当前位置:文档之家› 渐开线齿轮的齿形齿向修整

渐开线齿轮的齿形齿向修整

渐开线齿轮的齿形齿向修整
渐开线齿轮的齿形齿向修整

1,基本思路

2,渐开线直齿轮齿的负载特性

3,防止啮合冲击

4,齿形修形的目的和原理

5,对直齿轮和斜齿轮分别进行齿形修行的建议6,影响齿宽负载分布的因素

7,对直齿轮和斜齿轮分别进行齿向修行的建议8,现场经验

负载齿轮的传动试验研究表明,随着齿轮进入啮合和脱离啮合时,由于角速度脉动的变化而增加了啮合冲击。啮合冲击,既使是制造很精确的齿轮也是难以避免的,因为这种冲击部分是由齿轮负载时的弹性变形引起的。啮合冲击的强度决定于负载量以及齿的精确度和壳体内传动齿轮与从动齿轮的相互位置,其他影响因素还有如:节线速度,齿轮惯性矩,齿面质量和润滑情况等。

齿轮间的波动引起齿轮自身和齿轮轴及壳体的振动从而产生噪音。只有当更高的速度和负载需求及传动噪音要求更高的情况非常紧急时,才能考虑采用通过齿形修行(齿顶,齿根修缘)减小啮合冲击。一旦实施了热后磨齿,那么就能承载更高的传动负载,在这种情况下就要求进行齿形修行。

但是随着传动负载的增加,对齿向修行(或是鼓形修整)也就有了要求。以下将对齿向修行做更深的说明。虽然鼓形修整的主要目的是是齿宽的负载分布均匀,不过设计良好的鼓形修整还可以减小啮合冲击。换句话说,也就是抵消各种与良好齿轮轴承条件相斥的影响。

两种类型的齿轮修行(齿形和齿向修行)的思路是不相同的。因此本论文将分别对两种不同的修行模式进行说明。

通常,实际的修行量都比较小,不管是齿顶修缘,齿根修缘还是端面修缘,通常在7.62∪到25.4∪之间。尽管修行量很小,可在修行设计和应用良好的情况下,这一点点的修行可以提高齿面的负载能力。然而,如果要求进行齿形修行以提高齿面负载力,那么必须修行确保达到最小制造精度。从振幅的序方面考虑,如果齿形误差接近齿形修行量时,那么对齿轮啮合性能的改善就还有所怀疑,特别是当修行和误差同时出现时。

通常认为,如果要使用齿形和齿向修行的方法增加齿宽负载能力,那么必须确保在振幅上齿形误差比修行量小。

本文给予的建议都是基于专业的斜齿硬化和磨齿经验提出的。齿形的精确性符合AGMA 的14-15质量的。然而,齿廓精确性可以确保更好的质量。

1,基本思路

齿轮进入啮合时的速度很大,因此负载转接时,自然地就会产生阻尼振动。对于直齿轮而言,承载负荷的齿数将由两个转为一个,又由一个转回两个,这样使得弹性变形更加复杂。虽然直齿轮和斜齿轮的啮合情况基本相同,可对于斜齿轮而言,相联系的齿轮副更多,且齿数更换的作用也更慢性些。对于相同的负载,传动速度和齿精确度,斜齿的修行量要比直齿的更小。更进一步的思考:斜齿不能立即使整个齿宽相接触,而是负载先由斜齿的顶端承载然后渐渐的传向整个齿宽面(见图表1).因此可见,齿向修行(鼓形修整或齿端修缘)也是避免啮合冲击的有效方法。之后,我们将仅从静态观点,检测直齿轮啮合整个过程的负载情况。但是我们必须谨记啮合冲击指的是一个动态的过程,且其实际的负载力大于理论的、静态值;假定齿轮的振动形状是由齿速和惯性决控制的。

2,渐开线直齿轮的负载特性

当直齿轮啮合时,其齿间接触是由单对齿和双对齿轮交替进行地。将齿轮的接触线作为横坐标,如图表2,并垂直该轴作一纵坐标,这样我们就能表示出齿的啮合路径AD上任意一点所受的负载力。双对齿的接触路径在AB和CD上,而单对齿接触路径只是在BC之上。其实这些路径长度是由齿轮的尺寸规定的,AC和BD等同于基本节线。对于完全精确和毫无变形的齿轮而言,,双接触区域上所受的负载正好是单接触区域负载的一半。这可用

AFGHIKLD曲线表示。由于轮齿接触点的表面会变形和轮齿本身也会弯曲变形,所以齿宽的负载分布会发生变化。通过计算可得出负载力的AMNHIOPD曲线,负载传递的粗略方式为,啮合从A点开始,该点并承载40%的负载量,从双齿接触转向单齿接触的点的负载涨至60%。之后中央区域单独地承载100%的负荷。滚动齿轮副承载60%的负荷,之后在脱离啮合时其负载有降至40%。

3.防止啮合冲击

只要目前考虑的轮齿出现任何误差,其负载特性就会发生变化,尤其是那些刚性比较好的轮齿,即使是轻微的误差也会产生巨大的影响。我们当前研究的主要发现是,当齿轮啮合时,由于轮齿会发生弹性变形,所以其中一个齿轮相对于另一个齿轮会旋转。我们将这一

旋转表述为沿着啮合线的位移(见图表3). 直齿轮的位移值用以下公式表示:

单位:2.54∪(方程1)

=啮合线上的一般负载力()

在齿轮进行啮合的时刻,从动齿的齿廓将会沿着啮合线上下移动,据图表3显示其移动量为。这一结果是由已啮合的齿轮副和齿轮副发生弹性变形引起的。缺少这种

相关性将会引起啮合冲击。正如前面以提及的那样,齿形误差也会产生这相似的后果,因为齿形误差也表示了接触点的位移。

在齿面研磨修行设备整合到MAAG机器前,若要制造高能量和高速度的好、齿轮,通常采用以下实践方式以缓解当时的形势。

A)减小误差范围,特别是齿形齿向和邻近节距的误差

B)将端面啮合比增至最大(方法之一:在15度压力角的基础上进行齿顶修行-1998年之后称为MAAG-toothing)

C)与从动齿的节距相比,稍微增长点传动齿的基圆节距。如图表4所示。

如果传动齿轮与从动齿轮的基圆节距差大于所有误差和变形量的总和,那么此齿轮进入啮合时,两齿轮齿轮将不会接触。随后啮合的负载将渐渐由此齿轮承担。自然地,两齿轮的基圆节距差不能太大,否则,两基圆直径比将不再与传动比相吻合,且将以齿轮的连续啮合频率,速度不断的上下波动。现实中,两齿轮基圆节距差最大只能为3.81∪.

使用足够重叠比(假如3和4之间)的斜齿轮,可以减小齿形误差的影响,尤其是齿廓误差的影响。同时还可以减少由基圆节距差引起的速度波动事件的发生。

4,齿廓修行的目的和原理

为了避免齿轮进入啮合和脱离啮合时产生冲击,齿面齿廓可以进行适当距离的修整。例如:对小齿轮的齿根和齿顶区域进行修整,大家都熟如“齿根和齿顶修缘”。现今,如以上提到的修行,其修行量和修行形状可受MAAG磨床的精密控制。再者,经过修缘的区域能够很顺畅地弯曲至余下的渐开线区域。

齿轮修整有各方面的修行特性规定;且直齿轮和斜齿轮的修行特性是各不相同的。因此修行原理的各种设置在不断发展变化。有关修行价值的最终确定只有在得到较好的实际效果才能给予批准。

为了仔细查看直齿所出现的问题,我们得再次查阅负载图表2. 。见表可知,渐开线齿面上的起始接触点A与终点D之间间距很大。且负载变更点B和C的负载变化急剧,因为B 和C点分别是两个轮齿负载突然转换到一个轮齿负载的转换点和一个轮齿负载转换到两个轮齿的转点。由于B和C两转换点会引起齿轮的振动,所以必须尽可能的压制其振动冲击。图表5b是某一特定负载的变更图,此负载量应该能够有效的减少振动冲击。

若忽视制造误差,我们还得面对的一个问题:到底应该将齿轮修整到什么确切的形状才能使得轮齿的接触力能够遵循图表5b的AHID图,而非即使齿面修行不当时也适用的

AMNHIOPD图。

图表5a中A点即为从动轮齿齿顶的起始接触点,此时另一齿轮副已在C点接触。正好在接触C点前,这个齿轮副承载了全部的负载,由此接触点以的幅度在接触线周围上下变换。如果此轮齿齿顶没有修行,那么此轮齿将立即承担图表5中M点的负载量。如果将

