成良好的光纤波导结构,而且为制造提供了很大的方便。

10.4 利用斯乃尔定律推导出的临界角0θ表达式,

计算

水与空气分界面(33.1=n )的临界角

0θ。

斯乃尔定理指出:当光由光密物质(折射率大)出射至光疏物质(折射率小)时,发生折射。其折射角大于入射角,

即:

21n n >时,i r θθ>。

1n ,

2

n ,

r

θ,

i

θ间的数学关系为:

r i n n θθsin sin 21=

可以看出:入射角

i θ增大时,折射角r θ也随之增大,

且始终i r θθ>时,i θ仍小于90o,当r θ=90o,此时出射

光线沿界面传播,此时称为临界状态,这时有sin

r

θ=sin90

=1。同时还有:sin

i

θ=

1

2n n ;

θ0i =arcsin ?

???

??1

2n n ; 式中θ

i 为临界角。当

i θ>0

i

θ时,

即r θ>90o时便发生全反射现象,

10.5 以表面沟道CCD 为例,简述CCD 电荷存储、转移、输出的基本原理。

构成CCD 的基本单元是MOS(金属-氧化物-半导体)电容器。正如其它电容器一样,MOS 电容器能够存储电荷。如果MOS 结构中的半导体是P 型硅,当在金属电极(称为栅)上加一个正的阶梯电压时(衬底接地),Si-SiO2界面处的电势(称为表面势或界面势)发生相应变化,附近的P 型硅中多数载流子——空穴被排斥,形成所谓耗尽层,如果栅电压VG 超过MOS 晶体管的开启电压,则在Si-SiO2界面处形成深度耗尽状态,由于电子在那里的势能较低,我们可以形象化地说:半导体表面形成了电子的势阱,可以用来存储电子。当表面存在势阱时,如果有信号电子(电荷)来到势阱及其邻近,它们便可以聚集在表面。随着电子来到势阱中,表面势将降低,耗尽层将减薄,我们把这个过程描述为电子逐渐填充势阱。势阱中能够容纳多少个电子,取决于势阱的“深浅”,即表面势的大小,而表面势又随栅电压变化,栅电压越大,势阱越深。如果没有外来的信号电荷。耗尽层及其邻近区域在一定温度下产生的电子将逐渐填满势阱,这种热产生的少数载流子电流叫作暗电流,以有别于光照下产生的载流子。因此,电荷耦合器件必须工作在瞬态和深度耗尽状态,才能存储电荷。

以典型的三相CCD 为例说明CCD 电荷转移的基本原理。三相CCD 是由每三个栅为一组的间隔紧密的MOS 结构组成的阵列。每相隔两个栅的栅电极连接到同一驱动信号上,亦称时钟脉冲。三相时钟脉冲的波形如下图所示。在t1时刻,φ1高电位,φ2、φ3低电位。此时φ1电极下的表面势最大,势阱最深。假设此时已有信号电荷(电子)注入,则电荷就被存储在φ1电极下的势阱中。t2时刻,φ1、φ2为高电位,φ3为低电位,则φ1、φ2下的两个势阱的空阱深度相同,但因φ1下面存储有电荷,则φ1势阱的实际深度比φ2电极下面的势阱浅,φ1下面的电荷将向φ2下转移,直到两个势阱中具有同样多的电荷。t3时刻,φ2仍为高电位,

φ3仍为低电位,而φ1由高到低转变。此时φ1下的势阱逐渐变浅,使φ1下的剩余电荷继续向φ2下的势阱中转移。

t4时刻,φ2为高电位,φ1、φ3为低电位,φ2下面的势阱最深,信号电荷都被转移到φ2下面的势阱中,这与t1时刻的情况相似,但电荷包向右移动了一个电极的位置。当经

过一个时钟周期T 后,电荷包将向右转移三个电极位置,即一个栅周期(也称一位)。因此,时钟的周期变化,就可使CCD 中的电荷包在电极下被转移到输出端,其工作过程从效果上看类似于数字电路中的移位寄存器。

10.6 简述光栅式传感器的基本工作原理。分析为什么光栅式传感器有较高的测量精度。

在长度计量中应用的光栅通常称为计量光栅,它主要由标尺光栅 (也称主光栅)和指示光栅组成。二者刻线面相对,中间留有很小的间隙相叠合,便组成了光栅副。当标尺光栅相对于指示光栅移动时,形成的莫尔条纹产生亮暗交替变化。利用光电接收元件接受莫尔条纹亮暗变化的光信号,并转换成电脉冲信号,经电路处理后用计数器计数可得到标尺光栅移过的距离。

光栅传感器在测量时,可以根据莫尔条纹的移动量和移动方向判定主光栅(或指示光栅)的位移量和位移的方向。由于莫尔条纹有放大作用,就可以把一个微小移动量的测量转变成一个较大移动量的测量,既方便又提高了测量精度。另外莫尔条纹的光强度变化近似正弦变化,因此便于将电信号做进一步细分,即采用“倍频技术”,将计数单位变成比一个周期W 更小的单位,例如变成

10W 记一个数,这样可

以提高测量精度或可以采用较粗的光栅。此外莫尔条纹是由光栅的大量栅线(常为数百条)共同形成的,而光电元件接收的并不只是固定一点的条纹,而是在一定长度范围内所有刻线产生的条纹。因此对光栅的刻划误差有平均作用,从而可以在很大程度上消除刻线的局部误差和短周期误差的影响。

10.7比较主要光子探测器作用、机理、性能及应用特点等方面的差异。

光子效应是指单个光子的性质对产生的光电子起直接作用的一类光电效应。探测器吸收光子后,直接引起原子或分子的内部电子状态的改变。光子能量的大小,直接影响内部电子状态改变的大小。因为,光子能量是h γ

