当前位置:文档之家› 马克斯坦长度等

马克斯坦长度等

马克斯坦长度等
马克斯坦长度等

层流燃烧速率和马克斯坦长度

层流燃烧速率和马克斯坦长度是表征层流燃烧特性的重要参数。层流燃烧速率可用于分析和预测发动机的燃烧性能,对指导发动机的优化设计有重要意义。目前,测量可燃气体层流燃烧速率的方法主要有逆流双火焰法(eounterflowdouble flames),平面火焰燃烧法(flat flameburner)和球形火焰扩散法(spherically expandingflames)。Bradley 和Gu 等许多学者都认为,火焰拉伸对层流燃烧速率有较大影响,是引起测量误差的主要因素。燃烧速率对火焰拉伸的敏感程度可通过马克斯坦长度参数来表征。它表征出火焰的稳定性。由于球形火焰传播模型的拉伸率定义简单明确,火焰面上拉伸分布均匀,模型简单,操作方便。被广泛地应用在测量层流燃烧速率中。 层流燃烧速率和马克斯坦长度的测量原理

燃烧气体的层流燃烧速度是混合气状态参数的函数,受未燃气体压力、温度以及燃气物性和当量比等诸多因素的影响,在封闭空间内进行的球形火焰传播过程中,必然伴随着压力和温度的逐渐升高,因此只有在未燃区温度和压力变化范围均很小,并且火焰辐射损失较小的情形下,此时已燃气体经历的是一个准定压绝热燃烧过程,才可以认为此时的火焰燃烧速度是混合气的层流燃烧速度.预混燃烧气体在定容燃烧弹中的燃烧属于球形膨胀燃烧,对于球形膨胀火焰,拉伸火焰传播速度可由火焰半径与传播时间的关系式给出: dt

dr S u n =

(1)

式中:u r 为火焰半径;t 为时间。实际采用下式进行计算

)/()(1111-+-+--=i i i i ni T T r r S (2)

式中:ni S 为i 时刻拉伸火焰传播速度;1+i r 和1-i r 分别是1+i 和1-i 时刻的火焰半径。

广义的层流燃烧速度定义的对象是理想化的无限大的平面火焰,但在实际条件下,层流平面火焰仅仅是一种理想化的火焰形态,遇到的火焰不是平面而大多是曲面的,其火焰前锋受有火焰拉伸的作用.火焰拉伸率通常定义为火焰表面上一个无限小面积元素的对数时间变化率,即

dt dA A 1=

α (3)

而对于球形火焰,有 n u

u u t

S r dt

dr r dt

dA A d A d 221)(ln =

=

=

=

α (4)

根据马克斯坦长度理论,球形膨胀火焰的无拉伸层流火焰传播速度1S 与拉伸火焰传播速度n S 之间存有如下的线性关系

αb n l L S S =- (5)

于是由式(5)将n S 外推至α=0处,就可以得到火焰的无拉伸火焰传播速度1S 。(这里斜率b L 为马克斯坦长度,表征燃气火焰的稳定性)。无拉伸层流燃烧速度μ可由式(6)得出

l u

b l S u ρρ=

(6)

式中:u ρ,b ρ分别为未燃气密度和已燃气密度。u ρ由混合气初始状态决定,b ρ可由燃烧化学平衡计算获得。 Lewis 数和Zeldovich 数

燃烧的化学反应需要燃料与氧化剂在分子水平上的掺混,虽然在湍流燃烧中,这取决于涡团随机运动导致的湍流混合过程,但是分子和热量的扩散能力也是一个很重要的影响因素,尤其是在湍流扩散燃烧中。Lewis 数表征了物质扩散能力与热扩散能力的相对大小,对于湍流燃烧的数值模拟,这是计算中必须给定的一个重要参数。因为处理的简便性,火多工作中对各种组分的Lewis 数均取为l 。但是对于烃类物质的燃烧,中间反应产生的H 原子具有较强的扩散能力,其相对于2N 实际的Lewis 数为0.18,而且H 原子是大多基元反应中的反应物,对化学反应具有一定的控制作用,因此Lewis 数的设置有讨论和商榷的必要,其对数值模拟的结果的影响也需深入分析。综合而言,主要组分的掺混过程控制了火焰面的形态,减小其Lewis 数,能够强化混合,加快反应进程。而仅仅改变一些微量成分的Lewis 数,对火焰面形态影响不人,从这一点来说,如果关注的问题是热效应,把所有组分的Lewis 数取为1是合理的,但是,如果关注的是轻质