该轮齿齿顶齿廓进行程度的修整,那么齿顶的负载就能如愿的从M降至零。进行修整时,

齿顶修缘必须在接触点B处完成。随着齿顶的负载的下降,由于总负载必须保持不变,所以之前已啮合过的齿轮副的负载必须相应的有所增加,其增量体现在接触线的E1区。恰好的几何修缘标示在图表5c 中接触线的扩大刻度上,此5c图表与用轮齿齿廓记录仪勾勒的图表相似。轮齿的齿顶修整形状显现在高度扩大了的图表5a中。通过对之后的传动齿轮进行齿顶修缘,那么之后齿顶的负载将以齿轮脱离啮合一样方式减负。切合实际地使用以上的几何齿顶修缘,我们可以实现R2似的负载减负和E2似的负载加负。正是通过给传动和从动齿轮进行以上的齿顶修缘,才使得齿顶的接触力符合图表5b中的AHID图。看AHID图可知,这里没有负载急剧变化现象的出现。渐开线齿面传动路线如途中B1C2线,B1C2距离也是基圆的节距。基于以上观察数据,我们得出了以下几条规则用于确定直齿轮适当的渐开线修行。

a)沿着接触路径,若路线距离等于基圆节距那么此齿轮就不需修行;且修行得延伸至轮齿的两个面,其修行量应差不多大。

b)修行同时适用于传动齿轮和从动齿轮的齿顶修缘,或是用于其中一齿轮的齿顶修缘和齿根修缘。如果传动和从动两齿轮同时进行齿根和齿顶修缘,那么其修

行量仅仅是附加的,意思是每个齿轮的单个修行量只是总量的一半。此方法已

在一些实例中得到了应用,且从制造方面看具有很多优点。

c)修行量决定于齿轮的具体负载和齿轮的精度。对于精度非常高的齿轮而言,其最小修行量,理论上应该等同于方程1计算的。

5,对直齿轮和斜齿轮进行齿廓修形的建议

齿形齿向修行通常只适用于一对齿轮中的一个齿轮;也就是进行齿顶和齿根修缘—可能是鼓形修整。这里我们将传动齿轮和从动齿轮的齿廓修整区分开来。接触路线距离等与端面基圆节距的啮合情况,那么此类齿轮都一致不需修整。类似的,齿宽的某一段也不须进行齿向修行。从生产上讲,使用这一方法有一很重要的优点即我们可以直接测量出两个重要的尺寸:基圆节距和螺旋角。从操作方面看,由于端面的接触比最小也等于1,所以这一方法可以确保直齿轮良好的轮齿接触状态,即使是在轻负载下仍接触良好。足够大的重叠率的斜齿轮在这一方面就不如直齿轮敏感,因为正确的运动传动是受螺旋的作用保证的。相对于齿轮的尺寸而言,其负载比较大时,这种情况下则此规则不适用,且接触路线上渐开线的部分也较短。特别情况下,例如飞机齿轮,其齿廓修行可能延伸至整个轮齿的齿面以确保修行的顺利混合。

为使齿轮制造完成后的验收测试简单化,建议规定修行的公差极限。公差范围的设置必须确公差内的保任一偏差能有减轻啮合冲击的效果。传动齿轮和从动齿轮的公差域是互相反的,以证实前面陈述的减小从动齿轮基圆节距的原理。

以一经过修整的小齿轮为例,其渐开线测试仪上记录的典型齿廓图显示在图表7和8中。这些齿廓图表示的是受热影响不是很大以至于要求另加修行的情况。

为获得更加平稳的齿廓形状,得加长齿根的修缘,随之齿顶的修缘就必须缩短斜。只有当齿根修行非常短时才能使用这一方法,另一特例就是小模数齿轮也可以使用这一方法。

直齿轮的修行量(方程3)

=齿宽每英寸上的外围单位负载

=每2.54∪上的修行量

第一个轮齿接触的点:

公差下极限值

公差下极限值

最后一个轮齿接触点:

公差上极限值

公差下极限值

斜齿轮的修行量(方程4)

第一个轮齿接触的点:

公差下极限值

公差下极限值

最后一个轮齿接触点:

公差上极限值

公差下极限值

我们都知道挂高能量、高速度档位齿轮时,小齿轮的平均温度比该档位齿轮的平均温度更高。这导致基圆节距的出现了差异:

(方程5)

为小齿轮与档位齿轮的温度差

为热膨胀系数

于此,可通过改变未经修整的渐开线部分公差域BC的倾斜度或是修整小齿轮基圆节距等方法进行相应的齿廓修行。

减速时,传动系统中小齿轮的温度比挂产生更大基圆节距的档位齿轮时的温度高。如第3节和图表4描述的那样,在一定程度上,这一效果有利于减轻齿轮啮合的冲击。

如果温差很大,那么必须较小基圆节距差到可接受值。作用于小齿轮齿廓图的更正措施具有提升图表7中点C的效果。

然而增速时,情况恰恰相反。从动系统中的(小齿轮)获得更高的温度和更大基圆节距。然而这一效果如轮齿变形一样易增大齿轮的啮合冲击,见图表3。为了抵消这种温度的影响,将图表8中公差域BC的点C上升一些,再次给予不同程度的倾斜。这样做也相当于减小了小齿轮的基圆节距。图表14b表述的即为这一事例。

对于小齿一般比档位齿轮温度高的现象,有以下注意几点应该注意:

减速时,齿轮变形和温度差异的影响会相互抵消。但是增速时,这两种影响则是互加的。这就意味着曾速齿轮的基圆节距修行量比减速齿轮大。

6,影响齿面负载分布的因素

我们先谈谈高精度齿轮,在未负载和冷条件下,高精度齿轮齿宽面的负载非常均匀,然而在负载情况下则就变得不均匀了。原因有很多,在进行齿轮修行设计时必须时刻谨记这些影响因素:

每个小齿轮在负载情况下都会遭遇一定的弹性变形。圆柱型小齿轮在负载情况下,其形状会弯曲变形,同时也存在剪切挠度,但是剪切挠度量非常小,我们可以将其忽视。

对于高速档位齿轮,由于存在离心力,所以须查看其是否存在弯曲变形。依据齿轮的形状设计,齿轮的齿稍微有点凹型桶状。

同时也要考虑热能影响。啮合时传输的能量越高其变形越明显,因为啮合时齿轮受热不均。若不考虑轴承产生的热量,直齿轮齿中的温度最高,之后温度向齿两端不断降低。然而斜齿轮齿的温度最高点是运动不定的,因为有冷却油再不断的做轴向运动。

以上提到过,小齿轮的温度一般比档位齿轮更高,对于斜齿轮则有以下影响:

由于啮合时有多对齿轮同时接触,引起基圆节距差异的温度差会导致啮合的齿轮负载不均匀(公式5)。对于减速齿轮而言,负荷最大的齿是第一对接触齿,(见图表6)之后的接触齿的负载不断减小。结果是这第一对接触齿的接触痕迹变得更深。由此给人的感觉是小齿轮的螺旋角会随着温度的增加而减小,可实际上,其螺旋角并没有变化。

引起单边负载的唯一因素是基圆节距差。同时啮合的齿越多,这种单边负载的现象变得更加明显,或者说,螺旋角变得更大。

对于螺旋角为6到15度的斜齿轮,受一边负载的影响一般都很小。然而,单边负载的影响有利于选择螺旋手,因为单边负载可以减小小齿轮由于轮齿负载不均导致的扭曲变形。图表6 显示,挂减速档时,小齿轮的第一对齿齿端应该在小齿轮的耦合边。

增速档位时,情况正相反,小齿轮的最后一对接触齿齿端在耦合边。

对于任一齿轮的负载情况,都还得权衡其他影响负载分布的因素,如壳体刚性,轴承间隙等。在设计齿向修行时,为这种影响制定一个余量是常用的一种方法,且有一定的优势。

7,实施直齿轮和斜齿轮齿向修行的建议

大多数情况下,影响齿向修行的主要影响因素是小齿轮的弹性弯曲。因此基本的齿向修行是居于以上因素确定的。根据期望的平均负载传输的具体能量,可以计算处弯曲的确切数据。

第6节中讲的其他负载分布的影响更加难以预测。因此,设计师一般会在其工作的初始阶段就整理好这些不确定因素,以尽可能得是其能相互抵消。例如,避免各影响在整个作用过程中相互叠加。对确定已发生负载变形的齿轮各自进行双重修行,以达到这些影响不重合的期望。以下是计算小齿轮弹性变形(弯曲)和修行(必要的使负载分布最优化的修行)的一种简单方法:

小齿轮变形量由与节圆直径形成的圆柱体相切的平面决定(图表9)。假定轮齿负载W(该负载也体现在在以上平面上)是平均分布在齿面上的。W值相当于期望的最佳负载分布值。

小齿轮的变形量由两部分组成,弯曲(曲线1)和扭曲(曲线2)。曲线1和曲线2都体现在前面相同的相切平面上。因此,组合变形曲线3是曲线1和2的代数相加。

为了抵消预先确定的负载W引起的弹性变形,齿向修形必须按虚线4的形状修整。

虚线4正好与组合变形线3相反(相倒置)。

对于图表9中显示的对称装载的小齿轮,计算齿宽F轮齿的最大弯曲变形量的公式如下:

W 为具体单位负载量

K齿宽与直径比

轴承跨距与齿宽比

弯曲变形曲线近似圆形,最大变形值出现在齿的中间。压力角的影响非常小,可以忽视不计。

假设负载平均分布在齿面上,最大的扭曲变形量计算公式:

扭曲变形曲线是一抛物线,抛物线的顶点在远离联轴器的齿端。

若小齿轮的轮齿部分有个直径为的孔,那么和都必须乘以:

为了快速地得到小齿轮的组合变形曲线,那么可以利用图表10的曲线图。图表10中

的曲线表示的是齿宽与直径之比K ,且依据以下数据绘制的:

曲线A:

与单个齿轮啮合的小齿轮

图表9中显示的装载对称的小齿轮

轴承跨距与齿宽比

单位负载量

任何负载W的最大组合变形量:

万分之一英寸即2.54∪(公式9)

曲线B:

与两齿轮啮合的小齿轮,

如图表9显示放置。

每次啮合的单位负载

用公式9可计算出最大的组合变形量

必须标注W是单次啮合的单位负载

若小齿轮与3个大齿轮啮合,如行星齿轮,曲线B得出的变形量乘以了。

制造和检验技术允许实际修行与理论的修行形状(图表9中的曲线4)有稍微的偏离,实践的修行经验提供了必要的指示。齿廓修行时,轮齿的有些部位是没有修整到的。这些未修整的部位确保了足够的重叠率(≥1,如果可能的话),因此使得轻载运作时,运行更加平稳。同时也可以直接测量螺旋角。负载变形非常严重的情况则不再适用以上原理,因为整个齿宽面都必须得修整,

如果小齿轮的组合弯曲量不超过XXXX,那么此齿轮就是一个很好的实例,对其进行如图表11和图表12显示的形状的齿向修行。

修行量可根据组合弯曲量计算出来,且要制定适当的制造和检验公差极限。

单啮合的齿向修行量(公式10)

修行形状见表11

耦合端 2.54∪

公差下极限值

公差上极限值

盲端

公差上极限值

公差下极限值

双啮合的齿向修行量(公式11)

修行形状见图表12

耦合端

公差上极限值

公差下极限值

盲端

2,领域内的经验

自从15年前配置了修整设备的小齿轮磨床问世以来,齿轮修整的应用一直很成功。该类设备能够进行精度控制在2.54∪以内的齿轮修行。

自那之后,控制精密的修行技术就被应用于大量的尺寸各异的硬齿轮和ground齿轮,同时还有很多其他应用。

通过对应用中的齿轮进行观察,观察资料充分地证明了本论文描述的修行原理是很合理的。

下面展示了成功使用齿轮修行的典型例子。

例1:图表13

柴油机和螺旋轴间的海用减速齿轮

最大功率

速度

小齿轮直径

齿宽

具体负载

K-因素

螺旋角

径节

渗碳齿轮,硬齿轮和原齿轮

齿廓修行

修行量用公式4计算

图表13显示了小齿轮轮齿的齿廓图,其是居于图表7的建议绘制的。点B和点C间齿廓的公差域允许的偏差为3.048∪。这一偏差相当与将小齿轮的基圆节距增大了3.556∪,但用不可能小于其理论值。

齿向修行

齿宽与直径比

从图表10 取消A得知:

组合弯曲量(公式9)

用公式10 可以计算修行量,图表11可以得出修行形状

耦合面:

盲面:

图表13c绘制的为齿向图

例2:图表14

双柴油机和柴油发电机间的增速齿轮

两个柴油曲柄轴驱动一台发电机

从图14a可见齿轮的的布置情况

输入轴和输出轴间有刚性耦合

每根曲轴的功率:

曲轴转速:

发电机转速:

小齿轮直径: d

齿宽: F

径节: Pd

螺旋角:

侧隙:

平均负载:

正常负载下的扭矩变量

渗碳齿轮,硬齿轮和原齿轮

这是一个正常运作下,扭矩波动很大的特例,原因在于有较小的侧隙。

轮齿的最大负载是平均负载的四倍:

通过观察应用中的齿轮,观察资料表明在确定齿面的修行时,不仅要考虑弹性弯曲,还得考虑热能的影响。由轴承产生的热能引起齿根的齿径扩大的量大于齿中齿径的扩大量。没有经过齿向修行的一类齿轮,其齿两端会有灼伤。为了改正这一灼伤现象,因此就启用了图表14b所示的对称齿向修行,使用之后再也没有出现过以上灼伤现象。

然而,实际匹配的大齿轮没有进行过修整,因此设置了适当的齿轮匹配公差区以抵消轻微的扭曲变形。

公式3计算出的齿根和齿顶修行量体现在图表14b中,,单个齿轮的负载W大概是平均负载的两倍。

由于小齿轮由两个大齿轮驱动,所以大齿轮和小齿轮存在温度差是不可避免的。选挂增速档位齿时,像之前所讲的那样,温度差和齿轮弯曲变形两种影响会相互重叠。处理原则是将基圆节距在3.81-6.35∪间的小齿轮的节距低于理论值。

对于所有受热能影响的例子和有明显的振动冲击齿轮事例,实践齿轮修整是唯一即合理又可靠的指导。但是,控制精细的研磨修行可以如实地复制甚至是最精密的修行。实践经验建议进行精密修行是必须的:

例3:图表15和16

滚扎机的小齿轮

小齿轮直径

中心距

有效齿宽人字齿轮

间隙

总齿宽

径节

螺旋角

渗碳齿轮,硬齿轮和原齿轮

作用于小齿轮上的输入扭矩

标准扭矩

最大扭矩

输出扭矩平均分布在两小齿轮上,仅输入扭矩的一半通过轮齿传输,另一般直接从输出小齿轮传到输出联轴器。

具体负载:

由于滚扎机最大扭矩运转的仅是整个过程的部分时间段,因此决定以标准负载进行修行。

齿廓修行:

由于两个小齿轮的大小尺寸相同,而必要的齿根齿顶修缘又很大,所以两小齿轮的修行是一样的。然而,由于两个小齿轮的渐开线齿面部分的的公差区相反,所以传动小齿轮的基圆节距永不可能比从动小齿轮的节距大,见图表15.

齿根和齿顶修缘量可用公式4计算。

齿向修行

像这种情况,则再也不可能从图表10中读出组合弯曲变形曲线了,只能因此分别计算各种弯曲变形量和叠加变形。

如果齿轮负载均匀地分布在齿宽F1(见图表16)上,那么可用公式6和7分别计算出弯曲变形曲线的近似值。那么,想象的具体负载为:

齿宽与直径比

图表16显示了传动小齿轮和从动小齿轮的组合弯曲曲线:

传动小齿轮:组合弯曲曲线

从动小齿轮:组合弯曲曲线

只有传动小齿轮才会进行齿向修行,曲线4a和4b的合量提供斜齿轮齿端的总组合修行,他们分别是:(与图表16相比较)

耦合端:

盲端:

图表16的底端显示的是这一特例使用的齿向修行图。

1965年8月23号

鸣谢!

本论文是在得到的认可后发表的。笔者要感谢先生,感谢他为创作本论文所做的有义贡献和支持。

参考书目:

图表1,斜齿轮的接触线

图表2,渐开线直齿轮的负载分布情况

图表3,负荷渐开线齿轮齿间的干涉

图表4,通过增大传动齿轮的基圆节距减小啮合冲击

图表5,负载分布和齿廓修行

图表6,小齿轮和大齿轮温度差异的影响

图表7,减速齿轮的齿廓修行

图表8,增速齿轮的齿廓修行

图表9,小齿轮弯曲变形和齿向修行

图表10,单位负载时,小齿轮的组合弯曲变形曲线图表11,单啮合小齿轮的齿向修行

图表12,双啮合小齿轮的齿向修行

表13,例1的小齿轮修行表14,例2的齿轮修行表15,例3的齿廓修行

表16,例3的齿向修行

渐开线圆柱齿轮齿厚测量方法及其计算公式

渐开线直齿圆柱齿轮齿厚测量方法及其计公算式 渐开线圆柱齿轮常用的齿厚测量方法有公法线长度、量柱(或球)距、分度圆弦齿厚、固定弦齿厚四种方法。后两种方法是测量单个齿,一般用于大型齿轮。对于精度要求不太高的齿轮也常用分度圆弦测量法。公法线长度测量在外齿轮上用得最多,内齿轮也可用;大齿轮测量因受量具限制很少用。量柱距测量主要用于内齿轮和小模数齿轮。 1. 公法线长度测量 (1)公法线及其长度计算式 对于渐开线齿廓,根据渐开线的性质,其上任意点的法线总是和基圆相切,因此用两个平行的卡爪卡住几个齿时(见图1),两个卡爪接触点A 、B 的连线必定与基圆相切于某一点C ,这条AB 连线就叫公法线,一般用W k 表示;下标k 表示卡住的齿数。 图1中,根据渐开线的性质, A C =A C '); B C =B C '⌒ ;A B =A B ''⌒。A B 是(k-1)个基圆齿距p b 和一个基圆齿厚S b 之和,即: (1)(1)cos k b b b W k p S k m S πα=-+=-+……(1-1) 式中,k –跨测齿数; α–压力角(°) ; m –模数,mm ; 分度圆和基圆上的齿厚具有如下关系: 22b b s s inv invo r r α+= + 由上等式可得: (2tan )22 b b b r m s xm r inv r παα= ++ 图1 公法线长度的测量计算 =1cos 2sin cos 2m xm zm inv παααα++…………(1-2) 将(1-2)式代入(1-1)式,经整理后可得公法线长度计算式为: cos [(0.5)2tan ]k W m zinv k x ααπα=+-+…………(1-3) 式中,z –齿轮的齿数; inv α–渐开线函数; x –变位系数; 若模数m=1,(1-3)式变为: cos [(0.5)2tan ] k W zinv k x ααπα=+-+ c o s [(0.5)2s i z i n v k x ααπα=+ -]+ K k W W * * =+?…………(1-4) (1-4)式中第二行的前一项cos (0.5)k W k α απ* =+-[zinv ]就是m=1的标准齿轮的公法线长度。