,h 是普朗克常数, γ

是光波频率,所以,光子效应就对光波频率表现出选择性,在光子直接与电子相互作用的情况下,其响应速度一般比较快。

10.8 试设计一个利用光电开关测速的测量系统。

利用光电器件可以构成光电式转速传感器,可以将转速

的变化转换成光通量的变化,再经由光电元件转换成电量的变化。光电式转速传感器工作原理如图10-40所示,在被测转速的电机上固定一个调制盘,调制盘的一边设置光源3,另一边设置光电元件4,调制盘随电机转动,当光线通过小孔照射到光电器件上一次时,光电元件就产生一个电脉冲。电机连续转动,光电元件就输出一系列与转速及圆盘上的孔数成正比的电脉冲数。电脉冲输入测量电路后被放大和整形,再送入频率计显示;也可专门设计一个计数器进行计数和显示。

假设调制盘上有很多个小孔(如20,30,60…),调制盘每转一周,光电元件接受光的次数等于盘上的开孔数。如开孔数为60,记录过程的时间为t 秒,总脉冲数为N ,则转速

()min 6060r t N

t N n =?=

光电数字转速传感器工作原理图

测控电路第五版李醒飞第五章习题答案

第五章 信号运算电路 5-1推导题图5-43中各运放输出电压,假设各运放均为理想运放。 (a)该电路为同相比例电路,故输出为: ()0.36V V 3.02.01o =?+=U (b)该电路为反相比例放大电路,于是输出为: V 15.03.02 1 105i o -=?-=-=U U (c)设第一级运放的输出为1o U ,由第一级运放电路为反相比例电路可知: ()15.03.0*2/11-=-=o U 后一级电路中,由虚断虚短可知,V 5.0==+-U U ,则有: ()()k U U k U U o 50/10/1o -=--- 于是解得: V 63.0o =U (d)设第一级运放的输出为1o U ,由第一级运放电路为同相比例电路可知: ()V 45.03.010/511o =?+=U 后一级电路中,由虚断虚短可知,V 5.0==+-U U ,则有: ()()k U U k U U o 50/10/1o -=--- 于是解得: V 51.0o =U 5-2 11 图X5-1 u

5-3由理想放大器构成的反向求和电路如图5-44所示。 (1)推导其输入与输出间的函数关系()4321,,,u u u u f u o =; (2)如果有122R R =、134R R =、148R R =、Ω=k 101R 、Ω=k 20f R ,输入4 321,,,u u u u 的范围是0到4V ,确定输出的变化范围,并画出o u 与输入的变化曲线。 (1)由运放的虚断虚短特性可知0==+-U U ,则有: f R u R u R u R u R u 0 44332211-=+++ 于是有: ??? ? ??+++-=44332211o U R R U R R U R R U R R U f f f f (2)将已知数据带入得到o U 表达式: ()4321o 25.05.02i i i i U U U U U +++-= 函数曲线可自行绘制。 5-4理想运放构成图5-45a 所示电路,其中Ω==k 10021R R 、uF 101=C 、uF 52=C 。图5-54b 为输入信号波形,分别画出1o u 和2o u 的输出波形。 前一级电路是一个微分电路,故()dt dU dt dU C R R i U i i o //*1111-=-=-= 输入已知,故曲线易绘制如图X5-2所示。 图X5-2 后一级电路是一个积分电路,故()??-=-=dt U dt U C R V o o 1122out 2/1 则曲线绘制如图X5-3所示。 图X5-3 /V

热工测试课后练习答案

热工测试作业 第一章 1-1、测量方法有哪几类,直接测量与间接测量的主要区别是什么?(P1-2) 答:测量的方法有:1、直接测量;2、间接测量;3、组合测量。 直接测量与间接测量的主要区别是直接测量中被测量的数值可以直接从测量仪器上读得,而间接测量种被测量的数值不能直接从测量仪器上读得,需要通过直接测得与被测量有一定函数关系的量,然后经过运算得到被测量的数值。 1-2、简述测量仪器的组成与各组成部分的作用。(P3-4) 答:测量仪器由感受器、中间器和效用件三个部分组成。 1、感受器或传感器:直接与被测对象发生联系(但不一定直接接触),感知被测参数的变化,同时对外界发出相应的信号; 2、中间器或传递件:最简单的中间件是单纯起“传递”作用的元件,它将传感器的输出信号原封不动地传递给效用件; 3、效用件或显示元件:把被测量信号显示出来,按显示原理与方法的不同,又可分模拟显示和数字显示两种。 1-3、测量仪器的主要性能指标及各项指标的含义是什么?(P5-6) 答:测量仪器的主要性能指标有:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。 1、精确度:表示测量结果与真值一致的程度,它是系统误差与随机误差的综合反映; 2、恒定度:仪器多次重复测试时,其指示值的稳定程度,通常以读数的变差来表示; 3、灵敏度:以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例来表示。 4、灵敏度阻滞:又称感量,是以引起仪器指针从静止到作极微小移动的被测量的变化值。 5、指示滞后时间:从被测参数发生变化到仪器指示出该变化值所需的时间。 1-4、说明计算机测控系统基本组成部分及其功能。(P6-7) 答:计算机测控系统基本组成部分有:传感器、信号调理器、多路转换开关、模/数(A/D)和数/模(D/A)转换及微机。 1、信号调理器:完成由传感器输出信号的放大、整形、滤波等,以保证传感器输出信号成为A/D转换器能接受的信号; 2、实现多路信号测量,并由它完成轮流切换被测量与模/数转换器的连接; 3、采样保持器:保证采样信号在A/D转换过程中不发生变化以提高测量精度; 4、A/D转换器:将输入的模拟信号换成计算机能接受的数字信号; 5、D/A转换器:将输入的数字信号换成计算机能接受的模拟信号。 1-5、试述现代测试技术及仪器的发展方向。(P6、P9) 答:计算机、微电子等技术迅速发展,推动了测试技术的进步,相继出现了智能测试仪、总线仪器、PC仪器、虚拟仪器、网络化仪器等微机化仪器及自动化测试系统。随着计算机网络技术、多媒体技术、分布式技术等手段的迅速发展,测试技术与计算机相结合已成为当前测试技术的主流,测试技术的虚拟化和网络化的时代已经不远了。 第二章 2-1、试述测量仪器的动态特性的含意和主要研究内容,它在瞬变参数测量中的重要意义。(P11、P16) 答:测量仪器或测量系统的动态特性的分析就是研究动态测量时所产生的动态误差,它主要用以描述在动态测量过程中输入量与输出量之间的关系,或是反映系统对于随机时间变化的输入量响应特性。从而能够选择合适的测量系统并于所测参数相匹配,使测量的动态误差限制在试验要求的允许范围内,这便是动态测量技术中的重要研究课题。在瞬变参数动态测量中,要求通过测量系统所获得的输出信号能准确地重现输入信号的全部信息,而测量系统的动态响应正是用来评价系统正确传递和显示输入信号的重要指标。