量分子的浓度,则必须采用实际的Lewis 数。

Zeldovich 数可以通过质量燃烧流量与绝热火焰温度的关系得到,它表征温度对质量燃烧流量的影响,由Zeldovich 数可以得到一步化学反应的全局活化能。

Zeldovich 数Ze 可通过Egolfopoulos ,Jomaas 等人给出的方法得到,

)/1()ln(2

ad a T d f d R E -= (1)

2ad

u

ad A e T T T X

R

E Z -=

(2)

R 为理想气体常数,l u f

μρ=0

,ad T 为绝对火焰温度,μT 为未燃气体温度。

优先扩散对火焰不稳定性的影响可以通过一个全局Lewis 数来表征,由式(3)推出,

??

?

??

?++--=

?

σσσ

/110

)()

1(2)

1(1Ln dx x

x Ln L Z M

e e a

(3)

式中,b ρρσμ/=,e Z 为Zeldovich 数,e L 为全局Lewis 数。

常用钢筋计算公式

常用钢筋计算公式 柱钢筋1.柱纵筋单根长度=柱基础内插筋+柱净高+锚固长度+搭接长度*搭接个数 搭接长度(Lle):如为机械连接或焊接连接时,搭接长度为0 a.柱基础内插筋长度=基础高-基础保护层+弯折长度 搭接长度(Lle):如果考试时候题中说明为不考虑,不用计算弯折长度:当基础高>LaE时,弯折长度为max(6d,150) 当基础高≤LaE时,弯折长度为15d b.柱净高长度:基础顶面——顶层梁地面之间的垂直高度 c.顶层锚固长度: ①中柱锚固长度=梁高-保护层+12d ②边、角柱锚固长度: ⑴内侧钢筋锚固长度同中柱 ⑵外侧钢筋锚固长度:1.5LaE(考试用) 2.柱箍筋: 单根长度=(b-2c+h-2c)*2+2* max(10d,75) b.柱宽;h.柱高; c.柱保护层 根数=(加密区长度/加密区间距+1)+(非加密区长度/非加密区间距-1)加密区长度: ①嵌固部分以上长度为:hn/3(hn本层柱净高)

②非嵌固部分以上长度为:max(hc,hn/6,500)(考试用) ③柱梁节点加密区长度为:梁高+max(hc,hn/6,500)(考试用) ④当有刚性地面时,除柱端钢筋加密区外尚应在刚性地面上、下各5 00mm高度范围内加密箍筋。 梁钢筋1.梁上部纵筋长度=总净跨长+左锚固+右锚固+搭接长度*搭接个数搭接长度:如为机械连接或焊接连接时,搭接长度为0左(右)锚固长度: 当hc-保护层<LaE时,弯锚,锚固长度=支座宽-保护层+15d 当hc-保护层≥LaE时,直锚,锚固长度= max(LaE,0.5hc+5d)保护层:是柱保护层 2.下部通长筋长度=净跨长+左锚固+右锚固+搭接长度*搭接个数左(右)锚固长度:同梁上部钢筋(下部钢筋在中支座中的锚固能直锚的时候直锚) 3.上部端支座负筋: 第一排=1/3净跨长+左(右)锚固长度 第二排=1/4净跨长+左(右)锚固长度 左(右)锚固长度:同梁上部钢筋 4.上部中间支座负筋: 第一排=1/3净跨长*2(净跨长取相邻两跨最大值)+支座宽 第二排=1/4净跨长+*2(净跨长取相邻两跨最大值)+支座宽5.架立筋单长=净跨长-净跨长/3*2+150*2

