当前位置:文档之家› 人教中考数学与旋转有关的压轴题附答案

人教中考数学与旋转有关的压轴题附答案

人教中考数学与旋转有关的压轴题附答案
人教中考数学与旋转有关的压轴题附答案

一、旋转 真题与模拟题分类汇编(难题易错题)

1.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)

(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;

(2)试判断:旋转过程中

BD

AE

的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;

(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.

【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】

试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CE

CB CA

=即可解决问题.②求出BD 、AE 即可解决问题.

(2)只要证明△ACE ∽△BCD 即可.

(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.

(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =1

2

n .故答案为90°,

1

2

n . ②如图2中,当α=180°时,BD =BC +CD =

32n ,AE =AC +CE =32m ,∴BD AE =n m

.故答案为n

m

. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵

CD BC n

CE AC m

==,

∴△ACE ∽△BCD ,∴

BD BC n

AE AC m

==.

(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,

∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴

BD BC

AE AC

=,∴

35=810,∴BD =125.故答案为125

. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°

时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()

=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于

M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =

22AM ME +=57,由(2)可知

DB AE =223

,∴BD =2114

3. 故答案为210或

2114

3

点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.

2.(探索发现)

如图,ABC ?是等边三角形,点D 为BC 边上一个动点,将ACD ?绕点A 逆时针旋转

60?得到AEF ?,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.

小明是这样想的:

(1)请参考小明的思路写出证明过程;

(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用)

如图,在ABC ?中,AD BC ⊥于点D .将ABD ?绕点A 逆时针旋转90?得到AEF ?,延长FE 与BC ,交于点G .

(3)判断四边形ADGF 的形状,并说明理由; (拓展迁移)

(4)在(3)的前提下,如图,将AFE ?沿AE 折叠得到AME ?,连接MB ,若

6AD =,2BD =,求MB 的长.

【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)

13【解析】 【分析】

(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;

(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;

(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】

(1)证明:∵ABC ?是等边三角形,

∴AB BC AC ==.

∵ACD ?绕点A 逆时针旋转60?得到AEF ?, ∴60CAE =?,AC AE =. ∴ACE ?是等边三角形. ∴AC AE CE ==. ∴AB BC CE AE ===. ∴四边形ABCE 是菱形.

(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ?绕点A 逆时针旋转90?得到AEF ?, ∴AF AD =,90DAF ∠=?. ∵AD BC ⊥,

∴90ADC DAF F ∠=∠=∠=?. ∴四边形ADGF 是矩形. ∵AF AD =,

∴四边形ADGF 是正方形. (4)如图,连接DE .

∵四边形ADGF 是正方形, ∴6DG FG AD AF ====.

∵ABD ?绕点A 逆时针旋转90?得到AEF ?,

∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ?沿AE 折叠得到AME ?, ∴MAE FAE ∠=∠,AF AM =. ∴BAD EAM ∠=∠.

∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =, ∴AM AD =.

在BAM ?和EAD ?中,AM AD BAM DAE AB AE =??

∠=∠??=?

∴()BAM EAD SAS ???.

∴2222

46213

BM DE EG DG

==+=+=.

【点睛】

本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.

3.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;

(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;

(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.

【答案】(1)BD,CE的关系是相等;(2

5

34

17

20

34

17

3)1,7

【解析】

分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;

(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到

PD AE =

CD

CE

,进而得到

5

34

17

;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得

△BAD∽△BPE,即可得到PB BE

AB BD

=,进而得出

6

34

34

20

34

17

(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.

详解:(1)BD,CE的关系是相等.

理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,

∴BA=CA,∠BAD=∠CAE,DA=EA,

∴△ABD≌△ACE,

∴BD=CE;

故答案为相等.

(2)作出旋转后的图形,若点C在AD上,如图2所示:

∵∠EAC=90°, ∴CE=

2234AC AE +=,

∵∠PDA=∠AEC ,∠PCD=∠ACE , ∴△PCD ∽△ACE , ∴

PD CD

AE CE =, ∴PD=

5

3417

; 若点B 在AE 上,如图2所示:

∵∠BAD=90°, ∴Rt △ABD 中,2234AD AB +=,BE=AE ﹣AB=2,

∵∠ABD=∠PBE ,∠BAD=∠BPE=90°,

∴△BAD ∽△BPE , ∴

PB BE

AB BD

=,即334PB =, 解得6

3434

, ∴346343420

3417

, 53417203417

(3)如图3所示,以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大. 如图3所示,分两种情况讨论:

在Rt△PED中,PD=DE?sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.