测试的技术部分课后答案

作业一 1、欲使测量结果具有普遍科学意义的条件是什么? 答:①用来做比较的标准必须是精确已知的,得到公认的; ②进行比较的测量系统必须是工作稳定的,经得起检验的。 2、非电量电测法的基本思想是什么? 答:基本思想:首先要将输入物理量转换为电量,然后再进行必要的调节、转换、运算,最后以适当的形式输出。 3、什么是国际单位制?其基本量及其单位是什么? 答:国际单位制是国际计量会议为了统一各国的计量单位而建立的统一国际单位制,简称SI,SI制由SI单位和SI单位的倍数单位组成。基本量为长度、质量、时间、电流强度、热力学温度、发光强度,其单位分别为米、千克、秒、安培、开尔文、坎德拉、摩尔。 4、一般测量系统的组成分几个环节?分别说明其作用? 答:一般测量系统的组成分为传感器、信号调理和测量电路、指示仪器、记录仪器、数据处理仪器及打印机等外部设备。 传感器是整个测试系统实现测试与自动控制的首要关键环节,作用是将被测非电量转换成便于放大、记录的电量; 中间变换(信号调理)与测量电路依测量任务的不同而有很大的伸缩性,在简单的测量中可完全省略,将传感器的输出直接进行显示或记录;信号的转换(放大、滤波、调制和解调); 显示和记录仪器的作用是将中间变换与测量电路出来的电压或电流信号不失真地显示和记录出来;

数据处理仪器、打印机、绘图仪是上述测试系统的延伸部分,它们能对测试系统输出的信号作进一步处理,以便使所需的信号更为明确。 5、举例说明直接测量和间接测量的主要区别是什么? 答:无需经过函数关系的计算,直接通过测量仪器得到被测量值的测量为直接测量,可分为直接比较和间接比较两种。 直接将被测量和标准量进行比较的测量方法称为直接比较;利用仪器仪表把原始形态的待测物理量的变化变换成与之保持已知函数关系的另一种物理量的变化,并以人的感官所能接收的形式,在测量系统的输出端显示出来,弹簧测力。 间接测量是在直接测量的基础上,根据已知的函数关系,计算出所要测量的物理量的大小。利用位移传感器测速度。 6、确定性信号与非确定性信号分析法有何不同? 答:确定性信号是指可用确定的数学关系式来描述的信号,给定一个时间值就能得到一个确定的函数值。 非确定性信号具有随机特性,每次观测的结果都不相同,无法用精确的数学关系式或图表来描述,更不能准确预测未来结果,而只能用概率统计的方法来描述它的规律。 7、什么是信号的有效带宽?分析信号的有效带宽有何意义? 答:通常把信号值得重视的谐波的频率范围称为信号的频带宽度或信号的有效带宽。 意义:在选择测量仪器时,测量仪器的工作频率范围必须大于被测信号的宽度,否则将会引起信号失真,造成较大的测量误差,因此设计

(完整版)测试技术课后题答案

1-3 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。 (2)220 2 2 (2) ()()(2) 2(2)a j f t j f t at j f t e A A a j f X f x t e dt Ae e dt A a j f a j f a f -+∞ ∞ ---∞-∞-==== =-+++??πππππππ ()X f = Im ()2()arctan arctan Re ()X f f f X f a ==-π? 1-5 求被截断的余弦函数0cos ωt (见图1-26)的傅里叶变换。 0cos ()0 ωt t T x t t T ?≥的频谱密度函数为 1122 1()()j t at j t a j X f x t e dt e e dt a j a ∞ ∞ ----∞ -= == =++? ?ωωω ωω 根据频移特性和叠加性得: []001010222200222 000222222220000()()11()()()22()()[()]2[()][()][()][()] a j a j X X X j j a a a a j a a a a ??---+= --+=-??+-++?? --= -+-+++-++ωωωωωωωωωωωωωωωωωω ωωωωωωωω

测控电路课后答案

一.1测控电路在整个测控系统中起着什么样的作用? 传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。 2影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意? 影响测控电路精度的主要因素有: (1)噪声与干扰; (2)失调与漂移,主要是温漂; (3)线性度与保真度; (4)输入与输出阻抗的影响。 其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。 3为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面? 为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。它包括: (1)模数转换与数模转换; (2)直流与交流、电压与电流信号之间的转换。幅值、相位、频率与脉宽信号等之间的转换; (3)量程的变换; (4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等 二.2-1 何谓测量放大电路?对其基本要求是什么? 在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配; ②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低 2-7什么是高共模抑制比放大电路?应用何种场合? 有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。应用于要求共模抑制比大于100dB的场合,例如人体心电测量。 2-8 图2-8b所示电路,N1、N2为理想运算放大器,R4=R2=R1=R3=R,试求其闭环电压放大倍数。 由图2-8b和题设可得u01 =u i1 (1+R2 /R1) = 2u i1 , u0=u i2 (1+R4 /R3 )–2u i1 R4/R3 =2u i2–2