C++数据类型及其长度总结

C语言中数据类型的长度以及作用值域 一个指针本身占用4个字节 unsigned 用于修饰int 和char 类型。它使int 或char 类型成为无符号类型。 signed 是unsigned 反义词,如signed int 表示有符号类型,不过signed可以省略,所以上面列出char,short int,int 都是有符号类型。 有short int (短整型) ,所以也就有对应long int (长整型)。long int 用于表示4个字节(32位)的整数。但是在我们现在普通使用的32位计算机中,int 默认就是4个字节,所以long也是可以省略的。 (较早几年,也就是Windows 3.1/DOS 流行的时候,那时的机器及操作系统都是16位的,这种情况下,int 默认是16位的。此时,如果想实现32位整数,就必须定义为这样的类型:long int)。 在浮点数方面,我们最常用的将是double。它的精度适合于我们日常中的各种运算。当然,float的精度也在很多情况下也是符合要求的。 布尔型(bool)和无类型(void) 除字符型,整型,实型以外,布尔型和无类型也是较常用的两种数据类型。 布尔型(bool) 布尔类型是C++的内容,C语言没有这一类型。 布尔类型的数据只有两种值:true(真)或false(假)。 什么时候使用布尔型呢? 履历表中一般有“婚否”这一项,婚否这种数据就适于用真或假来表示。性别男女,有时也会用布尔值表示,(一般程序都不约而同地把男性设置“真”,女性设置为“假”。) 无类型(void)

这个类型比较怪“无”类型。是的,没有类型的类型。或者我们这样认为比较好接受:在不需要明确指定类型的时候,我们可能使用void 来表示。 =============================================================================== ========== =============================================================================== ========== =============================================================================== ========== Visual C++常用数据类型转换详解 本文将介绍一些常用数据类型的使用。 我们先定义一些常见类型变量借以说明 int i = 100; long l = 2001; float f=300.2; double d=12345.119; char username[]="女侠程佩君"; char temp[200]; char *buf; CString str; _variant_t v1; _bstr_t v2; 一、其它数据类型转换为字符串 短整型(int) itoa(i,temp,10);///将i转换为字符串放入temp中,最后一个数字表示十进制 itoa(i,temp,2); ///按二进制方式转换 长整型(long) ltoa(l,temp,10); 二、从其它包含字符串的变量中获取指向该字符串的指针 CString变量 str = "2008北京奥运"; buf = (LPSTR)(LPCTSTR)str; BSTR类型的_variant_t变量

钢筋工程量计算规则、公式大全

钢筋工程量计算规则 (一)钢筋工程量计算规则 1、钢筋工程,应区别现浇、预制构件、不同钢种和规格,分别按设计长度乘以单位重量,以吨计算。 2、计算钢筋工程量时,设计已规定钢筋塔接长度的,按规定塔接长度计算;设计未规定塔接长度的,已包括在钢筋的损耗率之内,不另计算塔接长度。钢筋电渣压力焊接、套筒挤压等接头,以个计算。 3、先张法预应力钢筋,按构件外形尺寸计算长度,后张法预应力钢筋按设计图规定的预应力钢筋预留孔道长度,并区别不同的锚具类型,分别按下列规定计算: (1)低合金钢筋两端采用螺杆锚具时,预应力的钢筋按预留孔道长度减0.35m,螺杆另行计算。 (2)低合金钢筋一端采用徽头插片,另一端螺杆锚具时,预应力钢筋长度按预留孔道长度计算,螺杆另行计算。 (3)低合金钢筋一端采用徽头插片,另一端采用帮条锚具时,预应力钢筋增加0. 15m,两端采用帮条锚具时预应力钢筋共增加0.3m计算。 (4)低合金钢筋采用后张硅自锚时,预应力钢筋长度增加0. 35m计算。 (5)低合金钢筋或钢绞线采用JM, XM, QM型锚具孔道长度在20m以内时,预应力钢筋长度增加lm;孔道长度20m以上时预应力钢筋长度增加1.8m计算。 (6)碳素钢丝采用锥形锚具,孔道长在20m以内时,预应力钢筋长度增加lm;孔道长在2 0m以上时,预应力钢筋长度增加1.8m.