齿轮齿形画法

齿轮齿形画法 一、总述 我们在齿轮加工进行齿形的检验时,常会用到齿形模板,以前每遇到这种情况都需要技术人员照手册按坐标点一点一点的画出,十分麻烦,且每用到模数不同的齿轮,都要重新画,工作量可想而知。现在计算机普及了,我们依据淅开线的形成原理和齿轮的切削原理并结合实际经验研究出了一种利用计算机来进行齿形图绘制的方法,绘制一些不同齿数(模数是1)的齿轮齿形图作为样板,对于不同的模数,只要进行相应倍数的放大即可得出相应的齿形图,这样绘出的齿形图不仅比手工画出的精确,且能做到一劳永逸,方便了很多。 二、直齿轮齿形图的详细画法 下面我们以齿数为18的齿轮为例,详细介绍一下这种齿形图的绘制方法.我们将齿形图的绘制据齿形的组成不同分为渐开线齿形部分的绘制与基圆和齿根圆部分齿形的绘制. 1.取齿轮齿数为18,模数为1,则分度圆半径为8.457mm.首先画出基圆,然后在基圆上取一角度为3的圆弧,测其值为0.44mm.(如图一) 2.画一长度为0.44mm的水平轴线垂线与基圆相切,然后绕基圆圆心阵列该直线和与其垂直的水平线,角度取3度(如图二) 3.将阵列所得的基圆切线延长:3°处的切线保持不变,6°处的切线延长一倍,9°处

的切线延长2倍,12°处的切线延长3倍……依此类推,45°处的切线延长15倍.将各切线延长线的端点依次连接起来得一圆滑曲线.(如图三) 4.画出齿轮的分度圆(半径为9mm)和齿顶圆(半径为10mm),过分度圆与渐开线 交点与圆心连线,将该连线旋转成水平(第三步得到的曲线随其一同旋转),其它辅助线清除,然后过圆心画一角度为5度的射线即为该齿轮一个齿的对称线,将所得曲线关天该对称线镜相,齿顶圆与基圆中间的曲线部分即为该齿轮一个轮 齿的渐开线部分.(如图四) 5.将得出的一个轮齿的渐开线部分阵列,得出模数为1,齿数为18的齿轮的渐开线齿廓部分,并将齿轮转至如图五位置。 以上五步为齿轮轮齿渐开线部分的绘制。从第六步开始为基圆与齿根圆部分齿形图的绘制。 6.先画出模数是1的齿条图形,比标准齿条齿顶高高出0.25mm(如图六) 7.如图七所示将齿条与齿轮啮合. 8.在齿轮的实际加工过程中,齿轮每转动1°,齿条水平移动0.157mm。据此原理,

圆柱齿轮齿形加工方法方案

圆柱齿轮齿形加工方法和加工方案 一个齿轮的加工过程是由若干工序组成的。为了获得符合精度要求的齿轮,整个加工过程都是围绕着齿形加工工序服务的。齿形加工方法很多,按加工中有无切削,可分为无切削加工和有切削加工两大类。 无切削加工包括热轧齿轮、冷轧齿轮、精锻、粉末冶金等新工艺。无切削加工具有生产率高,材料消耗少、成本低等一系列的优点,目前已推广使用。但因其加工精度较低,工艺不够稳定,特别是生产批量小时难以采用,这些缺点限制了它的使用。 齿形的有切削加工,具有良好的加工精度,目前仍是齿形的主要加工方法。按其加工原理可分为成形法和展成法两种。 成形法的特点是所用刀具的切削刃形状与被切齿轮轮槽的形状相同,如图9-3所示。用成形原理加工齿形的方法有:用齿轮铣刀在铣床上铣齿、用成形砂轮磨齿、用齿轮拉刀拉齿等方法。这些方法由于存在分度误差及刀具的安装误差,所以加工精度较低,一般只能加工出9 ~10级精度的齿轮。此外,加工过程中需作多次不连续分齿,生产率也很低。因此,主要用于单件小批量生产和修配工作中加工精度不高的齿轮。 展成法是应用齿轮啮合的原理来进行加工的,用这种方法加工出来的齿形轮廓是刀具切削刃运动轨迹的包络线。齿数不同的齿轮,只要模数和齿形角相同,都可以用同一把刀具来加工。用展成原理加工齿形的方法有:滚齿、插齿、剃齿、珩齿和磨齿等方法。其中剃齿、珩齿和磨齿属于齿形的精加工方法。展成法的加工精度和生产率都较高,刀具通用性好,所以在生产中应用十分广泛。 一、滚齿 (一)滚齿的原理及工艺特点

滚齿是齿形加工方法中生产率较高、应用最广的一种加工方法。在滚齿机上用齿轮滚刀加工齿轮的原理,相当于一对螺旋齿轮作无侧隙强制性的啮合,见图9-24所示。滚齿加工的通用性较好,既可加工圆柱齿轮,又能加工蜗轮;既可加工渐开线齿形,又可加工圆弧、摆线等齿形;既可加工大模数齿轮,大直径齿轮。 滚齿可直接加工8~9级精度齿轮,也可用作7 级以上齿轮的粗加工及半精加工。滚齿可以获得较高的运动精度,但因滚齿时齿面是由滚刀的刀齿包络而成,参加切削的刀齿数有限,因而齿面的表面粗糙度较粗。为了提高滚齿的加工精度和齿面质量,宜将粗精滚齿分开。(二)滚齿加工质量分析 1.影响传动精度的加工误差分析 影响齿轮传动精度的主要原因是在加工中滚刀和被切齿轮的相对位置和相对运动发生了变化。相对位置的变化(几何偏心)产生齿轮的径向误差;相对运动的变化(运动偏心)产生齿轮的切向误差。 (1)齿轮的径向误差齿轮径向误差是指滚齿时,由于齿坯的实际回转中心与其基准孔中心不重合,使所切齿轮的轮齿发生径向位移而引起的周节累积公差,如图9—4所示。 齿轮的径向误差一般可通过测量齿圈径向跳动△Fr反映出来。切齿时产生齿轮径向误差的主要原因如下: ①调整夹具时,心轴和机床工作台回转中心不重合。 ②齿坯基准孔与心轴间有间隙,装夹时偏向一边。 ③基准端面定位不好,夹紧后内孔相对工作台回转中心产生偏心。

渐开线齿轮

渐开线齿轮 一、渐开线的形成及其特性 1、渐开线齿廓的形成 直线BK沿半径为r b的圆作纯滚动时, 直线上任一点K 的轨迹称为该圆的渐开线。该圆 称为渐开线的基圆。 r b--- 基圆半径; BK --- 渐开线发生线; --- 渐开线上K点的展角。 A为渐开线的起始点,K为渐开线上任一点,

其向径用r k表示。 渐开线齿轮的齿廓曲线是渐开线。 2、渐开线的特性 1)发生线沿基圆滚过的长度,等于基圆上被滚过的圆弧长度。 由于发生线BK在基圆上作纯滚动,故

2)渐开线上任一点的法线恒与基圆相切。 发生线BK沿基圆作纯滚动,它与基圆的切点B即为其速度瞬心,所以发生线BK即为渐开线在K点的法线。又由于发生线恒切于基圆,故渐开线上任一点的法线恒与基圆相切。 3)渐开线上离基圆愈远的部分,其曲率半径愈大,渐开线愈平直。 发生线BK与基圆的切点B是渐开线在点K 的曲率中心,而线段KB是相应的曲率半径,故渐

开线上离基圆愈远的部分,其曲率半径愈大,渐开线愈平直;渐开线初始点A处的曲率半 径为零。 4)基圆内无渐开线。 5)渐开线的形状取决于基圆的大小。 基圆愈小,渐开线愈弯曲;基圆愈大,渐开线愈平直。当基圆半径为无穷大时,其渐