测控仪器设计课后习题答案_浦昭邦_王宝光

测控仪器则是利用测量和控制的理论,采用机、电、光各种计量测试原理及控制系统与计算机相结合的一种范围广泛的测量仪器。 仪器仪表的用途和重要性— 遍及国民经济各个部门,深入到人民生活的各个角落,仪器仪表中的计量测试仪器与控制仪器统称为测控仪器,可以说测控仪器的水平是科学技术现代化的重要标志。 仪器仪表的用途: 在机械制造业中:对产品的静态与动态性能测试;加工过程的控制与监测;设备运行中的故障诊断等。 在电力、化工、石油工业中:对压力、流量、温度、成分、尺寸等参数的检测和控制;对压力容器泄漏和裂纹的检测等。 在航天、航空工业中:对发动机转速、转矩、振动、噪声、动力特性、喷油压力、管道流量的测量;对构件的应力、刚度、强度的测量;对控制系统的电流、电压、绝缘强度的测量等。 发展趋势: 高精度与高可靠性、高效率、智能化、多样化与多维化(1)高精度与高可靠性随着科学技术的发展,对测控仪器的精度提出更高的要求,如几何量nm精度测量,力学量的mg 精度测量等。同时对仪器的可靠性要求也日益增高,尤其是航空、航天用的测控仪器,其可靠性尤为重要。(2)高效率大批量产品生产节奏,要求测量仪器具有高效率,因此非接触测量、在线检测、自适应控制、模糊控制、操作与控制的自动化、多点检测、机光电算一体化是必然的趋势。(3)高智能化在信息拾取与转换、信息测量、判断和处理及控制方面大量采用微处理器和微计算机,显示与控制系统向三维形象化发展,操作向自动化发展,并且具有多种人工智能从学习机向人工智能机发展是必然的趋势。(4)多维化、多功能化(5)开发新原理(6)动态测量 现代设计方法的特点: (1)程式性强调设计、生产与销售的一体化。 (2)创造性突出人的创造性,开发创新性产品。 (3)系统性用系统工程思想处理技术系统问题。力求系统整体最优,同时要考虑人-机-环境的大系统关系。 (4)优化性通过优化理论及技术,以获得功能全、性能良好、成本低、性能价格比高的产品。 (5)计算机辅助设计计算机将更全面地引入设计全过程,计算机辅助设计不仅用于计算和绘图,在信息储存、评价决策、动态模拟、人工智能等方面将发挥更大作用。 工作原理: Z向运动具有自动调焦功能,通过计算机对CCD摄像器件摄取图像进行 分析,用调焦评价函数来判断调焦质量。被检测的印刷线路板或IC芯片 的瞄准用可变焦的光学显微镜和CCD摄像器件来完成。摄像机的输出经图 像卡送到计算机进行图像处理实现精密定位和图像识别与计算,并给出 被检测件的尺寸值、误差值及缺陷状况。 按功能将仪器分成以下几个组成部分: 1 基准部件 5 信息处理与运算装置 2 传感器与感受转换部件 6 显示部件

机械工程测试技术课后习题答案

机械工程测试技术课后 习题答案 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

第三章:常用传感器技术 3-1 传感器主要包括哪几部分?试举例说明。 传感器一般由敏感元件、转换元件、基本转换电路三部分组成。 如图所示的气体压力传感器。其内部的膜盒就是敏感元件,它的外部与大气压力相通,内部感受被测压力p ,当p 发生变化时,引起膜盒上半部分移动,可变线圈是传感器的转换元件,它把输入的位移量转换成电感的变化。基本电路则是完成上述电感变化量接入基本转换电路,便可转换成电量输出。 3-2 请举例说明结构型传感器与物性型传感器的区别。 答:结构型传感器主要是通过传感器结构参量的变化实现信号变换的。例如,电容式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起自感或互感的变化。 物性型传感器则是利用敏感元件材料本身物理性质的变化来实现信号变换。例如,水银温度计是利用水银的热胀冷缩性质;压电式传感器是利用石英晶体的压电效应等。 3-3 金属电阻应变片与半导体应变片在工作原理上有何区别? 答: (1)金属电阻应变片是基于金属导体的“电阻应变效应”, 即电阻材料在外力作用下发生机械变形时,其电阻值发生变化的现象,其电阻的相对变化为()12dR R με=+; (2)半导体应变片是基于半导体材料的“压阻效应”,即电阻材料受到载荷作用而产生应力时,其电阻率发生变化的现象,其电阻的相对变化为dR d E R ρλερ == 。 3-4 有一电阻应变片(见图3-105),其灵敏度S 0=2,R =120Ω,设工作时其 应变为1000με,问ΔR =?设将此应变片接成图中所示的电路,试求:1)无应变时电流指示值;2)有应变时电流指示值;3)试分析这个变量能否从表中读出? 解:根据应变效应表达式R /R =S g 得 R =S g R =2100010-6120=0.24 1)I 1=1.5/R =1.5/120=0.0125A=12.5mA 2)I 2=1.5/(R +R )=1.5/(120+0.24)0.012475A=12.475mA 图3-105 题3-4图