(7)碳素钢丝两端采用镦粗头时,预应力钢丝长度增加0. 35m计算。 (二)各类钢筋计算长度的确定 钢筋长度=构件图示尺寸-保护层总厚度+两端弯钩长度+(图纸注明的搭接长度、弯起钢筋斜长的增加值) 式中保护层厚度、钢筋弯钩长度、钢筋搭接长度、弯起钢筋斜长的增加值以及各种类型钢筋设计长度的计算公式见以下: 1、钢筋的砼保护层厚度 受力钢筋的砼保护层厚度,应符合设计要求,当设计无具体要求时,不应小于受力钢筋直径,并应符合下表的要求。 (2)处于室内正常环境由工厂生产的预制构件,当砼强度等级不低于C20且施工质量有可靠保证时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于露天或室内高湿度环境的预制构件,当表面另作水泥砂浆抹面且有质量可靠保证措施时其保护层厚度可按表中室内正常环境中的构件的保护层厚度数值采用。(3)钢筋砼受弯构件,钢筋端头的保护层厚度一般为10mm;预制的肋形板,其主肋的保护层厚度可按梁考虑。 (4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm;梁、柱中的箍筋和构造钢筋的保护层厚度不应小于15mm。 2、钢筋的弯钩长度 Ⅰ级钢筋末端需要做1800、 1350 、 900、弯钩时,其圆弧弯曲直径D不应小于钢筋直径d 的2.5倍,平直部分长度不宜小于钢筋直径d的3倍;HRRB335级、HRB400级钢筋的弯弧

(整理)钢筋锚固长度计算方法

钢筋锚固长度计算方法 钢筋锚固就是受力钢筋埋入支座内部的部分,增加钢筋与混凝土之间的握裹力(摩擦力),是为了防止斜裂缝形成后,纵向钢筋拔出而导致梁的破坏。在简支梁两端及连续梁中间支座处,下部纵向钢筋伸入支座的锚固长度应满足:当KQ小于或等于0.07Rabh。时锚固长度大于或等于5d;当KQ大于0.07Rabh。时,锚固长度有两种:螺纹钢筋大于或等于10d;光面钢筋大于或等于15d。 一、钢筋工程量计算规则 1.钢筋工程,应区别现浇、预制构件和规格,分别按设计长度乘以单位重量,以吨计算。 2.计算钢筋工程量时,设计已规定钢筋搭接长度的,按规定搭接长度计算;设计未规定搭接长度的,已包括在钢筋的损耗率之内,不另计算搭接长度。钢筋电焊压力焊接、套筒挤压等接头,以个计算。 3.先张法预应力钢筋,按构件外形尺寸计算长度,后张法预应力钢筋按设计图规定的预应力钢筋预留孔道长度,并区分不同的锚具模型,分别按下列规定计算:(1)低合金钢筋两端采用螺杆锚具时,预应力的钢筋按预留孔道长度减去 0.354m,螺杆另行计算。(2)低合金钢筋一段采用徽头插片,另一端螺杆锚具时,预应力钢筋长度按预留孔道长度计算,螺杆另行计算。(3)低合金钢筋一段采用徽头插片,另一端采用帮条锚具时,预应力钢筋增加0.15m,两端采用帮条锚具时,预应力钢筋共增加0.3m计算。(4)低合金钢筋采用后涨硅自锚时,预应力钢筋长度增加0.35m计算。(5)低合金钢筋或钢绞线采用JM,XM,QM型锚具孔道长度在20m以内时,预应力钢筋长度增加1m;孔道长度20m以上时预应力钢筋长度增加1.8m计算。(6)碳素钢丝采用锥形锚具,孔道孔道长20m以内时,预应力钢筋长度增加1m;孔道长在20m以上时,预应力钢筋长度增加1.8m。(7)碳素钢丝两端采用镦粗头时,预应力钢丝长度增加0.35m计算。 二、各类钢筋计算长度的确定 钢筋长度=构件图示尺寸—保护层总厚度+两端弯钩长度+(图纸注明的搭接长度、弯起钢筋斜长的增加值)

