当前位置:文档之家› 球墨铸铁管的水力计算

球墨铸铁管的水力计算

球墨铸铁管的水力计算
球墨铸铁管的水力计算

球墨铸铁管的水力计算的探讨

圣戈班管道系统有限公司李华成

一、前言

在二十世纪九十年代以前,绝大多数供水管材都是灰口铸铁管,依据我国27个大中城市的给水管材的调查数据,灰口铸铁管所占的比例为84.72%。在长期的使用过程中,灰口铸铁管有着十分成熟的设计规范、设计标准图集和施工规范。这些都给管道生产商、设计单位、施工单位带来了很大的便利。

球墨铸铁管是在灰口铸铁管基础上的一次新的革命。它不但继承了灰口管抗腐蚀、耐磨等优点,而且其机械性能远大于灰口管,更接近于钢管。随着球墨铸铁管进入中国市场,越来越多的自来水公司和建设单位了解和掌握球墨铸铁管的性能,球墨铸铁管成为供水管材的主导产品,并逐步取代灰口铸铁管,这已成为不争的事实。

但是遗憾的是,我国许多关于球墨铸铁管的设计、施工、验收规范都没有及时地推出,给管线的建设带来了无法可依的局面。由于标准的缺乏,现行的做法是只能套用灰口铸铁管的规范。我们知道,球墨铸铁管与灰口铸铁管相比,无论是管材的本身、接口防腐层、管线设计、安装、验收都有很大的不同,直接套用所产生的误差也是相当大的,对管线的正常运行,经济效益都带来了重大影响。

主要的问题如下:

-管线的设计,由于球墨铸铁管内喷涂一层光滑的水泥内衬,粗糙度k约为0.03;而灰口铸铁管没有内衬保护,在管线运行一段时间后,会有一层腐蚀,粗糙度k约为0.2 ~ 0.3。

由此,两种管道的水力阻力系数会有很大的不同。由于这类的问题非常突出,本文就此进行了详细的阐述,并进行了技术、经济上的比较。

-管道的安装,球墨铸铁管一般采用T型滑入式柔性接口,灰口铸铁管接口比较多,如,青铅接口、膨胀水泥接口、石棉水泥接口等,这些均属于刚性接口。球墨铸铁管的安装相对简单得多,在生产厂家提供技术安装手册或技术人员亲临指导下,很容易掌握,所以安装问题并没有给建设单位造成多大的困难。但应当说明是,球墨铸铁管的安装标准,包括一些特殊接头的安装,在现行的大多数设计施工规范中都没有体现,这样的形势是无法另人满意的。

-水泥支墩,我国给排水标准图集S3中,有对水泥支墩的定义,它的设计依据是由1965年北京、上海、成都三个地区灰口铸铁管的试验做出的。由于管材、接口形式等不同,图集中的支墩尺寸并不适合于球墨铸铁管。如果能推出一系列球墨铸铁管水泥支墩的安装图集,将给管线的设计、施工带来很大的便利。

-工程的水压试验,现行的GB50268-97《给水排水管道工程施工及验收规范》的水压试验中一些方法及一些参数的取值均不合理,已经不适应于球墨铸铁管的验收要求。目前,郑州自来水公司在工程建设中积累了大量的试验数据,对水压试验的修订提供了许多宝贵的建议,这些都为球墨铸铁管在中国的发展有着积极地推动作用。

-产品标准的陈旧与错误,GB13295-91及GB13294-91历经了十几年没有更新,已不能跟上球墨铸铁管的发展。另外,GB13295-91还包含着一些错误,例如,DN700管道的重量(K9级,标准工作长度6m)为1126kg,如果按照承口部分的重量加上直管部分的重量计算,其结果是1123kg。两者的结果相差3kg,显然是不合理的。新的国家标准GB/T13295-200X已经出台了报批稿,那么新版本也将正式推出,这无疑是个值得庆贺的好消息。

总之,一方面,球墨铸铁管的使用得到了供水行业决大多数技术专家的认同;另一方面,

由于球墨铸铁管规范没有跟上,使得球墨铸铁管的建设出现了一种无所适从的窘况,阻碍了球墨铸铁管的发展。因此,及时更新我国的设计、施工、验收规范及产品标准的要求显得十分急迫,也势在必行。

二、供水管线的水力计算的原理

依据《给排水设计手册》,城市供水输配水管道的水流速度限定为:V = 0.6 ~ 2.5m/s 。 依据ISO2531,球墨铸铁管的管径范围为:DN40 ~ DN2600。 水温为10℃的运动粘滞系数为:1.301×10-6 m 2/s