测控电路第五版李醒飞第4章习题答案

第四章信号分离电路 4-1简述滤波器功能,按照功能要求,滤波器可分为几种类型? 滤波器是具有频率选择作用的电路或运算处理系统,即对不同频率信号的幅值有不同的增益,并对其相位有不同的移相作用。按照其功能要求,滤波器可分为低通、高通、带通、带阻与全通五种类型。 4-2按照电路结构,常用的二阶有源滤波电路有几种类型?特点是什么? 常用的二阶有源滤波电路有三种:压控电压源型滤波电路、无限增益多路反馈型滤波电路和双二阶环型滤波电路。 压控电压源型滤波电路使用元件数目较少,对有源器件特性理想程度要求较低,结构简单,调整方便,对于一般应用场合性能比较优良,应用十分普遍。但压控电压源电路利用正反馈补偿RC网络中能量损耗,反馈过强将降低电路稳定性,因为在这类电路中,Q值表达式均包含-Kf项,表明Kf过大,可能会使Q 值变负,导致电路自激振荡。此外这种电路Q值灵敏度较高,且均与Q成正比,如果电路Q值较高,外界条件变化将会使电路性能发生较大变化,如果电路在临界稳定条件下工作,也会导致自激振荡。 无限增益多路反馈型滤波电路与压控电压源滤波电路使用元件数目相近,由于没有正反馈,稳定性很高。其不足之处是对有源器件特性要求较高,而且调整不如压控电压源滤波电路方便。对于低通与高通滤波电路,二者Q值灵敏度相近,但对于图4-17c所示的带通滤波电路,其Q值相对R,C变化的灵敏度不超过1,因而可实现更高的品质因数。 双二阶环型滤波电路灵敏度很低,可以利用不同端输出,或改变元件参数,获得各种不同性质的滤波电路。与此同时调整方便,各个特征参数可以独立调整。适合于构成集成电路。但利用分立器件组成双二阶环电路,用元件数目比较多,电路结构比较复杂,成本高。 4-3测控系统中常用的滤波器特性逼近的方式有几种类型?简述这些逼近方式的特点。 测控系统中常用的滤波器特性逼近的方式可分为巴特沃斯逼近、切比雪夫逼近与贝赛尔逼近三种类型。 巴特沃斯逼近的基本原则是在保持幅频特性单调变化的前提下,通带内最为平坦。其特点是具有较为理想的幅频特性,同时相频特性也具有一定的线性度。 切比雪夫逼近的基本原则是允许通带内有一定的波动量ΔKp,故在电路阶数一定的条件下,可使其幅频特性更接近矩形,具有最佳的幅频特性。但是这种逼近方式相位失真较严重,对元件准确度要求也更高。 贝赛尔逼近的基本原则是使相频特性线性度最高,群时延函数τ(ω)最接近于常量,从而使相频特性引起的相位失真最小,具有最佳的相频特性。但是这种

现代测试技术课后答案

现测课后习题答案 第1章 1. 直接的间接的 2. 测量对象测量方法测量设备 3. 直接测量间接测量组合测量直读测量法比较测量法时域测量频域测量数据域测量 4. 维持单位的统一,保证量值准确地传递基准量具标准量具工作用量具 5. 接触电阻引线电阻 6. 在对测量对象的性质、特点、测量条件(环境)认真分析、全面了解的前提下,根据对测量结果的准确度要求选择恰当的测量方法(方式)和测量设备,进而拟定出测量过程及测量步骤。 7. 米(m) 秒(s) 千克(kg) 安培(A) 8. 准备测量数据处理 9. 标准电池标准电阻标准电感标准电容 第2章 填空题 1. 系统随机粗大系统 2. 有界性单峰性对称性抵偿性 3. 置信区间置信概率 4. 最大引用0.6% 5. 0.5×10-1[100.1Ω,100.3Ω] 6. ± 7.9670×10-4±0.04% 7. 测量列的算术平均值 8. 测量装置的误差不影响测量结果,但测量装置必须有一定的稳定性和灵敏度 9. ±6Ω 10. [79.78V,79.88V]

计算题 2. 解: (1)该电阻的平均值计算如下: 1 28.504n i i x x n == =∑ 该电阻的标准差计算如下: ?0.033σ == (2)用拉依达准则有,测量值28.40属于粗大误差,剔除,重新计算有以下结果: 28.511?0.018x σ '='= 用格罗布斯准则,置信概率取0.99时有,n=15,a=0.01,查表得 0(,) 2.70g n a = 所以, 0?(,) 2.700.0330.09g n a σ =?= 可以看出测量值28.40为粗大误差,剔除,重新计算值如上所示。 (3) 剔除粗大误差后,生于测量值中不再含粗大误差,被测平均值的标准差为: ?0.0048σσ ''== (4) 当置信概率为0.99时,K=2.58,则 ()0.012m K V σ'?=±=± 由于测量有效位数影响,测量结果表示为 28.510.01x x m U U V =±?=± 4. 解: (1) (2) 最大绝对误差?Um=0.4,则最大相对误差=0.4%<0.5% 被校表的准确度等级为0.5 (3) Ux=75.4,测量值的绝对误差:?Ux=0.5%× 100=0.5mV

测控电路课后答案(张国雄 第四版)

第一章绪论 1-1为什么说在现代生产中提高产品质量与生产效率都离不开测量与控制技术? 为了获得高质量的产品,必须要求机器按照给定的规程运行。例如,为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。为了做到这些,必须对机器的运行状态进行精确检测,当发现它偏离规定要求,或有偏离规定要求的倾向时,控制它,使它按规定的要求运行。 为了保证产品质量,除了对生产过程的检测与控制外,还必须对产品进行检测。这一方面是为了把好产品质量关,另一方面也是为了检测机器与生产过程的模型是否准确,是否在按正确的模型对机器与生产过程进行控制,进一步完善对生产过程的控制。 生产效率一方面与机器的运行速度有关,另一方面取决于机器或生产系统的自动化程度。为了使机器能在高速下可靠运行,必须要求机器本身的质量高,其控制系统性能优异。要做到这两点,还是离不开测量与控制。 产品的质量离不开测量与控制,生产自动化同样一点也离不开测量与控制。特别是当今时代的自动化已不是本世纪初主要靠凸轮、机械机构实现的刚性自动化,而是以电子、计算机技术为核心的柔性自动化、自适应控制与智能化。越是柔性的系统就越需要检测。没有检测,机器和生产系统就不可能按正确的规程自动运行。自适应控制就是要使机器和系统能自动地去适应变化了的内外部环境与条件,按最佳的方案运行,这里首先需要的是对外部环境条件的检测,检测是控制的基础。智能化是能在复杂的、变化的环境条件下自行决策的自动化,决策的基础是对内部因素和外部环境条件的掌握,它同样离不开检测。 1-2试从你熟悉的几个例子说明测量与控制技术在生产、生活与各种工作中的广泛应用。 为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。为了做到这些,必须对机器的运行状态进行精确检测,当发现它偏离规定要求,或有偏离规定要求的倾向时,控制它,使它按规定的要求运行。 计算机的发展首先取决于大规模集成电路制作的进步。在一块芯片上能集成多少个元件取决于光刻工艺能制作出多精细的图案,而这依赖于光刻的精确重复定位,依赖于定位系统的精密测量与控制。航天发射与飞行,都需要靠精密测量与控制保证它们轨道的准确性。 一部现代的汽车往往装有几十个不同传感器,对点火时间、燃油喷射、空