七年级计算线段长度与角的计算的方法技巧

计算线段长度的方法技巧 线段是基本的几何图形,是三角形、四边形的构成元素。初一同学对于线段的计算感到有点摸不着头绪。这是介绍几个计算方法,供参考。 1. 利用几何的直观性,寻找所求量与已知量的关系 例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。 图1 分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。 解:因为点C分线段AB为5:7,点D分线段AB为5:11 所以 又 又因为CD=10cm,所以AB=96cm 2. 利用线段中点性质,进行线段长度变换 例2. 如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA 的长。 图2 分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。 解:因为N是PB的中点,NB=14 所以PB=2NB=2×14=28 又因为AP=AB-PB,AB=80 所以AP=80-28=52(cm) 说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。 3. 根据图形及已知条件,利用解方程的方法求解 例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍? 图3 分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知, ,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。 解:因为C为AD的中点,所以 因为,即

PLC数据类型

PLC数据类型 1、数据格式及要求 ①数据格式:及指数据的长度和表示方式 ②要求S7-200对数据的格式有一定的要求,指令与数据格式一 致才能正常工作。 2、用一位二进制数表示开关量 ①一位二进制数:一位二进制数有0(OFF)和1(ON)两种不 同的取值,分别对应开关量(或数字量)的两种不同状态。 ②位数据的数据类型:布尔(BOOL)型。 ③位地址:由存储器标识符、字节地址和位号组成,如等。 ④其他存储区的地址格式:由存储器标识符和起始字节号(一 般取偶字节)组成,如VB100、VW100、VD100等。 3、多位二进制数(8421码) ①数及数制:数用于表示一个量具体大小。根据计数方式的不 同,有十进制(D)、二进制(B)十六进制(H)和八进制等不同的计数方式 ②二进制表示:在S7-200中用2#来表示二进制常数,例如“2#”。 ③二进制大小:将二进制的各位(从右往左第n位)乘以对应 的位权(×2n-1),并将结果累加求和可得其大小。例如:2#=1×27+0×26+1×25+1×24+1×23+0×22+1×21+0×20=186 4、十六进制数 ①十六进制数的引入:将二进制数从右往左每4位用一个十六进

制数表示,可以实现对多位二进制数的准确读写。 ②不同进制的表示方法; ③十六进制数的表示方法:在S7-200中用16#表示十六进制常 数,例如“2#1010 1110 0111 0101”可转换为“16#AEF7”。 ④十六进制大小:将十六进制数的各位(从右往左第n位)乘 以对应的位权(×16n-1),并将结果累加求和可得其大小。例如:16#2F=2×161+15×160=47 5、数据长度:字节(Byte)、字(Word)、双字(DoubleWord) ①字节(B):从0号位开始的连续8位二进制数称为一个字节 ②字(W):相邻两个字节组成一个字的长度 ③双字(DW):相邻4个字节组成一个双字长度 ④字双字长数据的存储特点:高位存低字节、低位存高字节。 6、负数(有符号数)的表示方法 ①负数的表示:PLC一般用二进制的补码来表示有符号数,其最高位为符号位(0-正、1-负)。 ②绝对值相等的正负有符号数间的关系:正数的补码是它本身。 ④不同数据的取值范围:(下表) 数据基本类型

钢筋的长度怎么算

钢筋的长度怎么算 钢筋的计算是针对一个混凝土的构件说的。把我计算钢筋的经验告诉你,供你参考。首先要考虑盖构件中每根钢筋的制作、安装的要求,如锚固、搭接。。。。。。等等,搞清楚了,再按下面说的去做: 在钢筋混凝土构件中,最常见的钢筋形状有以下几种: (A):直钢筋,也叫通长钢筋,是两端无弯钩又无弯起的钢筋。螺纹钢通常不计算弯钩。其计算方法是 L=Lg-2*a,式中L:要计算的钢筋长度,Lg:构件的结构长度,a:保护层厚度(B):带弯钢筋,指端部带弯钩的钢筋,弯钩通常分为半圆、斜弯、直弯三种类型。其计算方法是: L=Lg-2a+2Lwg.式中Lwg表示钢筋一端的弯钩增加长度(可查表),其余同上。 (C):弯起钢筋,主要作用于梁、板支座附近的负弯矩区域中,弯起角有30度、45度、60度。其计算方法是: L=Lg-2a+2Lwq+2Lwg.式中Lwq表示钢筋弯起部分增加长度(可查表),其余同上。(D):箍筋,主要是用来固定钢筋位置。其计算方法是:L=Lz-8a-4d+2Lwg.式中,Lz表示构件截面周长,d表示箍筋直径,Lwg是表示箍筋弯钩的长度(这也可以去查表)。其余同上。 土建钢筋工程量计算实例 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 注意:下部钢筋不论分排与否,计算的结果都是一样的,所以我们在标注梁的下部纵筋时可以不输入分排信息。