开线将成为一条直线。 二、渐开线齿廓的啮合特点 一对齿轮传动,是依靠主动轮的齿廓依次推动从动轮的齿廓来实现的。因此,要能实现预定的传动比,一个齿轮最关键的部位是轮齿的齿廓曲线。

图示为一对分别属于齿轮1和齿轮2的两条齿廓曲线G1、G2在点K 啮合接触的情况。齿廓曲线G1绕O1点转动,G2绕O2 转动。过K点所作的两齿廓的公法线nn与连心线 O1O2 相交于点C。 由三心定理知,点C是两齿廓的相对速度瞬心,齿廓曲线G1和齿廓曲线G2在该点有相同的速度: 由此可得 我们称点C为两齿廓的啮合节点,简称节点。 齿廓啮合基本定律: 两齿廓在任一位置啮合接触时,过接触点所作的两齿廓的公法线必通过节点C,它们的传动比等于连心线O1O2被节点C 所分成的两条线段的反比。 如果要求两齿廓作定传动比传动,即要求为常数,则由式()可知,其齿廓曲线需满足的条件是:节点C为连心线上的一个定点。当两齿轮作定传动比传动时,节点C在齿轮1运动平面上的轨迹是以O1为圆心、以O1C()为半径的圆;节点C在齿轮2

直齿渐开线齿轮画法

齿轮传动是最重要的机械传动之一。齿轮零件具有传动效率高、传动比稳定、结构紧凑等优点。因而齿轮零件应用广泛,同时齿轮零件的结构形式也多种多样。根据齿廓的发生线不同,齿轮可以分为渐开线齿轮和圆弧齿轮。根据齿轮的结构形式的不同,齿轮又可以分为直齿轮、斜齿轮和锥齿轮等。本章将详细介绍用Pro/E创建标准直齿轮、斜齿轮、圆锥齿轮、圆弧齿轮以及蜗轮蜗杆的设计过程。 3.1直齿轮的创建 3.1.1渐开线的几何分析 图3-1 渐开线的几何分析

渐开线是由一条线段绕齿轮基圆旋转形成的曲线。渐开线的几何分析如图3-1所示。线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。(其中r为圆半径,ang为图示角度) 对于Pro/E关系式,系统存在一个变量t,t的变化X围是0~1。从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。 ang=t* 90 s=(PI* r*t)/2 x1=r*c os(ang) y1=r*s in(ang) x=x1+(s*sin( ang)) y=y1-( s*cos(ang)) z=0

以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。 3.1.2直齿轮的建模分析 本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。 直齿轮的建模分析(如图3-2所示): (1)创建齿轮的基本圆 这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。并且用事先设置好的参数来控制圆的大小。 (2)创建渐开线 用从方程来生成渐开线的方法,创建渐开线,本章的第一小节分析了渐开线方程的相关知识。 (3)镜像渐开线 首先创建一个用于镜像的平面,然后通过该平面,镜像第2步创建的渐开线,并且用关系式来控制镜像平面的角度。 (4)拉伸形成实体 拉伸创建实体,包括齿轮的齿根圆实体和齿轮的一个齿形实体。这一步是创建齿轮的关键步骤。

proe齿轮画法大全

第3章齿轮零件 齿轮传动是最重要的机械传动之一。齿轮零件具有传动效率高、传动比稳定、结构紧凑等优点。因而齿轮零件应用广泛,同时齿轮零件的结构形式也多种多样。根据齿廓的发生线不同,齿轮可以分为渐开线齿轮和圆弧齿轮。根据齿轮的结构形式的不同,齿轮又可以分为直齿轮、斜齿轮和锥齿轮等。本章将详细介绍用Pro/E创建标准直齿轮、斜齿轮、圆锥齿轮、圆弧齿轮以及蜗轮蜗杆的设计过程。 3.1直齿轮的创建 3.1.1渐开线的几何分析 图3-1 渐开线的几何分析 渐开线是由一条线段绕齿轮基圆旋转形成的曲线。渐开线的几何分析如图3-1所示。线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。(其中r为圆半径,ang为图示角度) 对于Pro/E关系式,系统存在一个变量t,t的变化范围是0~1。从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。 ang=t*90 s=(PI*r*t)/2 x1=r*cos(ang) y1=r*sin(ang) x=x1+(s*sin(ang)) y=y1-(s*cos(ang)) z=0

以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。 3.1.2直齿轮的建模分析 本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。 直齿轮的建模分析(如图3-2所示): (1)创建齿轮的基本圆 这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。并且用事先设置好的参数来控制圆的大小。 (2)创建渐开线 用从方程来生成渐开线的方法,创建渐开线,本章的第一小节分析了渐开线方程的相关知识。 (3)镜像渐开线 首先创建一个用于镜像的平面,然后通过该平面,镜像第2步创建的渐开线,并且用关系式来控制镜像平面的角度。 (4)拉伸形成实体 拉伸创建实体,包括齿轮的齿根圆实体和齿轮的一个齿形实体。这一步是创建齿轮的关键步骤。 (5)阵列轮齿 将上一步创建的轮齿进行阵列,完成齿轮的基本外形。这一步同样需要加入关系式来控制齿轮的生成。 (6)创建其它特征 创建齿轮的中间孔、键槽、小孔等特征,并且用参数和关系式来控制相关的尺寸。

标准直齿轮齿形绘制步骤

标准直齿圆柱齿轮齿形绘制步骤 举例使用的齿轮我单位现在使用的回转窑小齿轮: 模数m=30 齿数z=25 压力角a=20° 第一步计算尺寸 分度圆直径d=m*z=30x25=750 齿顶圆直径da=m*(z+2)或d+2m=30x(25+2)或750+2x30=810 齿根圆直径df=m*(z-2.5)或da-2h=30x(25-2.5)或810-2x2.25x30(30是模数)=675 基圆直径db=d*cosa=750xcos20°=704.775 注:cos20°=0.9396926 标准齿轮尺寸计算公式:

根据尺寸绘制出图形: 第二步绘制渐开线的辅助线: 基圆的周长C=db*π=704.77x3.1415=2214.0507 一倍切线长度Q=C/(z*2)=2214.0507/25x2=44.28 L1=1Q=44.28 L4=4Q=177.12 L2=2Q=88.56 L5=5Q=221.4 L3=3Q=132.84 L6=6Q=265.68

绘制这些切线时,我是把对象捕捉的垂足打开,然后在线外任意位置作已知直线的(就是角度7.2的那些直线)的垂线,然后再将这些直线移动到基圆的交点位置,利用圆工具和修剪工具得到需要的长度。 7.2°=360°/2*z(齿数)=360°/25x2 360/2*Z=360/2x2 5=7.2 第三步,绘制齿形线 从中心线与基圆的交点开始,用样条曲线依次连接蓝色的六个端点得到齿轮外形曲线。 样条曲线与齿根圆的圆角半径R=0.38*m=0.38x30=11.4。圆角工

具F---半径R11.4---点击齿根圆---点击齿形轮廓线。 第四步 1连接圆心与齿形轮廓线与分度圆的交点。 2作镜像中心线L,角度=360°/(4*Z)=360°/(4x25)=3.6°3将齿形的轮廓线进行镜像

渐开线齿轮参数

渐开线标准直齿轮几何尺寸计算公式 (参照注释1) (参照注释1) (参照注释1) (参照注释2) 注释: 1、上面的符号用于外齿轮,下面的符号用于内齿轮;中心距计算公式上面符号用于外啮 合齿轮传动,下面符号用于内啮合齿轮传动。 2、因为,所以。

渐开线齿轮参数测量实验 一、实验目的 1.综合利用各种方法(计算法、查表法等),对渐开线齿轮进行测量,从而判定其原设计基本参数。 2.通过该测量实验,加深对渐开线齿轮参数相互关系及啮合原理的理解。 二、实验设备和工具 1.备测齿轮 注:(1)1、2或3、4齿轮可组成零传动; (2)1、2齿轮组成标准齿轮传动; (3)5、6齿轮可组成正传动; (4)7、8齿轮可组成负传动; (5)3、4齿轮可组成高变位传动; (6)5、6、7齿轮可组成角变位传动。 (7)本表中给出的参数仅供参考。 2.测量工具 (1)齿轮弦齿高弦齿厚卡尺; (2)游标卡尺; 3.计算器(自备) 4.附表 三、实验原理及步骤 渐开线齿轮参数测量,就是根据备测齿轮实物通过相应的测量方法,判定出