测控电路课后习题汇总

习题参考答案 (时间仓促,难免有误,请指正,谢谢!) 1-3试从你熟悉的几个例子说明测量与控制技术在生产、生活与各种工作中的广泛应用。 为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。为了做到这些,必须对机器的运行状态进行精确检测,当发现它偏离规定要求,或有偏离规定要求的倾向时,控制它,使它按规定的要求运行。 计算机的发展首先取决于大规模集成电路制作的进步。在一块芯片上能集成多少个元件取决于光刻工艺能制作出多精细的图案,而这依赖于光刻的精确重复定位,依赖于定位系统的精密测量与控制。航天发射与飞行,都需要靠精密测量与控制保证它们轨道的准确性。 一部现代的汽车往往装有几十个不同传感器,对点火时间、燃油喷射、空气燃料比、防滑、防碰撞等进行控制。微波炉、照相机、复印机等中也都装有不同数量的传感器,通过测量与控制使其能圆满地完成规定的功能。 1-4测控电路在整个测控系统中起着什么样的作用? 传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。 1-5影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意? 影响测控电路精度的主要因素有: (1)噪声与干扰; (2)失调与漂移,主要是温漂; (3)线性度与保真度; (4)输入与输出阻抗的影响。 其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。 1-7为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面? 为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。它包括: (1)模数转换与数模转换; (2)直流与交流、电压与电流信号之间的转换。幅值、相位、频率与脉宽信号等之间的转换; (3)量程的变换; (4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等; (5)对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、

测试技术部分课后习题参考答案

第1章 测试技术基础知识 1.4 常用的测量结果的表达方式有哪3种?对某量进行了8次测量,测得值分别为:8 2.40、 82.43、82.50、82.48、82.45、82.38、82.42、82.46。试用3种表达方式表示其测量结果。 解:常用的测量结果的表达方式有基于极限误差的表达方式、基于t 分布的表达方式和基于 不确定度的表达方式等3种 1)基于极限误差的表达方式可以表示为 0max x x δ=± 均值为 8 1 18i x x ==∑82.44 因为最大测量值为82.50,最小测量值为82.38,所以本次测量的最大误差为0.06。极限误差 max δ取为最大误差的两倍,所以 082.4420.0682.440.12x =±?=± 2)基于t 分布的表达方式可以表示为 x t x x ∧ ±=σβ0 标准偏差为 s = =0.04 样本平均值x 的标准偏差的无偏估计值为

?x σ ==0.014 自由度817ν=-=,置信概率0.95β=,查表得t 分布值 2.365t β=,所以 082.44 2.3650.01482.440.033x =±?=± 3)基于不确定度的表达方式可以表示为 0x x x x σ∧ =±=± 所以 082.440.014x =± 解题思路:1)给出公式;2)分别计算公式里面的各分项的值;3)将值代入公式,算出结果。 第2章 信号的描述与分析 2.2 一个周期信号的傅立叶级数展开为 12ππ120ππ ()4( cos sin )104304 n n n n n y t t t ∞ ==++∑(t 的单位是秒) 求:1)基频0ω;2)信号的周期;3)信号的均值;4)将傅立叶级数表示成只含有正弦项的形式。 解:基波分量为 12ππ120ππ ()|cos sin 104304 n y t t t == + 所以:1)基频0π (/)4 rad s ω= 2)信号的周期0 2π 8()T s ω= =

测控电路李醒飞习题答案

第三章 信号调制解调电路 3-1 什么是信号调制?在测控系统中为什么要采用信号调制?什么是解调?在测控系统中常用的调制方法有哪几种? 在精密测量中,进入测量电路的除了传感器输出的测量信号外,还往往有各种噪声。而传感器的输出信号一般又很微弱,将测量信号从含有噪声的信号中分离出来是测量电路的一项重要任务。为了便于区别信号与噪声,往往给测量信号赋以一定特征,这就是调制的主要功用。调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。 在信号调制中常以一个高频正弦信号作为载波信号。一个正弦信号有幅值、频率、相位三个参数,可以对这三个参数进行调制,分别称为调幅、调频和调相。也可以用脉冲信号作载波信号。可以对脉冲信号的不同特征参数作调制,最常用的是对脉冲的宽度进行调制,称为脉冲调宽。 3-2 什么是调制信号?什么是载波信号?什么是已调信号? 调制是给测量信号赋以一定特征,这个特征由作为载体的信号提供。常以一个高频正弦信号或脉冲信号作为载体,这个载体称为载波信号。用需要传输的信号去改变载波信号的某一参数,如幅值、频率、相位。这个用来改变载波信号的某一参数的信号称调制信号。在测控系统中需传输的是测量信号,通常就用测量信号作调制信号。经过调制的载波信号叫已调信号。 3-3 什么是调幅?请写出调幅信号的数学表达式,并画出它的波形。 调幅就是用调制信号x 去控制高频载波信号的幅值。常用的是线性调幅,即让调幅信号的幅值按调制信号x 线性函数变化。调幅信号s u 的一般表达式可写为: t mx U u c m s cos )(ω+= 式中 c ω──载波信号的角频率; m U ──调幅信号中载波信号的幅度; m ──调制度。 图X3-1绘出了这种调幅信号的波形。