经计算得出管线的雷诺数的范围为:Re = VD/μ= 1.84×104 ~ 5×106 根据尼古拉兹的试验成果,可以将供水管线的水流状态划归为光滑区转变为粗糙区的过渡区,亦称过渡粗糙区。在这个区域,阻力系数λ随着Re 和 k/D 而变化,即λ= ?(Re ,k/D )。这是因为随着雷诺数的增大,液体紊动加剧,粘滞底层逐渐减薄,以至不能覆盖壁面绝对粗糙度k ,因此壁面粗糙对λ发生影响。

过渡粗糙区的阻力系数计算公式为柯尔勃洛克 – 怀特(Colebrook - White )公式,圣戈班穆松桥的水力计算也正是采用了这一公式。

关于压力管线上的水头损失有如下三点说明:

在管线输水过程中必须增加能量来克服水头损失。它有三个因素: a – 水的内部摩擦(与粘性有关), b – 水沿着管壁的摩擦,

c – 地形改变水流(弯头、接头等)。

实际中,水头损失的大小主要是水的内部摩擦引起的(因素a )。水与管壁的摩擦是唯一的与管道类型有关的因素,它所占的比例非常小:涂有水泥内衬的球墨铸铁管道(k = 0.03),因素b 的比例最多只有7%;但灰口铸铁管的粗糙度相对要大得多(k = 0.2 ~ 0.3),因素b 的影响也就相对大得多。

地形改变水流(因素c )在与因素a 比较时也扮演一个很小的角色,但针对不同的管线(如,输水管线,配水管线)、不同的地形(转弯、分支),应适当考虑局部水头损失的取值。

三、中国与圣戈班穆松桥计算公式之间的比较

1. 中国的输送管线的计算方法:采用的是舍维列夫公式,参见《给排水设计手册》第1册——常用资料。

1)当流速≥1.2 m/s ,

2)当流速<1.2 m/s , 这里,

J :水力坡度(m/m ) V :流速 (m/s)

D :管道内径(m )

2. 圣戈班穆松桥的水力计算方法:采用达西公式和柯尔勃洛克 – 怀特公式,参见圣戈班穆松桥的技术手册《供水管线》。 (1 + )0.3

J =0.0009120.867V V 2D 1.3

J =0.00107V 2D 1.3

达西公式: 柯尔勃洛克公式:

这里,

J:水力坡度(每米长管道的水头损失,以m 计) λ:阻力系数 D :管道内径(m) V :流速 (m/s)

g :重力加速度 (m/s 2) Re= VD/μ(雷诺数)

μ:在一定温度下的液体的运动粘滞系数(m 2/s) k :管道粗糙度(m)

在水力计算时,其他的参数很容易就可以确定,管道粗糙度k 的取值尤为关键。

球墨铸铁管采用旋转喷涂的工艺,得到一个光滑的、均匀的水泥砂浆内衬。圣戈班穆松 桥进行了一系列的试验,已经得出了内衬的粗糙度k 值。其平均值为 0.03 mm ,当和绝对光滑的管道k = 0比较时(计算流速为1 m/s ),对应的额外水头损失为 5 ~ 7%。

不管怎样,管道的相关表面粗糙度不仅依赖于管道表面的均匀性,而且特别依赖于弯头、三通和其他连接形式的数量,如管线纵剖面的不规则性。经验显示k = 0.1对于配水管线来说是一个合理的数值。对于每公里只有几个管件的长距离的管线来说,k 的取值可以稍微地降低(= 0.6 ~ 0.8)。

当然,k 的取值还应当包括其它因素的影响,如,水质的不同。 下列表格为圣戈班穆松桥进行k 值试验时的部分管道数据:

管径 (DN )

安装年代

估算年龄 (年) k 值

(柯尔勃洛克 – 怀特公式)

150

1941

0.025 12 0.019 16 0.060 250

1925

16

0.148 32 0.135 39 0.098 300

1928

13

0.160 29 0.119 36 0.030 300

1928

13

0.054 29 0.075 36

0.075 700

1939

19 0.027 25

0.046

V 1

22g D J=λ

1= -2lg ( + )