①当小三角形旋转到图中△ACB的位置时,

在Rt△ACE中,CE=22

53

-=4,

在Rt△DAE中,DE=22

+=,

5552

∵四边形ACPB是正方形,

∴PC=AB=3,

∴PE=3+4=7,

在Rt△PDE中,PD=2250491

-=-=,

DE PE

即旋转过程中线段PD的最小值为1;

②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,

此时,DP'=4+3=7,

即旋转过程中线段PD的最大值为7.

故答案为1,7.

点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.

4.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.

(1)求证:△ABD≌△ACE;

(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;

(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出

△PMN周长的最小值与最大值.

【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长

的最小值为3,最大值为15.

【解析】

分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得

PM=1

2

CE,PM∥CE,PN=

1

2

BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所

以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以

∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得

∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,

PM=PN=1

2

BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM

最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.

详解:

(1)因为∠BAC=∠DAE=120°,

所以∠BAD=∠CAE,又AB=AC,AD=AE,

所以△ABD≌△ADE;

(2)△PMN是等边三角形.

理由:∵点P,M分别是CD,DE的中点,

∴PM=1

2

CE,PM∥CE,

∵点N,M分别是BC,DE的中点,

∴PN=1

2

BD,PN∥BD,

同(1)的方法可得BD=CE,

∴PM=PN,

∴△PMN是等腰三角形,

∵PM∥CE,∴∠DPM=∠DCE,

∵PN∥BD,∴∠PNC=∠DBC,

∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,

∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC

=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,

∵∠BAC=120°,∴∠ACB+∠ABC=60°,

∴∠MPN=60°,

∴△PMN是等边三角形.

(3)由(2)知,△PMN是等边三角形,PM=PN=1

2 BD,

∴PM最大时,△PMN周长最大,

∴点D在AB上时,BD最小,PM最小,

∴BD=AB-AD=2,△PMN周长的最小值为3;

点D在BA延长线上时,BD最大,PM最大,

∴BD=AB+AD=10,△PMN周长的最大值为15.

故答案为△PMN周长的最小值为3,最大值为15

点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.

5.已知:如图1,将两块全等的含30o角的直角三角板按图所示的方式放置,

∠BAC=∠B1A1C=30°,点B,C,B1在同一条直线上.

(1)求证:AB=2BC

(2)如图2,将△ABC绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB与

A1C、A1B1分别交于点D、E,AC与A1B1交于点F.当α等于多少度时,AB与A1B1垂直?请说明理由.

(3)如图3,当△ABC绕点C顺时针方向旋转至如图所示的位置,使AB∥CB1,AB与A1C 交于点D,试说明A1D=CD.

【答案】(1)证明见解析

(2)当旋转角等于30°时,AB与A1B1垂直.

(3)理由见解析

【解析】

试题分析:(1)由等边三角形的性质得AB=BB1,又因为BB1=2BC,得出AB=2BC;

(2) 利用AB与A1B1垂直得∠A1ED=90°,则∠A1DE=90°-∠A1=60°,根据对顶角相等得

∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A1CB=180°-∠BDC-∠B=60°,所以∠ACA1=90°-∠A1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB与A1B1垂直;

(3)由于AB∥CB1,∠ACB1=90°,根据平行线的性质得∠ADC=90°,在Rt△ADC中,根据含

30度的直角三角形三边的关系得到CD=1

2

AC,再根据旋转的性质得AC=A1C,所以

CD=1

2

A1C,则A1D=CD.

试题解析:

(1)∵△ABB 1是等边三角形; ∴ AB =BB 1 ∵ BB 1=2BC ∴AB =2BC

(2)解:当AB 与A 1B 1垂直时,∠A 1ED=90°, ∴∠A 1DE=90°-∠A 1=90°-30°=60°, ∵∠B=60°,∴∠BCD=60°, ∴∠ACA 1=90°-60°=30°,

即当旋转角等于30°时,AB 与A 1B 1垂直. (3)∵AB ∥CB 1,∠ACB 1=90°, ∴∠CDB=90°,即CD 是△ABC 的高,

设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b , ∵11

22

ABC S BC AC AB CD ?=?=?, 即

11

222

ab a CD =?? ∴12CD b =

,即CD=1

2

A 1C , ∴A 1D=CD.