单片机课后习题答案

第一章单片机的概述 1、除了单片机这一名称外,单片机还可称为(微控制器)和(嵌入式控制器)。 2、单片机与普通微型计算机的不同之处在于其将(CPU)、(存储器)和(I/O口)三部分,通过内部(总线)连接在一起,集成于一块芯片上。 3、在家用电器中使用单片机应属于微型计算机的(B)。 A、辅助设计应用 B、测量、控制应用 C、数值计算应用 D、数据处理应用 4、微处理器、微计算机、微处理机、CPU、单片机、嵌入式处理器它们之间有何区别? 答:微处理器、微处理机和CPU它们都是中央处理器的不同称谓,微处理器芯片本身不是计算机。而微计算机、单片机它们都是一个完整的计算机系统,单片机是集成在一个芯片上的用于测控目的的单片微计算机。嵌入式处理器一般意义上讲,是指嵌入系统的单片机、DSP、嵌入式微处理器。目前多把嵌入式处理器多指嵌入式微处理器,例如ARM7、ARM9等。嵌入式微处理器相当于通用计算机中的CPU。与单片机相比,单片机本身(或稍加扩展)就是一个小的计算机系统,可独立运行,具有完整的功能。而嵌入式微处理器仅仅相当于单片机中的中央处理器。为了满足嵌入式应用的特殊要求,嵌入式微处理器虽然在功能上和标准微处理器基本是一样的,但在工作温度、抗电磁干扰、可靠性等方面一般都做了各种增强。 5、MCS-51系列单片机的基本型芯片分别为哪几种?它们的差别是什么? 答:MCS-51系列单片机的基本型芯片分别为:8031、8051和8751。它们的差别是在片内程序存储器上。8031无片内程序存储器、8051片内有4K字节的程序存储器ROM,而8751片内有集成有4K字节的程序存储器EPROM。 6、为什么不应当把8051单片机称为MCS-51系列单片机? 答:因为MCS-51系列单片机中的“MCS”是Intel公司生产的单片机的系列符号,而51系列单片机是指世界各个厂家生产的所有与8051的内核结构、指令系统兼容的单片机。 7、AT89S51单片机相当于MCS-51系列单片机中哪一种型号的产品?“s”的含义是什么? 答:相当于MCS-51系列中的87C51,只不过是AT89S51芯片内的4K字节Flash 存储器取代了87C51片内的4K字节的EPROM。“s”表示含有串行下载的Flash 存储器。 8、什么是嵌入式系统? 答:广义上讲,凡是系统中嵌入了“嵌入式处理器”,如单片机、DSP、嵌入式微处理器,都称其为“嵌入式系统”。但多数人把“嵌入”嵌入式微处理器的系统,称为“嵌入式系统”。目前“嵌入式系统”还没有一个严格和权威的定义。目前人们所说的“嵌入式系统”,多指后者。 9、嵌入式处理器家族中的单片机、DSP、嵌入式微处理器各有何特点?它们的应用领域有何不同? 答:单片机体积小、价格低且易于掌握和普及,很容易嵌入到各种通用目的的系统中,实现各种方式的检测和控制。单片机在嵌入式处理器市场占有率最高,最大特点是价格低,体积小。DSP是一种非常擅长于高速实现各种数字信号处

检测技术课后答案

习题答案 第二章 2-1 二阶系统的频率特性受阻尼比ξ的影响较大。分析表明,ξ越小,系统对输入扰动容易发生超调和振荡,对使用不利。在ξ=0.6-0.7时,系统在宽广的频率范围内由于幅频特性和相频特性而引起的失真小,系统可以获得较为合适的综合特性。比如二阶系统在单位阶跃激励下时,如果阻尼比ξ选择在0.6-0.7范围内,则最大超调量不超过10%,且当误差允许在(5-2)%时趋于“稳态”的调整时间也最短。 2-2 频率特性是指测试系统反映出来的输出与输入幅值之比和两者之相位差是输入频率的函数的这样一个特性。当测试系统的输入为正弦信号时,将该信号的输出与输入之比定义为频响函数。工作频带是指测试装置的适用频率范围,在该频率范围内,仪器装置的测试结果均能保证达到其它相关的性能指针。 2-3 不失真测试要求测试系统的输出波形和输入波形精确相一致,只是幅值相对增大和时间相对延迟。而实际的测试系统很难做到无限频带上完全符合不失真测试的条件,即使测取一个理想的三角波,在某一频段范围内,也难以完全理想地实现不失真测试。三角波呈周期性变化,其测试装置的非线性度必然引起波形的畸变,导致输出失真。由此只能努力使波形失真限制在一个允许的误差范围内,即做到工程意义上的不失真测量。 2-4 系统的总灵敏度为:90×0.005×20=9mm/Mpa 偏移量为:9×3.5=31.5mm 2-5 由,得 用该装置测量频率为50Hz的正弦信号时, ,即幅值误差为1.3% 相角差为: 2-6 由,得:

2-7 由 输入信号的频率范围是: 2-8 环节一的灵敏度为: 1.5/5=0.3 环节二的灵敏度为:41 故串联后的灵敏度为:0.3×41=12.3 2-9 由 测量频率为400Hz变化的力参量时: 若装置的阻尼比为0.7,则: 2-10 由,得: 又:由,得: 频率响应函数为:

传感器与智能检测技术课后习题答案.doc

西安理工研究生考试 传 感 器 与 智 能 检 测 技 术 课 后 习 题

1、对于实际的测量数据,应该如何选取判别准则去除粗大误差? 答:首先,粗大误差是指明显超出规定条件下的预期值的误差。去除粗大误差的准则主要有拉依达准则、格拉布准则、t检验准则三种方法。准则选取的判别主要看测量数据的多少。 对于拉依达准则,测量次数n尽可能多时,常选用此准则。当n过小时,会把正常值当成异常值,这是此准则的缺陷。 格拉布准则,观测次数在30—50时常选取此准则。 t检验准则,适用于观察次数较少的情况下。 2、系统误差有哪些类型?如何判别和修正? 答:系统误差是在相同的条件下,对同一物理量进行多次测量,如果误差按照一定规律出现的误革。 系统误差可分为:定值系统误差和变值系统误差。 变值系统误差乂可以分为:线性系统误差、周期性系统误差、复杂规律变化的系统误差。判定与修正: 对于系统误差的判定方法主要有: 1、对于定值系统误差一?般用实验对比检验法。改变产生系统误差的条件,在不同条件下进行测量,对结果进行比较找出恒定系统误差。 2、对于变值系统误差:a、观察法:通过观察测量数据的各个残差大小和符号的变化规律来判断有无变值系统误差。这些判断准则实质上是检验误差的分布是否偏离正态分布。 b、残差统计法:常用的有马利科夫准则(和检验),阿贝-赫梅特准则(序差检验法)等。 c、组间数据检验正态检验法 修正方法: 1.消除系统误差产生的根源 2.引入更正值法 3.采用特殊测量方法消除系统误差。主要的测量方法有:1)标准量替代法2)交换法3)对称测量法4)半周期偶数测量法 4.实时反馈修正 5.在测量结果中进行修正 3、从理论上讲随机误差是永远存在的,当测量次数越多时,测量值的算术平均值越接近真值。因此,我们在设计自动检测系统时,计算机可以尽可能大量采集数据,例如每次采样数万个数据计算其平均值,这样做的结果合理否? 答:这种做法不合理。随机误差的数字特征符合正态分布。当次数n增大时,测量精度相应提高。但测量次数达到一定数Id后,算术平均值的标准差下降很慢。对于提高精度基本可忽略影响了。因此要提高测量结果的精度,不能单靠无限的增加测量次数,而需要采用适当的测量方法、选择仪器的精度及确定适当的次数等几方面共同考虑来使测量结果尽可能的接近真值。 4、以热电阻温度传感器为例,分析传感器时间常数对动态误差的影响。并说明热电阻传感器的哪些参数对有影响? 答:1、对于热电阻温度传感器来说,传感器常数对于温度动态影响如式子t2=t x-T (dtJdt)所示,7■决定了动态误差的波动幅度。了的大小决定了随着时间变化

测试技术课后题部分答案

1.1简述测量仪器的组成与各组成部分的作用 答:感受件、中间件和效用件。感受件直接与被测对象发生联系,感知被测参数的变化,同时对外界发出相应的信号;中间件将传感器的输出信号经处理后传给效用件,放大、变换、运算;效用件的功能是将被测信号显示出来。 1.2测量仪器的主要性能指标及各项指标的含义是什么 答:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。精确度表示测量结果与真值一致的程度;恒定度为仪器多次重复测量时,指示值的稳定程度;灵敏度以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例表示;灵敏度阻滞又称感量,是足以引起仪器指针从静止到做微小移动的被测量的变化值;指示滞后时间为从被测参数发生改变到仪器指示出该变化值所需时间,或称时滞。 2.3试述常用的一、二阶测量仪器的传递函数及它的实例 答:一阶测量仪器如热电偶;二阶测量仪器如测振仪。 2.4试述测量系统的动态响应的含义、研究方法及评价指标。 答:测量系统的动态响应是用来评价系统正确传递和显示输入信号的指标。研究方法是对系统输入简单的瞬变信号研究动态特性或输入不同频率的正弦信号研究频率响应。评价指标为时间常数τ(一阶)、稳定时间t s和最大过冲量A d(二阶)等。 2.6试说明二阶测量系统通常取阻尼比ξ=0.6~0.8范围的原因 答:二阶测量系统在ξ=0.6~0.8时可使系统具有较好的稳定性,而且此时提高系统的固有频率ωn会使响应速率变得更快。 3.1测量误差有哪几类?各类误差的主要特点是什么? 答:系统误差、随机误差和过失误差。系统误差是规律性的,影响程度由确定的因素引起的,在测量结果中可以被修正;随机误差是由许多未知的或微小因素综合影响的结果,出现与否和影响程度难以确定,无法在测量中加以控制和排除,但随着测量次数的增加,其算术平均值逐渐接近零;过失误差是一种显然与事实不符的误差。 3.2试述系统误差产生的原因及消除方法 答:仪器误差,安装误差,环境误差,方法误差,操作误差(人为误差),动态误差。消除方法:交换抵消法,替代消除法,预检法等。 3.3随机误差正态分布曲线有何特点? 答:单峰性、对称性、有限性、抵偿性。 4.1什么是电阻式传感器?它主要分成哪几种? 答:电阻式传感器将物理量的变化转换为敏感元件电阻值的变化,再经相应电路处理之后转换为电信号输出。分为金属应变式、半导体压阻式、电位计式、气敏式、湿敏式。 4.2用应变片进行测量时为什么要进行温度补偿?常用的温度补偿方法有哪几种? 答:在实际使用中,除了应变会导致应变片电阻变化之外,温度变化也会使应变片电阻发生误差,故需要采取温度补偿措施消除由于温度变化引起的误差。常用的温度补偿方法有桥路补偿和应变片自补偿两种。 4.4什么是电感式传感器?简述电感式传感器的工作原理 答:电感式传感器建立在电磁感应的基础上,是利用线圈自感或互感的变化,把被测物理量转换为线圈电感量变化的传感器。 4.5什么是电容式传感器?它的变换原理如何 答:电容式传感器是把物理量转换为电容量变化的传感器,对于电容器,改变ε ,d和A都会 r 影响到电容量C,电容式传感器根据这一定律变换信号。 4.8说明磁电传感器的基本工作原理,它有哪几种结构形式?在使用中各用于测量什么物理量?

相关主题
文本预览
相关文档 最新文档