√λ

k 3.71D 2.51

Re √λ

700 1944 13 0.027 20 0.046

四、两种水力计算方法结果的比较

假设条件:输送城镇自来水的球墨铸铁管,管线长度为10公里,管线使用时间为10年,水温为10℃,局部水头损失为沿程水头损失的10%。

设计水量Q l/s DN

mm

流速

m/s

国内方法

圣戈班穆松桥

的方法

Δh = h1 – h2

m

100 300 1.41

水力坡度J =

10.176m/km

水力坡度J =

5.802m/km

48.114 管线水头损失

h1 = 111.936m

管线水头损失

h2 = 63.822m

300 500 1.53

水力坡度J =

6.167m/km

水力坡度J =

3.622 m/km

27.995 管线水头损失

h1 = 67.837m

管线水头损失

h2 = 39.842m

700 800 1.39

水力坡度J =

2.763m/km

水力坡度J =

1.724 m/km

11.429 管线水头损失

h1 = 30.393m

管线水头损失

h2 = 18.964m

1200 1000 1.53

水力坡度J =

2.505m/km

水力坡度J =

1.578 m/km

10.197 管线水头损失

h1 = 27.555m

管线水头损失

h2 = 17.358m

从表中的数据可以看出,国内与圣戈班穆松桥的计算方法的结果差异很大。

两种水力计算方法的比较:

1)国内的方法适用于旧钢管和旧铸铁管,圣戈班穆松桥的方法主要针对的是供水用球墨铸铁管。

2)国内的方法并没有考虑水泥内衬,其考虑的是管壁腐蚀或沉垢之后的粗糙度,圣戈班穆松桥的方法考虑了水泥内衬,其中k值的选取就是水泥内衬粗糙度。

3)圣戈班穆松桥的方法中参数的取值是在大量试验和实际工程跟踪检测的基础上得出的。

所以,对于球墨铸铁管的计算,圣戈班穆松桥的方法更接近于实际值;而套用旧钢管和旧灰口管的方法来计算球墨铸铁管,其结果是不准确的,也是不可取的。

五、管线实际运行效益影响的估算

由于计算方法的选用不当,对水泵的选型及管线的实际运行都带来很大影响,这一点应当引起足够的重视。

1.水泵的选型

由于国内还缺乏球墨铸铁管的标准计算方法,设计部门往往采用舍维列夫公式,由此计算出的管线的水头损失要高出实际值很多,选用的水泵扬程也就偏高很多,所以,水泵的运行严重偏离最佳工况点,水泵的运行效率也不可能在最佳运行区间范围内,造成能源浪费。

2.动力差额的估算

假设条件:

-圣戈班穆松桥的方法接近于实际值,两种方法的差异假定为国内计算方法与实际值的差异。

-流量恒定,多余的扬程通过调节消耗在管线的损失上。

一年管线运行后,所产生的动力差额的计算公式:

M = 24 ×365×Q·Δh/(102η)

M:一年动力差额,kW·h

Q:管道流量,l/s

Δh:水头损失差,m,Δh = h1 – h2

η:水泵效率,这里取值为0.8

设计水量Q l/s DN

mm

流速

m/s

Δh = h1 – h2

m

动力差额M

kw·h

100 300 1.41 48.114 5.17×105

300 500 1.53 27.995 9.02×105

700 800 1.39 11.429 8.00×104

1200 1000 1.53 10.197 1.22×104

上表可知,由于计算公式的不正确,造成水泵的选型不当,导致多余的动力输出也是相当巨大的。

六、结论

通过本文分析可以得出,水力计算公式的选用不当,会给管径的选择、水泵的选型、管线的运行带来很大的不合理性,同时也造成能源的巨大浪费。这种状况不可以听之任之下去,及时的更正和解决才能促进球墨铸铁管更健康的发展。

圣戈班穆松桥的球墨铸铁管的计算方法可以做为一个很好的借鉴。圣戈班穆松桥生产球

墨铸铁管已经有五十多年的历史,也是世界上最早、最大的球墨铸铁管的生产厂家,为球墨铸铁管的发展作出了巨大的贡献。其水力计算方法在大量的试验和工程实践中得出的,结果也是十分真实可信的。

有关规范的制定部门应当十分正视球墨铸铁管的水力计算的问题。套用灰口铸铁管的做法,由于差距过大,已不适用。由此产生的实际后果也是相当严重的,这一问题的解决是颇为急切的。当然,水力计算的方法仍需要慎之又慎,大量的科学试验是成功的基础。

圣戈班穆松桥的方法有着十分有用的参考价值,其参数的取值应是科学的,可信的。在我国新的球墨铸铁管的水力计算公式出台之前,在圣戈班穆松桥的计算公式的基础上,设计施工单位进行适当的安全系数的调整,也许是一种最切实可行的做法。圣戈班穆松桥来到中国,不是来垄断中国的球墨铸铁管的市场,而是带来先进的生产工艺、先进工程技术、先进的管理经验,与国内生产厂家、供水企事业协心合作,共同促进球墨铸铁管在中国的繁荣与发展。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