它的原设计的基本参数。这些基本参数主要是模数m (或径节DP )、压力角α、 齿数Z 、齿顶高系数*a h 、顶隙系数*C 、变位系数χ(移距系数)、齿高变动系数 y ?等。 由于齿轮所采用的标准制度各不相同,有时还遇到采用短齿齿形、变位齿轮,需要测量的参数很多,所以齿轮测量是一项比较复杂的工作。但是各种齿轮标准制度,都是规定以模数(或径节)作为齿轮其他参数和尺寸的计算依据,因此首先要准确地判定模数(或径节)的大小;同时压力角是决定齿形的基本参数,所以也要准确判定。一般齿轮参数测量的步骤大体如下: (1)数出齿数Z ; (2)测量模数模数m (或径节DP )、判定压力角α; (3)测定齿顶高系数* a h ; (4)测量顶隙系数*C ; (5)测定变位(移距)系数χ; (6)测定齿高变动系数y ?。 1.压力角α的判定及模数m 的测量 (1)压力角α的初步判定 目前国际上通常采用 模数制和径节制这两种齿轮标准制度。这两种制度所采用的压力角一般分别为 200 和0 2 1 14。首先通过观察 图1 被测齿轮齿的形状,如果齿 廓弯曲一些,齿槽根部狭窄而圆弧大,就可以判定是模数制,其压力角为200,如图1-a 所示,如果齿廓曲线平直一些,齿槽根部较宽而圆弧小,就可以判定是 径节制的、压力角为0 2 1 14,如图1-b 所示。同时还可以进一步分辨它的齿形, 如果细长就属于标准齿形,1=*a h ,如图1-c ,如果短粗就属于短齿齿形8 .0=* a h 如图1-d 。这仅是目测判定,这个结果还可通过模数测量中的计算法或查表法进行校核。 (2)模数m 的测量 1)测量固定弦齿厚弦s 与固定弦齿高弦h 的计算公式如下: απ2cos 2 m s =弦

齿轮齿形齿向测量说明书

JD 系列齿轮测量中心 测量控制及误差评值软件 说明书 (圆柱齿轮) 哈尔滨精达测量仪器有限公司

1.软件简介 欢迎使用哈尔滨精达测量仪器有限公司JD型齿轮测量中心测量控制及齿轮微机误差数据采集及误差评值软件系统。齿轮量仪测控及齿轮误差评值软件系统GIES(Aotomated Gear Inspecting &Evaluating Software System)是齿轮量仪应用通用微机进行高精度闭环轨迹数控、测量数据采集、数据处理,按国际齿轮精度标准对齿轮检测控制及对测量结果进行误差评值的软件系统。该系统结合齿轮测量中心的测量特点,全汉化弹出式结构,人机接口方便实用。 电子展成式齿轮测量中心系统简介 电子展成式齿轮测量中心是依据坐标测量原理。由Φ、X、Y、Z四个高精度测量坐标轴组成的测量系统。根据被测对象的需要可分别采用直角坐标、法向极坐标、柱面坐标等不同坐标系,建立测量对象的数学模型,通过计算机闭环数字控制,插补实现测量头的空间轨迹,由测微式测量头测量被测参数的实际误差、高速测量数据采集,并由计算机测量软件完成测量数据分析,按照齿轮误差理论及齿轮精度标准对测量数据进行误差评值、生成测量报告、输出测量结果,对齿轮加工机床进行调整或对齿轮质量进行验收。 图1-1是齿轮测量中心系统组成 1、测量主机 2、计算机系统 3、打印机 4、微机工作台

GIES软件系统的特点 1)全自动控制仪器测量动作、数据采集、误差补偿、测量结果误差评值及测量结果输出等功能; 2)通用弹出式菜单完成测量参数输入、测量方式设置、误差评值标准选择,测量数据存盘等功能,屏幕显示彩色测量报告单; 3)根据输入齿轮基本参数(齿数、模数、压力角、变位系数等)自动计算出测量评定长度等测量数据、可自动和人工选择长度和误差放大比; 4)手工选齿、四分或三分左右面测量及测量结果存盘、打印;按GB10095-2001标准、ISO标准、或其他可选的齿轮标准(如DIN、ANSI/AGMA等)对凸形、修缘等设计齿形、齿向、齿距进行误差评值;具有齿廓、螺旋线修缘量及修缘长度评定功能; 5)可对被测齿轮的受检范围精确确定,微机自动确定起测、起评、终评、终测四点位置,其中齿形测量起评位置按标准齿条啮合确定,并且误差评定范围可由用户根据图纸或测量要求在菜单上改变; 6)齿廓、螺旋线误差测量结果评定位置(起评、终评点)可以在屏幕上方便改变,重新设定; 7)具有“K”形框图误差评定功能; 8)具有“三压力角”误差评定功能; 9)精度等级评定按照GB10095-2001标准、ISO标准,预先确定精度等级,对超差误差项目作出标记; 10)激光打印机输出测量结果(误差曲线及数值),可选择输出各种国际通用格式或用户要求格式的齿轮测量报告单; 11)按用户要求特殊提供测量软件输出格式(如在测量报告单上输出用户方厂名、名标及产品编号、日期、检验员签字等); 硬件组成: 1)精密测量主机(圆回转转台及X、Y、Z直线坐标舟); 2)测微式测量传感器、高精度光栅编码; 3)CNC闭环数控系统; 4)系统微机及激光针打印机; 5)数据采集电路(光栅记数、A/D转换、接口); 软件功能 齿轮:齿廓(Fα、f fα、f Hα、Cα)、螺旋线(Fβ、f fβ、f Hβ、Cβ)、 齿距(fpt、fu、Fp)、径跳(Fr);

渐开线齿轮教程

用CATIA V5来设计斜齿轮与直齿轮的参数 来源:互联网 2009 年10 月20 日有0位网友发表评论 【大中小】 【3D动力网】一齿轮参数与公式表格;二参数与公式的设置; 三新建零件;四定义原始参数;五定义计算参数;六核查已定义的固定参数与计算参数;七定义渐开线的变量规则;八制作单个齿的几何轮廓;九创建整个齿轮轮廓;十创建齿轮实体。

目录 一齿轮参数与公式表格————————————————————————PAGE1 二参数与公式的设置—————————————————————————PAGE2 三新建零件—————————————————————————————PAGE3 四定义原始参数———————————————————————————PA GE4 五定义计算参数———————————————————————————PA GE5 六核查已定义的固定参数与计算参数——————————————————PAGE6 七定义渐开线的变量规则———————————————————————PAGE7

八制作单个齿的几何轮廓———————————————————————PAGE8 九创建整个齿轮轮廓—————————————————————————PAGE1 6 十创建齿轮实体———————————————————————————PA GE17 一、齿轮参数与公式表格 序号参数类型或单位公式描述 1 a 角度(deg) 标准值:20deg 压力角:(10deg≤a≤20de g) 2 m 长度(mm) ——模数 3 z 整数——齿数(5≤z≤200) 4 p 长度(mm) m*PI 齿距 5 ha 长度(mm) m 齿顶高=齿顶到分度圆的高度 6 hf 长度(mm) ifm1.25,hf=m*1.25;

SolidWorks渐开线齿轮的绘制方法

现在中国使用SolidWorks软件的用户越来越多,对于一些初学者,在齿轮的绘制过程中会遇到很多问题。本文笔者就是针对这一主题而写,希望对那些还处于齿轮建模迷惑中的读者有一些抛砖引玉的作用,提高设计者的软件使用水平,开拓一条新的设计思路。阅读本文前,读者朋友应当先完成SolidWorks基本模块的学习,或者是有一定的软件使用经历和基础。 一、明确设计目的 齿轮在机械传动设计中是重要的传动零件,它有很多其他传动机构无法比拟的优点,如传动效率高(一般在0.9以上),传动平稳(斜齿轮尤为突出),传动力矩大,准确的瞬时传动比,寿命长,而且可以改变传动方向等,这些优点决定了齿轮在动力传动和运动传动中占有不可动摇的地位。一般齿轮的齿廓都是渐开线,那么如何在SolidWorks中绘制渐开线呢?在开篇之前先请读者思考一个问题:为什么要绘制精确的“渐开线”齿轮呢?是为了做运动模拟?出2D 的工程图?到C N C里进行加工?还是作为CAE的分析模型呢? 当然,如果我们的目的不同,那么我们的齿轮就有不同的绘制方法。请看下面的详细讲解。 二、简化齿轮的绘制 1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。

(2 )目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令和一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

齿轮齿形的加工方法以及选择

齿轮齿形的加工方法以及选择 齿轮在工业生产中运用的范围十分广泛,它是传递运动和动力的重要零件之一。而且产品的工作性能、承载能力、使用寿命以及工作精度等,都与齿轮本身的质量有很大的关系。所以在制作齿轮表面的过程中,加工方法以及选择就显得十分重要。 随着生产和科学技术的不断发展,人们越来越高的要求机械产品的工作精度,同时对于传递功率、转速的要求也越老越高。所以对于尺寸齿形的加工要求有增无减。由于齿轮在使用上的特殊性,除了一般的尺寸精度、形位精度以及表面质量的要求外,还有一些特殊的要求。 加工要求: (1)传递运动的准确性:为了提高设备的工作精度,齿轮作为重要的零件,其传递运动的准确性是十分重要的。这就要求在一转为单位的范围内,齿轮的最大转角误差需要所有限制,不能超出以保证传递运动的准确性。 (2)传动的平稳性:想要减少设备加工时的损耗,就要提高齿轮传动的平稳性,这一点要求尺寸传动瞬间时传动比的变化要小,以免引起冲击,产生振动和噪声,甚至会出现整个齿轮破坏的情况。 (3)载荷分布的均匀性:这样做是避免由于齿面局部磨损影响齿轮的寿命。要求是在啮合时齿面,齿轮的接触要良好,避免出现应力集中的情况。