【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.

6.已知:一次函数

的图象与x 轴、y 轴的交点分别为A 、B ,以B 为旋转中

心,将△BOA 逆时针旋转,得△BCD (其中O 与C 、A 与D 是对应的顶点).

(1)求AB 的长;

(2)当∠BAD=45°时,求D 点的坐标;

(3)当点C 在线段AB 上时,求直线BD 的关系式. 【答案】(1)5;(2)D (4,7)或(-4,1);(3)

【解析】

试题分析:(1)先分别求得一次函数的图象与x 轴、y 轴的交点坐标,再根

据勾股定理求解即可;

(2)根据旋转的性质结合△BOA 的特征求解即可;

(3)先根据点C 在线段AB 上判断出点D 的坐标,再根据待定系数法列方程组求解即可. (1)在时,当

时,

,当

时,

(2)由题意得D (4,7)或(-4,1); (2)由题意得D 点坐标为(4,)

设直线BD 的关系式为

∵图象过点B (0,4),D (4,

∴,解得

∴直线BD 的关系式为.

考点:动点的综合题

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。 (1)概念理解:

如图1,在ABC ?中,6AC = ,3BC =.30ACB ∠=?,试判断ABC ?是否是“等高底”三角形,请说明理由. (2)问题探究:

如图2, ABC ?是“等高底”三角形,BC 是“等底”,作ABC ?关于BC 所在直线的对称图形得到A BC '?,连结AA '交直线BC 于点D .若点B 是123,12z ai z i =-=+的重心,求AC

BC

的值. (3)应用拓展:

如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ?的“等底” BC 在直线1l 上,点A 在直线2l 上,有一边的长是BC 2倍.将ABC ?绕点C 按顺时针方向旋转45?得到

A B C ?'',A C '所在直线交2l 于点D .求CD 的值.

【答案】(1)证明见解析;(2)13

2

AC BC =

(3)CD 的值为2103,22,2 【解析】

分析:(1)过点A 作AD ⊥直线CB 于点D ,可以得到AD =BC =3,即可得到结论; (2)根据 ΔABC 是“等高底”三角形,BC 是“等底”,得到AD =BC , 再由 ΔA ′BC 与ΔABC 关于直线BC 对称, 得到 ∠ADC =90°,由重心的性质,得到BC =2BD .设BD =x ,则AD =BC =2x , CD =3x ,由勾股定理得AC =13x ,即可得到结论;

(3)分两种情况讨论即可:①当AB =2BC 时,再分两种情况讨论; ②当AC =2BC 时,再分两种情况讨论即可. 详解:(1)是.理由如下:

如图1,过点A 作AD ⊥直线CB 于点D , ∴ΔADC 为直角三角形,∠ADC =90°. ∵ ∠ACB =30°,AC =6,∴ AD =1

2

AC =3, ∴ AD =BC =3,

即ΔABC 是“等高底”三角形.

(2)如图2, ∵ ΔABC 是“等高底”三角形,BC 是“等底”,∴AD =BC , ∵ ΔA ′BC 与ΔABC 关于直线BC 对称, ∴ ∠ADC =90°. ∵点B 是ΔAA ′C 的重心, ∴ BC =2BD . 设BD =x ,则AD =BC =2x ,∴CD =3x , ∴由勾股定理得AC =13x , ∴

1313

22

AC x BC x ==

(3)①当AB =2BC 时,

Ⅰ.如图3,作AE ⊥l 1于点E , DF ⊥AC 于点F . ∵“等高底” ΔABC 的“等底”为BC ,l 1//l 2, l 1与l 2之间的距离为2, AB =2BC , ∴BC =AE =2,AB =22, ∴BE =2,即EC =4,∴AC = 25.

∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ' B ' C ,∴∠CDF =45°. 设DF =CF =x .

∵l 1//l 2,∴∠ACE =∠DAF ,∴1

2

DF AE AF CE ==,即AF =2x . ∴AC =3x =25,可得x =

2

53,∴CD =2x =2103

Ⅱ.如图4,此时ΔABC 是等腰直角三角形, ∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ' B ' C , ∴ ΔACD 是等腰直角三角形, ∴ CD =2AC =22.

②当AC =2BC 时,

Ⅰ.如图5,此时△ABC 是等腰直角三角形. ∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ′ B ′C , ∴A ′C ⊥l 1,∴CD =AB =BC =2.