建筑排水塑料管的简便水力计算

建筑排水塑料管的简便水力计算 近十几年来,在我国硬聚氯乙烯管材和管件的生产技术和施工技术以及配套的防火措施都有了很大发展。其用量日趋增加,特别是《建筑排水硬聚氯乙烯管道设计规程》(CJJ29-89)简称“规程”的实施,进一步促进了硬聚氯乙烯塑料管的应用。 由于“规程”的编写距今已有10年,其在实施过程中尚存在下列问题: (1)对塑料排水立管通水能力的确定值,近年来提出不同观点和结论,但仍然停留在理论分析上。只有今后在有条件的情况下,结合水工试验才能有完善的结论。本文亦不进行该方面的讨论。 (2)在塑料横管的水力计算方面,“规程”中提供的方法是无可非议的,但由于出版过程的疏忽,横管计算图附图2.3和2.4的适用管径颠倒。再加上4幅水力计算图制版印刷较粗糙,造成内插不便。 另外,有些设计人员忽视了硬聚氯乙烯管和排水铸铁管的水力计算的前提条件n值和约束条件i值的差异,直接使用排水铸铁管的水力计算图表,使其结果失真。 鉴于上述情况,本文就硬聚氯乙烯排水横管提出比较精确的计算方法。 1 理论根据 1.1 计算公式 v=1/nR2/3i1/2 (1) Q=vA (2) 式中 Q——流量,m3/s; v——流速,m/s; n——塑料管的粗糙系统,n=0.009; R——水力半径,m; i——水力坡度;

A——水流断面积,m2。 qn=0.12αNp1/2+qmɑx(3) 该式的各项的含义及其公式的适用范围详见“规程”。 1.2 计算公式的约束条件 “规程”中确认的管径、最小坡度和最大计算充满度见表1。 表1 “规程”中确定的管径、最小坡度、最大充满度 管道坡度的一般取值,“规程”推荐为0.026,在该推荐i值情况下,其对应流速见表2。 从表2可见,后两种管径的相应流速都高于有防噪要求的管道的规定范围。这两种较大口径的排水管多用于高层建筑中的管道转折层中或埋地,作为横管使用时存在天然的防噪音条件,又能兼顾到减小转折层的高度及埋深变化较小的客观要求,故一般情况下仍能使用 表2 推荐i值对应的流速 排水铸铁管和硬聚氯乙烯排水管都有最小坡度的限制(约束条件),最小坡度的确定都是根据式(1)计算的流速不得小于排水管的最小允许流速0.6m/s为前提。 由排水铸铁管的通用坡度,根据式(1)不难导出其不同管径、充满度时相应的流速,其值见表3。 表3 不同管径、充满度时铸铁管相应的流速

给水管道各种管材管径与计算内径一览表

表1 给水塑料管及钢塑复合管公称管径与计算内径一览表(一) 氯化聚氯乙烯 PVC-U 管 聚丙烯管 PP-R 聚丙烯 PP-RR 热水管0.00000047 S6.3 1.6MPa S5 2.0MPa 铝塑复合管 1.0MPa 1.6MPa 1.0MPa 1.25MPa 2.0MPa 2.5MPa 2.0MPa 2.5MPa 公称直径 计算内径d j 计算内径d j 计算内径 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j mm mm mm mm mm mm mm mm mm mm mm mm 15 12.2 20 16 16 15.7 16 15.4 14.4 13.2 14.4 13.2 25 21 20.4 19.8 21 20.4 18 16.6 18 16.6 32 27.2 26.2 25.3 27.2 27.2 26 23.2 21.2 23.2 21.2 40 34 32.6 31.2 36 34 34 32.6 29 26.6 29 26.6 50 42.6 40.8 40.1 45.2 42 42.6 40.8 36.2 33.2 36.2 33.2 65 53.6 51.4 50.0 57 53.6 53.6 51.4 45.6 42 45.6 42 75 63.8 61.4 58.7 67.8 64 63.6 61.2 49.9 50 49.9 50 90 76.6 73.6 81.4 76.6 76.6 73.6 76.6 60 76.6 60 110 93.8 90 100.4 95.6 93.8 90 93.8 73.5 93.8 73.5 125 106.6 102.2 114.2 110 140 119.4 114.6 127.8 123.4 160 136.4 130.8 146 140 180 164.4 158.6 200 182.6 176.2 225 205.4 198.2 250 228.2 220.4 280 255.6 246.8 315 287.6 277.6 355 325.4