(4)传动侧隙:为了贮存润滑油提供空间,要求在啮合时,齿轮与非工作齿面之间需要存在一定的间隙。补偿因温度变化和弹性表型引起的尺寸变化以及加工和安装误差的影响。否则,齿轮传动在工作中可能被卡死或者烧伤。 齿形加工是齿轮加工的核心和关键,目前制造齿轮主要是用切削加工,也可以用铸造或碾压等方法。铸造尺寸的精度低、表面粗糙度值大;碾压齿轮生产率高、且力学性能好,但精度较低,仍为被广泛采用。 用切削加工的方法加工齿轮齿形,若按加工原理的不同,可分为成形法和展成法两种。成形法是指用与被切齿轮件形状相符的成形刀具,是一种可以直接得到齿形的加工方法,例如铣齿、成形磨齿等。展成法是指利用齿轮刀具与被切齿轮的啮合运动,切出齿形的加工方法,如插齿、滚齿和展成法磨齿等。 联诺化工以剃齿工艺为研究对象,研发高性能水基切削液实现加工过程的绿色化,减少对环境的污染。SCC730A水性环保切削液选用特制的高性能极压添加剂、防锈剂等其它添加剂复配而成,是高性能的多用途切削/磨削液。与水混合时,可形成稳定的透明溶液。具有良好的极压润滑性、防锈性、冷却性和清洗性。具有极强的抗微生物分解能力,在不同的水硬度条件下,仍可保持其稳定性。使用寿命为普通乳化油的5倍以上。 SCC730A水溶性切削液优点 ●代替传统乳化油,适合于所有材质的加工,

渐开线齿轮

一、 齿廓啮合基本规律 a) 两齿廓接触点的公法线必然通过此时传动比确定 的节点。 b) 传动比i=P O P O 1221=ωω c) 节点即相对速度中心。根据三心定理它在连心线 上。当传动比按一定规律变化时,它在连心线上 移动,当定传动比时它是固定的。 二、 渐开线 a) 渐开线的形成过程。 b) 图中虚线是发生线反向转动形成的,它是渐开 线齿廓的另一半。 c) 渐开线方程 r k =r b /cos αk θk =tan αk -αk 。 d) 渐开线离基圆越远,其曲率半径越大。基圆上 渐开线曲率半径为零。 e) 在展角相同处,基圆越大,渐开线曲率半径越 大。 三、 渐开线齿廓 a) 法相齿距等于基于齿距。(B 1B 2=p b ) b) 齿轮法向齿距所在的直线,是与齿轮基圆相切的;与 基圆相切的直线,与齿轮相邻同侧齿廓的两个交点之 间的线段,就是法向齿距; c) 齿距线就是渐开线发生线(一部分);将法向齿距线 沿基圆做纯滚动,两个交点(齿距线段的两个端点) 会沿着渐开线落到基圆上。所以,齿轮法向齿距和基 圆齿距相等。 d) 传动比i=P O P O 1221=ωω为一定值。传动比既与节圆半径成反比,又与基圆半径成反比,和所有相关圆半径成

反比。 e) 可分性:当中心距变动时,基圆半径不变,节圆半径按比例变化,传动 比不变。但顶隙和侧隙会变动。 f) 啮合角即节圆压力角。 g) 啮合角是一定值。 四、 渐开线齿轮 a) 标准齿轮就是具有标准模数m 、压力角α、齿顶系数ha*顶隙系数c*, 且分度圆槽宽等于齿厚s=e 的齿轮。 b) 分度圆即齿轮上具有标准模数和压力角的圆。 c) 渐开线上各处压力角不同。离基圆越远,压力角越大。分度圆上压力角 简称压力角。 d) 节圆压力角即啮合角。 e) 齿根高h f =(ha*+c*)m 标准ha*=1 c*=0.25 f) 在齿条中,齿距和槽宽相等的线称为分度线。 五、 渐开线齿轮正确啮合的条件 a) m 1=m 2 α1=α2 b) 正确啮合即每对进入啮合的齿接触点都在啮合线上 c) 即法向齿距相等 d) 法向齿距等于基圆齿距,即两齿轮基圆齿距相等。 e) P b = απαππcos m z dcos z d b == 六、 无侧隙安装 a) S 1’=e 2’ 或 e 1’=S 2’ b) P b =P ’cos α’ c) 能实现无侧隙安装节圆齿距必相等。 七、 齿轮齿条安装 a) 无论怎么安装,齿轮的分度圆总是和节圆重合。 八、 渐开线齿轮连续传动的条件 a) 重合度大于等于1。即εα=B 1B 2/P b ≥1

齿轮的分类

随着齿轮的使用量逐渐增多,生产销售这个产品的厂家也如雨后春笋般涌现出来。那这些厂家生产销售的产品种类有哪些呢?想必消费者在购买的时候也是比较想知道的。因为知道了具体产品分类,才能更加有效的进行购买。下面,就这个问题给大家分享一下,以便大家进行参考。 齿轮可按齿形、齿轮外形、齿线形状、轮齿所在的表面和制造方法等分类。 齿形包括齿廓曲线、压力角、齿高和变位。渐开线齿轮比较容易制造,因此现代使用的齿轮中,渐开线齿轮占绝对多数,而摆线齿轮和圆弧齿轮应用较少。 在压力角方面,小压力角齿轮的承载能力较小;而大压力角齿轮,虽然承载能力较高,但在传递转矩相同的情况下轴承的负荷增大,因此仅用于特殊情况。而齿轮的齿高已标准化,一般均采用标准齿高。变位齿轮的优点较多,已遍及各类机械设备中。 另外,齿轮还可按其外形分为圆柱齿轮、锥齿轮、非圆齿轮、齿条、蜗杆蜗轮;按齿线形状分为直齿轮、斜齿轮、人字齿轮、曲线齿轮;按轮齿所在的表面分为外齿轮、内齿轮;按制造方法可分为铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮等。

齿轮的制造材料和热处理过程对齿轮的承载能力和尺寸重量有很大的影响。20世纪50年代前,齿轮多用碳钢,60年代改用合金钢,而70年代多用表面硬化钢。按硬度齿面可区分为软齿面和硬齿面两种。 软齿面的齿轮承载能力较低,但制造比较容易,跑合性好,多用于传动尺寸和重量无严格限制,以及小量生产的一般机械中。因为配对的齿轮中,小轮负担较重,因此为使大小齿轮工作寿命大致相等,小轮齿面硬度一般要比大轮的高。 硬齿面齿轮的承载能力高,它是在齿轮精切之后,再进行淬火、表面淬火或渗碳淬火处理,以提高硬度。但在热处理中,齿轮不可避免地会产生变形,因此在热处理之后须进行磨削、研磨或精切,以消除因变形产生的误差,提高齿轮的精度。 以上就是今天分享的全部内容,希望对大家有所帮助。河南乾润机电设备有限公司是一个集研发生产销售为一体的高新技术企业。主导产品:各类胀紧连接套(胀套)、退卸套、紧定套等系列产品。

汽车齿轮变齿厚渐开线接合齿的测绘计算方法

变厚渐开线接合齿的测绘计算方法 摘要 本文叙述了什么叫圆柱斜齿变厚渐开线接合齿,圆柱斜齿变厚渐开线接合齿用于什么地方,起什么作用,并对圆柱斜齿变厚渐开线接合齿的专用计算公式进行了推导,确立了该接合齿测绘计算方法,以ZJ 变速器倒档齿轮上的内接合齿和倒档接合齿座上的外接合齿为例,证明了此圆柱斜齿变厚渐开线接合齿的测绘计算方法是完全正确的。 关键词 圆柱斜齿变厚接合齿 测绘 计算 1 前言 ZF 某种变速器的倒档齿轮副为常啮合的斜齿轮,采用滑动倒档齿轮换档。为了能够顺利实现滑动斜齿轮换档,同时有效地防止跳档,使用了一种新型的换档接合齿——圆柱斜齿变厚渐开线接合齿,与普通接合齿不同之处在于除有倒锥外,还有螺旋角,这种接合齿的测绘计算还是一个新课题。经笔者反复理论推导,确立其测绘计算方法,并经实例证明完全正确。在此,将圆柱斜齿变厚渐开线接合齿的测绘计算方法介绍给大家供参考。 2 公式推导 2.1 由变厚形成的分度圆螺旋角公式见图 1 图1 由变厚形成的分度圆螺旋角 t k t tgQtga b c tg atga c tgQ a b == == β (1) 式中 a ——分度圆变位置 b ——齿宽 c ——分度圆一侧齿厚减薄量 Q ——根圆斜角 a t ——端面压力角