Ⅱ.如图6,作AE ⊥l 1于点E ,则AE =BC , ∴AC 2BC 2AE ,∴∠ACE =45°,

∴ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ′ B ′C 时, 点A ′在直线l 1上,

∴A ′C ∥l 2,即直线A ′ C 与l 2无交点.

综上所述:CD的值为2

10

3

,22,2.

点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.

8.如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).

(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;

(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.

【答案】(1)见解析;5π;(2)旋转中心P的坐标为(3,3)或(6,6).

【解析】

【分析】

(1)依据旋转的方向、旋转角和旋转中心即可得到点A运动的路径为弧线,再运用弧长计算公式即可解答;

(2)连接两对对应点,分别作出它们连线的垂直平分线,其交点即为所求.

【详解】

解:(1)点A运动的路径如图所示,出点A运动的路径长为

22

9024

180

π

??+

=5π;

(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).

【点睛】

本题主要考查了利用旋转变换及其作图,掌握旋转的性质、旋转角以及确定旋转中心的方法是解答本题的关键.

9.正方形ABCD和正方形AEFG的边长分别为2和22,点B在边AG上,点D在线段EA 的延长线上,连接BE.

(1)如图1,求证:DG⊥BE;

(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,当点B恰好落在线段DG上时,求线段BE的长.

【答案】(1)答案见解析;(2)26

【解析】

【分析】

(1)由题意可证△ADG≌△ABE,可得∠AGD=∠AEB,由∠ADG+∠AGD=90°,可得

∠ADG+∠AEB=90°,即DG⊥BE;

(2)过点A作AM⊥BD,垂足为M,根据勾股定理可求MG的长度,即可求DG的长度,由题意可证△DAG≌△BAE,可得BE=DG.

【详解】

(1)如图,延长EB交GD于H

∵四边形ABCD和四边形AEFG是正方形

∴AD=AB,AG=AE,∠DAG=∠BAE=90°

∴△ADG≌△ABE(SAS)

∴∠AGD=∠AEB

∵∠ADG+∠AGD=90°

∴∠ADG+∠AEB=90°

∴DG⊥BE

(2)如图,过点A作AM⊥BD,垂足为M

∵正方形ABCD和正方形AEFG的边长分别为2和22,

∴AM=DM=2,∠DAB=∠GAE=90°

∴MG=22

-=6,∠DAG=∠BAE

AG MA

∴DG=DM+MG=2+6,由旋转可得:AD=AB,AG=AE,且∠DAG=∠BAE

∴△DAG≌△BAE(SAS)

+

∴BE=DG=26

【点睛】

考查了旋转的性质,正方形的性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.

10.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.

(1)如图1,求证:△CDE是等边三角形.

(2)设OD=t,

①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.

②求t为何值时,△DEB是直角三角形(直接写出结果即可).

【答案】(1)见解析;(2) ①见解析; ②t=2或14.

【解析】

【分析】

(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;

(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到

C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;

②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.

【详解】

(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,

∴∠DCE=60°,DC=EC,

∴△CDE是等边三角形;

(2)①存在,当6<t<10时,

由旋转的性质得,BE=AD,

∴C△DBE=BE+DB+DE=AB+DE=4+DE,

由(1)知,△CDE是等边三角形,

∴DE=CD,

∴C△DBE=CD+4,

由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,

此时,CD=,

∴△BDE

的最小周长=CD+4=;

②存在,∵当点D与点B重合时,D,B,E不能构成三角形,

∴当点D与点B重合时,不符合题意;

当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,

∴∠BED=90°,

由(1)可知,△CDE是等边三角形,

∴∠DEB=60°,

∴∠CEB=30°,

∵∠CEB=∠CDA,

∴∠CDA=30°,

∵∠CAB=60°,

∴∠ACD=∠ADC=30°,

∴DA=CA=4,

∴OD=OA﹣DA=6﹣4=2,

∴t=2;

当6<t<10时,由∠DBE=120°>90°,

∴此时不存在;

当t>10时,由旋转的性质可知,∠DBE=60°,

又由(1)知∠CDE=60°,

∴∠BDE=∠CDE+∠BDC=60°+∠BDC,

而∠BDC>0°,

∴∠BDE>60°,

∴只能∠BDE=90°,

从而∠BCD=30°,

∴BD=BC=4,

∴OD=14,

∴t=14,

综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.

【点睛】

本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.

相关主题
文本预览
相关文档 最新文档