PPR水力计算表

建筑给水聚丙烯管道(PP—R)应用技术规程 前言 建筑给水聚丙烯管道(PP—R)是国际上九十年代发展起来的化学建材,它与钢管、铜管相比,具有卫生、质轻、耐压、耐腐蚀、阻力小、隔热保温、连接方便可靠、使用寿命长、废料可回收利用等特点,可广泛用于冷、热水供应系统和纯净水系统,有良好的推广应用前景和显著的社会效益、经济效 益。 本规程是参照国外有关资料和上海市建筑产品推荐性应用标准《建筑给水聚丙烯管道(PP—R)工程技术规程》DBJ/CT501—99基础上编制的。由于经验有限,难免有不足之处,有待在实践中不断完 善。在使用中如有意见和建议,请寄至:广东省南海市松岗镇沙水工业区,南海市彩虹塑胶实业有限公司,邮政编码528234,以便修订时采用。 本规程编写单位及起草人名单如下: 主编单位:广州市建设委员会广东省土木建筑学会广东省给排水技术专业委员会 参编单位:南海市彩虹塑胶实业有限公司广西省土木建筑学会 主要起草人:曲申酉、李大鹏、何枫,郭秀英 参加起草人:劳锦华、陈永昌、杜吉军、张海忠、刘勇、余敏 第一章总则 1.0.1 为了使建筑给水系统中采用聚丙烯管道的工程,在设计、施工及验收中做到技术先进、安全卫生、经济合理、保证质量,特制订本规程。 1.0.2 本规程适用于各种民用建筑和工业建筑中生活给水、生活热水和饮用洁净水的管道系统的设计、施工及验收。本规程规定的系统工作压力不大于0.6MPa,水温不大于70℃。 1.0.3 聚丙烯管道不得用作消防管道。聚丙烯管道用于输送化工流体介质时,应探讨其化学稳定性,应参考有关资料或做试验确定。

1.0.4 本规程采用的聚丙烯管材、管件的规格、尺寸及性能,均应符合南海市彩虹塑胶实业有限公司产品企业标准Q/CHl.1— 1999、Q/CHl.2—1999的要求,该企业标准中管材等同采用德国工业标准 DIN8077—1996及DIN8078—1996中第三类型管的要求。管件等同采用德国工业标准DINl6962E中第5、6、7、8部分的规定。 1.0.5给水聚丙烯管道工程的设计、施工及验收,除执行本规程外,还应符合国家有关标准、规范的规定。 第二章术语 2.0.1 热熔连接由相同热塑性塑料制作的管材与管件互相连接时,采用专用热熔机具将连接部位表面加热,连接接触面处的本体材料互相熔合,冷却后连接成为一个整体。热熔连接有对接式热熔连接、承插式热熔连接和电熔连接。 2.0.2 公称压力管材在介质温度为20℃,使用期限为50年,以MPa为单位的允许压力称为公称压力。 2.0.3 允许压力在某一介质温度下,对应一定的使用年限,管道系统可以承受的最大压力,称为允许压力。 2.0.4 工作压力为确保管道系统在使用期限内安全运行,各公称压力等级的管道,将其允许压力乘以安全系数后确定的压力,称为工作压力。 2.0.5 自然补偿利用管道敷设中自然存在的曲折或加设的曲折,吸收管道因温差产生的变形,称为自然补偿。 2.0.6 自由臂自然补偿时,利用折角管段的悬臂位移,吸收管道自固定点起至转弯处的伸缩变形,该对应的转弯管段称为自由臂。 2.0.7 电熔连接由相同的热塑性塑料管道连接时,插入特制的电熔管件,由电熔连接机具对电熔管件通电,依靠电熔管件内部预先埋设的电阻丝产生所需要的热量进行熔接,冷却后管道与电熔管件连接成为一个整体。 2.0.8 法兰连接件由金属法兰盘及PP—R过渡接头组成,过渡接头与管材用热熔连接套入法兰盘形成法兰连接件。法兰连接件是PP—R管道法兰连接的专用型式,构造示意图如下:

雨水排水系统的水力计算

第6章建筑屋面雨水排水系统 6.3 雨水排水系统的水力计算

屋面雨水排水系统雨水量的大小是设计计算雨水排水系统的依据,其值与该地暴雨强度q、汇水面积F以及径流系数ψ有关,屋面径流系数一般取ψ=0.9。 1.设计暴雨强度q 设计暴雨强度公式中有设计重现期P和屋面集水时间t两个参数。设计重现期应根据建筑物的重要程度、气象特征确定,一般性建筑物取2~5年,重要公共建筑物不小于10年。由于屋面面积较小,屋面集水时间应较短,因为我国推导暴雨强度公式实测降雨资料的最小时段为5min,所以屋面集水时间按5min计算。