以上三类钢筋中均涉及到支座锚固问题,那么,在软件中是如何实现03G101-1中关于支座锚固的判断呢? 现在我们来总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d } 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋 拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。(如下图所示) 7、吊筋 吊筋长度=2*锚固+2*斜段长度+次梁宽度+2*50, 其中框梁高度>800mm 夹角=60° ≤800mm 夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋 中间支座负筋:第一排为Ln/3+中间支座值+Ln/3; 第二排为Ln/4+中间支座值+Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长

钢筋锚固长度计算公式

钢筋锚固的计算公式一、梁 (1)框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层 +15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d } 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋 拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)*2+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。 7、吊筋

中考数学复习指导:求线段长度问题的一般方法

求线段长度问题的一般方法 求线段长度问题是初中几何中常见的题型之一,笔者就此类问题作了一些思考与归纳,供大家参考. 一、将求线段长的问题转化到直角三角形中求解 例1如图1,在Rt ABC V ,90ACB ∠=?,CD AB ⊥于D ,6AC =,8BC =,求CD 的长. 简解 由勾股定理,得10AB =再由三角形的面积公式,得 11 681022 ABC S CD =??=??V 于是得 4.8CD =. 例2 如图2,在ABC V 中,30A ∠=?,1 tan 3 B = ,BC =AB 的长. 简析 作CD AB ⊥于点D ,这样就构造了两个Rt V . 在Rt BCD V 中, 1 tan 3 CD B DB ==,3DB CD ∴= 由勾股定理,得1CD =,3BD =. 在Rt ACD V 中, AD =3AB =. 例3 如图3,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于两点M ,N .若点M 的坐标是(4,2)--,求点N 的坐标.

简析 如图3,作AE MN ⊥于点E , 连AM ,AN ,则构造了两个直角三角形Rt AME V ,Rt ANE V . 不妨设AO AM R ==,易得 2222(4)R R =+- 2.5R ∴=,4 2.5 1.5EN Em ==-= 2.5 1.51NF ∴=-= 从而点N 的坐标为(1,2)--. 例 4 如图4,点E 、O 、C 在半径为5的⊙A 上,BE 是⊙A 上的一条弦, 4 cos 5 OBE ∠= ,30OEB ∠=?,求BC 的长 简析 连EC ,由条件可知,图中有四个直角三角形,分别是OEC V ,OEF V ,EBC V ,FBC V . ∵90COE ∠=?,∴EC 为⊙A 的直径, ∴90CBE ∠=?, 又OCE OBE ∠=∠, ∴4 cos cos 5 OCE OBE ∠=∠=, 在Rt OEC V 中,易知8OC =,6OE =, 在Rt OEF V 中,30OEB ∠=?,6OE =, 得OF = 8FC OC OF ∴=-=-, 又30OEB OCB ∠=∠=?, 故在Rt FBC V 中,由边角关系,得 3BC =.