βk ——由变厚形成的分度圆螺旋角 2.2 由变厚形成的基圆螺旋角公式 根据渐开线齿轮原理可知:t k bk a tg tg cos ββ=将公式(1)代入得: t t t bk a tgQ a tgQtga tg sin cos ==β (2) 式中 bk β——由变厚形成的基圆螺旋角 2.3 由斜齿形成的任意圆螺旋角公式(见图2) 图2 任意圆螺旋角 f e rk r g rk rg ββββββ+=-++)()( f e t g βββ+=2 (3)式中rg β——由斜齿形成的任意圆螺旋角 )(2 1 f e t g βββ+= rk β——由变厚形成的任意圆螺旋角、 e β——大螺旋齿面任意圆螺旋角 ; f β——小螺旋齿面任意圆螺旋角 2.4 由斜齿形成的基圆螺旋角公式 根据渐开线齿轮理论有d d tg tg j g j ? =ββ转变为r b rg bg d d tg tg ? =ββ (4) 式中 j β——由斜齿形成的节圆螺旋角;g β——由斜齿形成的分度圆螺旋角; j d ——节圆直径; d ——分度圆直径; bg β——由斜齿形成的基圆螺旋角; b d ——基圆直径; r d ——任意圆直径; 2.5 端面钢球直径公式见图3 ()()2cos cos 2÷??? ?????-++=+=bk bg p bk bg p ptf pte pt d d d d d ββββ ()()??? ?????-++=bk bg bk bg p pt d d ββββcos 1 cos 12 (5) 式中 pt d ——端面钢球直径; pte d ——端面大钢球直径; p t f d ——端面小钢球直径; p d ——钢球直径; 2.6 外接合齿钢球跨距计算公式见图3 2.6.1 外接合齿任意截面基圆端面弧齿厚见图3 bk btd btr Ltg S S β2-= (6) 式中 b t r S ——外接合齿任意截面基圆端面弧齿厚;

齿轮轮齿的加工方法

?齿轮轮齿的加工方法 轮齿加工的基本要求是齿形准确和分齿均匀。 轮齿的加工方法很多,最常用的是切削加工法,此外,还有铸造法、热轧法等。 轮齿的切削加工法可以分为仿形法与范成法两大类。 1、仿形法 仿形法是用与齿轮齿槽形状相同的圆盘铣刀或指状铣刀在铣床上进行加工,如下图所示。指状铣刀主要用于加工大模数(m>8mm)的齿轮。 这种加工方法精度低,而且是逐个齿切削,切削不连续,故生产率很低,仅适用单件或小批生产低精度的齿轮。 2、范成法 范成法也叫展成法,它是利用齿轮的啮合原理来切削轮齿齿廓的。这种方法加工齿轮精度较高,是目前轮齿加工的主要方法。 范成法种类很多,有插齿、滚齿、剃齿、磨齿等,其中最常用的是插齿和滚齿,剃齿和磨齿则用于精度和光洁度要求较高的场合。 ?插齿,如下图所示为用齿轮插刀加工齿轮时的情形,图中1为插齿刀,2为被加工齿轮轮坯。齿轮插刀的形状和齿轮相似,其模数和压力角与被加工。 齿轮相同。加工时,插齿刀沿轮坯轴线方向做上下往复的切削运动,同时,机床的传动系统严格地保证插齿刀与轮坯之间的啮合运动关系。这样切制出来的轮齿齿廓,时插齿刀刀刃相对轮坯运动过程中刀刃各位置的包络线,如图(右下)所示。

插齿加工:(视频1) (视频2) 当齿轮插刀的齿数增加到无穷多时,其基圆半径变为无穷大,插刀的齿廓变成直线齿廓,齿轮插刀就变成齿条插刀1,如下图所示。 滚齿,这种齿轮加工方法是基于齿轮与齿条相啮合的原理,利用滚刀在滚齿机上进行轮齿的加工,如下图示。

滚刀1的外形类似沿纵向开了沟槽的螺旋,其轴向剖面的齿形与齿条相同。当滚刀转动时,相当于这个假想的齿条连续地向一个方向移动,轮坯2相 当于与齿条相啮合的齿轮,从而滚刀能按照范成原理在轮坯上切出渐开线齿廓。同时刀还沿着轮坯轴向缓慢移动,以便沿整个轴向齿宽切出齿轮的齿廓。 滚齿前后

(完整word版)渐开线齿轮

4.2 渐开线齿轮 一、渐开线的形成及其特性 1、渐开线齿廓的形成 直线BK沿半径为r b的圆作纯滚动时,直线 上任一点K 的轨迹称为该圆的渐开线。该圆称为 渐开线的基圆。 r b--- 基圆半径; BK --- 渐开线发生线; --- 渐开线上K点的展角。 A为渐开线的起始点,K为渐开线上任一点,

其向径用r k表示。 渐开线齿轮的齿廓曲线是渐开线。 2、渐开线的特性 1)发生线沿基圆滚过的长度,等于基圆上被滚过的圆弧长度。 由于发生线BK在基圆上作纯滚动,故

2)渐开线上任一点的法线恒与基圆相切。 发生线BK沿基圆作纯滚动,它与基圆的切点B即为其速度瞬心,所以发生线BK 即为渐开线在K点的法线。又由于发生线恒切于基圆,故渐开线上任一点的法线恒与基圆相切。 3)渐开线上离基圆愈远的部分,其曲率半径愈大,渐开线愈平直。 发生线BK与基圆的切点B是渐开线在点K的曲率中心,而线段KB是相应的曲率半径,故渐 开线上离基圆愈远的部分,其曲率半径愈大,渐开线愈平直;渐开线初始点A处的

曲率半 径为零。 4)基圆内无渐开线。 5)渐开线的形状取决于基圆的大小。 基圆愈小,渐开线愈弯曲;基圆愈大,渐开线愈平直。当基圆半径为无穷大时,其渐开线将成为一条直线。

二、渐开线齿廓的啮合特点 一对齿轮传动,是依靠主动轮的齿廓依次推动从动轮的齿廓来实现的。因此,要能实现预定的传动比,一个齿轮最关键的部位是轮齿的齿廓曲线。 图示为一对分别属于齿轮1和齿轮2的两条齿廓曲线G1、G2在点K 啮合接触的情况。齿廓曲线 G1绕O1点转动,G2绕O2 转动。过K点所作的两齿廓的公法线nn与连心线O1O2 相交于点C。 由三心定理知,点C是两齿廓的相对速度瞬心,齿廓曲线G1和齿廓曲线G2在该点有相同的速度: 由此可得 我们称点C为两齿廓的啮合节点,简称节点。 齿廓啮合基本定律: 两齿廓在任一位置啮合接触时,过接触点所作的两齿廓的公法线必通过节点C,它们的传动比等于连心线O1O2被节点C所分成的两条线段的反比。

SolidWorks-画渐开线直齿轮的三种画法

SolidWorks 2014画渐开线直齿轮的三种画法 摘要:本文详细介绍了SOLIDWORKS 画渐开线直齿轮的三种画法,分别是方程式驱动的参数法、TOOLBOX 标准库取样法以及GEAR TRAX 插件法,个人觉得GEAR TRAX 插件做出来的齿轮最精确,但是因为要下载插件比较繁琐,TOOLBOX 方法比较简单,但模型不够精确,方程式法需要对齿轮相关的参数有一定的了解,非常值得学习。 0 前言 本文针对的是初级学习者,所以对于SOILDWORKS 的大神一笑而过就好,勿喷。这三种方法百度上都有,但不够集中,初学者学起来很费劲,所以我就将三种方法集中起来供大家参考。 本文齿轮参数设模数为m=2,齿数为z=50,压力角ο20=α,齿宽B=20,则根据相关的公式得到: 分度圆直径:d=mz=100mm 齿顶圆直径:da=(z+2)m=104mm 齿根圆直径:df=(z -2.5)m=95mm 基圆直径:db=mzcos α=93.969mm 分度圆齿厚:s=0.5m π=π 齿轮齿根圆角:r=0.38m 注:当压力角为20度时,齿轮齿数在41及以下,基圆直径大于齿根圆直径,齿数在42及以上,基圆直径小于齿根圆直径,本例为第二种情况。 1、对于直齿圆柱齿轮,当基圆大于齿根圆时,整个齿形就会分为:工作部分和非工作部分,工作部分为渐开线,非工作部分为过渡曲线,它们可用计算法、查表法、和代圆弧法来确定。 2、当基圆小于齿根圆时,由于过渡曲线部分不参与啮合,因此可以做成任意曲线,只要不妨碍共轭齿条(或齿轮)齿顶的运转即可,通常用直线、圆弧与铣刀齿形的渐开线部分连接。 我们这里统一将齿根圆与基圆的过度设成圆角,大小为0.38m 。 渐开线方程式:???sin cos b b r r x += ???cos sin b b r r y -= 这里rb=db/2,是基圆半径,?为渐开线走过的角度,这里取0~π/4就好。 1 方程式法 打开SOLIDWORKS ,新建一个文件,打开方程式,方程式在工具选项卡里面

相关主题
文本预览
相关文档 最新文档