2.汇水面积 F 屋面雨水汇水面积较小,一般按m2计。对于有一定坡度的屋面,汇水面积不按实际面积而是按水平投影面积计算。 考虑到大风作用下雨水倾斜降落的影响,高出屋面的侧墙,应附加其最大受雨面正投影的一半作为有效汇水面积计算。窗井、贴近高层建筑外墙的地下汽车库出入口坡道应附加其高出部分侧墙面积的二分之一。 同一汇水区内高出的侧墙多于一面时,按有效受水侧墙面积的1/2折算汇水面积。

雨水量可按以下两个公式计算: 3. 雨水量计算公式 10000Fqs Q ψ=(6-1) 3600Fqs Q ψ=(6-2) 式中 ψ ——径流系数,屋面取0.9; Q ——屋面雨水设计流量,L/s ; F ——屋面设计汇水面积,m 2; q s ——当地降雨历时5min 时的暴雨强度, L/s ·104m 2; h s ——当地降雨历时5min 时的小时降雨深度, mm/h ;

gh Dh Q 2μπ= 雨水斗的泄流量与流动状态有关,重力流状态下,雨水斗的排水状况是自由堰流,通过雨水斗的泄流量与雨水斗进水口直径和斗前水深有关,可按环形溢流堰公式计算 1. 雨水斗泄流量 式中 Q ——通过雨水斗的泄流量, m 3 /s ; μ——雨水斗进水口的流量系数,取0.45; D ——雨水斗进水口直径, m ; h ——雨水斗进水口前水深, m 。 (6-3)

水力计算公式选用

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852 .1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数

其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

4. 公式的适用范围: 3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ)公式均是 针对工业管道条件计算λ值的着名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式 )Re 51 .27.3lg( 21 λ λ +?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

输水管道水力计算公式

输水管道水力计算公式 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,m λ----------沿程阻力系数 l -----------管段长度,m d-----------管道计算内径,m g-----------重力加速度,m/s 2 C-----------谢才系数 i------------水力坡降; R-----------水力半径,m Q-----------管道流量m/s 2 v------------流速 m/s C n -----------海澄―威廉系数 其中达西公式、谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐 采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广. 柯列勃洛可公式)Re 51.27.3lg(21 λ λ+?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

住宅套内给水排水管道水力计算知识交流

住宅套内给水排水管道水力计算 专业--给排水常识2010-05-26 18:06:18 阅读21 评论0 字号:大中小订阅 1 入户管管径计算 《住宅建筑规范》[1]第5.1.4条规定:“卫生间应设置便器、洗浴器、洗面器等设施或预留位置;……。”这是现阶段住宅内卫生器具配置的最低要求,从《建筑给水排水设计规范》[2]中可知普通住宅Ⅱ、Ⅲ类符 合此项要求。 以普通住宅Ⅱ类为计算算例,表1-1为普通住宅Ⅱ类最高日生活用水定额及小时变化系数,表1-2为住宅常见卫生器具的给水额定流量、当量和连接管公称管径。表1-3为生活给水管道的水流流速要求值。 普通住宅Ⅱ类常见户型配置情况:所有户型配置均配置一间厨房,一套洗衣设施,以卫生间间数不同,分为一卫户(一间卫生间的户型)、二卫户(二间卫生间的户型)和三卫户(三间卫生间的户型)。表1-4 为常见户型卫生器具不同组合的当量数。 以PP-R管道和PAP管道作为典型管材进行水力计算。三通分水连接方式常用的建筑给水用无规共聚聚丙烯(PP-R)管道,当冷水管工作压力≤0.6MPa时,常选用S5系列,S5系列计算内径较大;分水器分水连接方式常用的铝塑复合(PAP)管道,铝塑复合(PAP)管道采用对接焊型,计算内径较小。表1-5为住宅常见户型入户管水力计算表。由表1-5可知,普通住宅Ⅱ类常见户型入户管公称管径应为DN25~DN32;如入户管管径采用小一级的,首先流速不满足规范要求,其次同样长度的入户管水头损失比满足流 速要求管径的水头损失大3倍左右。 表1-1 最高日生活用水定额及小时变化系数[2]

注:(1)流出水头[7] 是指给水时,为克服配水件内摩阻、冲击及流速变化等阻力而能放出的额定流量的 水头所需的静水压。 (2)最低工作压力[2] 是指在此压力下卫生器具基本上可以满足使用要求,它与额定流量无对应关系。 住宅入户管上水表的水头损失取0.010[2]~0.015MPa[4]。笔者以水表本层出户集中布置方式(水表距楼面1.0m),常见户型厨房、卫生间和阳台用水点为算例,根据管件采用三通分水或分水器分水的连接情况,经过管道、配件沿程和局部水头损失计算后,加上卫生器具的最低工作压力和水表的水头损失不同组合,表前最低工作压力在0.10~0.15MPa。对分水器集中配水连接方式水头损失较小,对应的表前最低工 作压力可采用较小的数值。 现代住宅给水支管设计常常只到水表后(或在室内预留一处接口),表前最低压力值的大小关系到住户将来装修后的正常用水,对于这一点应加以重视。同时必须指出,目前大部分水箱供水方式,水箱设置高度难以满足顶上1~3层表前最低工作压力(卫生器具的最低工作压力)的要求,这一点在设计时应特别注意。 3 排水横支管管径计算 排水横支管设计排水流量(通水能力)是按照重力流(不满流)进行计算,同管径的排水横支管设计排水流量远小于排水立管的设计排水流量。表3-1 为住宅常见卫生器具排水的流量、当量和排水(连接)管的 管径。 以常用的建筑排水硬聚氯乙烯(UPVC)管道(公称外径50~110mm)作为计算算例。表3-2为水力 计算参数、计算过程和计算结果。 表3-1卫生器具排水的流量、当量和排水管的管径[2]

02-4给水管网的水力计算

第2章建筑内部给水系统 2.4给水管网的水力计算

在求得各管段的设计秒流量后,根据流量公式,即可求定管径: 给水管网水力计算的目的在于确定各管段管径、管网的水头损失和确定给水系统的所需压力。 υπ42d q g =πυg q d 4=式中 q g ——计算管段的设计秒流量,m 3/s ; d j ——计算管段的管内径,m ; υ——管道中的水流速,m/s 。 (2-12)

当计算管段的流量确定后,流速的大小将直接影响到管道系统技术、经济的合理性,流速过大易产生水锤,引起噪声,损坏管道或附件,并将增加管道的水头损失,使建筑内给水系统所需压力增大。而流速过小,又将造成管材的浪费。 考虑以上因素,建筑物内的给水管道流速一般可按表2-12选取。但最大不超过2m/s。

工程设计中也可采用下列数值: DN15~DN20,V =0.6~1.0m/s ;DN25~DN40,V =0.8~1.2m/s 。 生活给水管道的水流速度 表2-12

2.4.2 给水管网和水表水头损失的计算 2.4.2 给水管网和水表水头损失的计算 给水管网水头损失的计算包括沿程水头损失和局部水头损失两部分内容。 1. 给水管道的沿程水头损失 (2-13)——沿程水头损失,kPa; 式中 h y L——管道计算长度,m; i——管道单位长度水头损失,kPa/m,按下式计算:

2.4 给水管网的水力计算 2.4.2 给水管网和水表水头损失的计算 式中i——管道单位长度水头损失, kPa/m ; d j ——管道计算内径,m; q g——给水设计流量,m3/s; C h ——海澄-威廉系数: 塑料管、内衬(涂)塑管C h = 140; 铜管、不锈钢管C h = 130; 衬水泥、树脂的铸铁管C h = 130; 普通钢管、铸铁管C h = 100。 (2-14)

建筑给排水计算书

1.建筑给水系统设计 (1) 1.1给谁用水定额及时变化系数 (1) 1.2最高日用水量 (1) 1.3最大时用水量 (1) 1.4设计秒流量 (1) 1.5给水管网水力计算 (1) 1.6水表的选择及水头损失计算 (4) 1.6.1水表选择 (4) 1.6.2给水系统所需压力 (5) 2.建筑排水系统设计 (5) 2.1生活排水设计秒流量计算公式 (5) 2.2排水定额 (6) 2.3排水管网的水力计算 (6) 2.3.1横管的水力计算 (6) 2.3.2立管计算 (9) 3.建筑消防系统设计 (11) 3.1消防栓布置 (11) 3.2水枪喷嘴出所需的水压 (11) 3.3水枪喷嘴的出流量 (12) 3.4水带阻力 (12) 3.5消火栓口所需水压 (12) 3.6水力计算 (13) 3.7消防水箱 (14)

1.建筑给水系统设计 1.1给谁用水定额及时变化系数 已知,该办公楼预计工作人员250人,查手册可知办公楼的每人每班最高日用水量为30,小时变化系数Kh 为1.5,使用时数8h 。 1.2最高日用水量 d m d mq Q d d /10/L 10000402503==?==; 式中 d Q --最高日用水量,d m /3; m —用水人数; d q —最高日生活用水定额,L/(人.d ) 1.3最大时用水量 h Q =Q p ·K h=(Q d /T )·K h=1.875m 3/h 1.4设计秒流量 根据规范,办公楼的生活给水设计秒流量计算公式为: N q g g α 2.0=(L/s ) 其中,α取值1.5,则N q g g 3 .0=, N g 为计算管段卫生器具给水当量总数,0.2L/s 为一个当量。 1.5给水管网水力计算 1、计算步骤 1) 绘制轴测图,根据轴测图选择最不利配水点,确定计算管道; 2) 以计算管段流量变化处为节点,从最不利配水点开始进行节点编号,将计算 管段划分为计算管段,并标出两节点计算管段的长度; 3) 根据设计秒流量公式,计算各管段的设计秒流量值; 4) 进行给水管网的水力计算; 5) 确定非计算管路各管段的管径。 2、水力计算

水力计算表

液压计算图简单,清晰,易于查阅。有关水力计算是根据新标准编制的。适用于给排水工程,环境工程,房屋建设,水利水电工程,污水处理,市政管道,暖通空调等领域的规划设计,施工,管理和决策人员。也可以作为工厂,矿业企业及相关高等学校的师生参考。 执行摘要 水力计算图是给水排水工程设计中常用的水力计算图的集合。内容包括供水工程用钢管,铸铁管和塑料管的水力计算表,圆形截面钢筋混凝土输水管的水力计算表,圆形,矩形,马蹄形和蛋形截面排水管道的水力计算图,梯形明渠水力计算图,热水管,钢塑复合管,蒸汽和压缩空气管的流量和压力损失计算表等。为了充分发挥实用的设计功能并配合应用在计算机辅助设计方面,“液压计算表”配备了上述所有液压计算表的电子软件,可以通过计算机准确,方便,快速地检索,查询和计算。 目录 1,给水管道水力计算 1.钢管和铸铁管 1.1计算公式 1.2表格和说明 1.3水力计算 2.钢筋混凝土供水管 2.1计算公式 2.2水力计算

3.塑料给水管 3.1计算公式 3.2准备和说明 3.3水力计算 2,排水道水力计算 4.钢筋混凝土圆形排水管(全流量,n = 0.013)4.1计算公式 4.2水力计算 5.钢筋混凝土圆形排水管(非全流量,n = 0.014)5.1计算公式 5.2水力计算图及说明 6.矩形横截面沟槽(全流量,n = 0.013) 6.1计算公式 6.2水力计算 7.矩形横截面沟槽(非全流量,n = 0.013) 7.1计算公式 7.2水力计算 8.梯形截面明渠(n = 0.025,M = 1.5) 8.1计算公式 8.2水力计算图及说明 9.马蹄形断面沟 9.1马蹄形(I型)涵洞

专题二建筑给排水水力计算

专题二建筑给水工程 2.1 建筑给水系统设计实例 1. 建筑给水系统设计的步骤 (1) 根据给水管网平面布置绘制给水系统图,确定管网中最不利配水点(一般为距引入管起端最远最高,要求的流出压力最大的配水点),再根据最不利配水点,选定最不利管路(通常为最不利配水点至引入管起端间的管路)作为计算管路,并绘制计算简图。 (2) 由最不利点起,按流量变化对计算管段进行节点编号,并标注在计算简图上。 (3) 根据建筑物的类型及性质,正确地选用设计流量计算公式,并计算出各设计管段的给水设计流量。 (4) 根据各设计管段的设计流量并选定设计流速,查水力计算表确定出各管段的管径和管段单位长度的压力损失,并计算管段的沿程压力损失值。 (5) 计算管段的局部压力损失,以及管路的总压力损失。 (6) 确定建筑物室内给水系统所需的总压力。系统中设有水表时,还需选用水表。并计算水表压力损失值。 (7) 将室内管网所需的总压力及室外管网提供的压力进行比较。比较结果按2.3.1节处理。 (8) 设有水箱和水泵的给水系统,还应计算水箱的容积;计算从水箱出口至最不利配点间的压力损失值,以确定水箱的安装高度;计算从引入管起端至水箱进口间所需压力来校核水泵压力等。 2. 建筑给水系统设计实例 图2.1为某办公楼女卫生间平面图。办公楼共2层,层高3.6m,室内外地面高差为0.6m。每层盥洗间设有淋浴器2个,洗手盆2个,污水池1个;厕所设有冲洗阀式大便器6套。室外给水管道位置如图2.1所示,管径为100mm,管中心标高为–1.5m(以室内一层地面为±0.000m),室外给水管道的供水压力为250kPa,镀锌钢管,排水管道采用塑料管材。

相关主题
文本预览
相关文档 最新文档