数据类型

数据类型 标识符是用来标识源程序中某个对象的名字的,这些对象可以是语句、数据类型、函数、变量、数组等等。C语言是大小字敏感的一种高级语言,如果我们要定义一个定时器1,可以写做"Timer1",如果程序中有"TIMER1",那么这两个是完全不同定义的标识符。标识符由字符串,数字和下划线等组成,注意的是第一个字符必须是字母或下划线,如"1Timer"是错误的,编译时便会有错误提示。有些编译系统专用的标识符是以下划线开头,所以一般不要以下划线开头命名标识符。标识符在命名时应当简单,含义清晰,这样有助于阅读理解程序。在C51编译器中,只支持标识符的前32位为有效标识,一般情况下也足够用了,除非你要写天书:P。 关键字则是编程语言保留的特殊标识符,它们具有固定名称和含义,在程序编写中不允许标识符与关键资亦同。在KEIL uVision2中的关键字除了有ANSI C标准的3 2个关键字外还根据51单片机的特点扩展了相关的关键字。其实在KEIL uVision2的文本编辑器中编写C程序,系统可以把保留字以不同颜色显示,缺省颜色为天蓝色。(标准和扩展关键字请看附录一中的附表1-1和附表1-2) 先看表4-1,表中列出了KEIL uVision2 C51编译器所支持的数据类型。在标准C语言中基本的数据类型为char,int,short,long,float和double,而在C51编译器中int和s hort相同,float和double相同,这里就不列出说明了。下面来看看它们的具体定义:数据类型长度值域 unsigned char 单字节0~255 signed char 单字节-128~+127 unsigned int 双字节0~65535 signed int 双字节-32768~+32767

钢筋长度计算公式

钢筋长度计算公式一、梁(1)框架梁一、首跨钢筋的计算1 、上部贯通筋上部贯通筋(上)长度=通跨净跨长通长筋1 2 、端支座负筋端支座负筋长度:第一排为Ln/3 +端支座锚固值;第二排为Ln/4 +首尾端支座锚固值+端支座锚固值3 、下部钢筋下部钢筋长度=净跨长+左右支座锚固值以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题:支座宽≥Lae 且≥0.5Hc +5d,为直锚,Lae 或≤0.5Hc +5d0.5Hc Max{Lae,+5d } 。钢筋的端支座锚固值=支座宽≤,为弯锚,取Max{Lae,取支座宽度- 保护层+15d } 。钢筋的中间支座锚固值=Max{Lae,0.5Hc +5d } 4 、腰筋构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋5 、拉筋拉筋长度=(梁宽-2×保护层)+2×11.9d (抗震弯钩值)+2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的/2 )×(构造筋根数/2 );如果给定了拉筋的布筋间距,那么根数=(箍筋根数拉筋的根数=布筋长-2 ×保护层)*2 +2×11.9d +8d 箍筋根度/ 布筋间距。6 、箍筋箍筋长度=(梁宽-2×保护层+梁高数=(加密区长度/ 非加/ 加密区间距+1)×2+(非加密区长度)+1 注意:因为构件扣减密

区间距-1 保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直 径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。7 、吊筋吊筋长度=2* 锚固(20d)+2* 斜段长度+次梁宽度+2*50 ,其中框梁高度>800mm 夹角=60°≤800mm夹角=45° ... 一、梁(1)框架梁一、首跨钢筋的计算 1、上部贯通筋上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋端支座负筋长度:第一排为Ln/3 +端支座锚固值;第二排为Ln/4 +端支座锚固值 3、下部钢筋下部钢筋长度=净跨长+左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae 且≥0.5Hc+5d,为直锚,取 Max{Lae,0.5Hc+5d } 。钢筋的端支座锚固值=支座宽≤Lae 或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度- 保护层+15d } 。Max{Lae,0.5Hc +5d } 钢筋的中间支座锚固值=4、腰筋构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋

数据类型

数据类型 Excel的单元格中的数据主要有常量、公式和函数。在向单元格中输入常量数据时,Excel根据输入自动区分数据的类型,主要包括文本、数值、日期或时间 1.文本数据 文本可以是数字、空格和非数字字符的组合。例如下列数据均为文本: 10AA109、 127AXY、 12-976 和 208 4675。 ①在默认时,所有文本在单元格中均左对齐。如果要改变其对齐方式,请单击“格式”菜单上的“单元格”命令,再单击“对齐”选项卡,从中选择所需选项。 ②如果要在同一单元格中显示多行文本,请选中“对齐”选项卡中的“自动换行”复选框。 ③如果要在单元格中输入硬回车,请按 ALT+ENTER ④如果输入全部由数字组成的文本数据,输入时应在数字的前面加一个西文单引号('),例如 '12434,Excel自动将其识别为文本型数据 2.数值数据 Excel将由下列21个字符: 0 1 2 3 4 5 6 7 8 9 + - ( ) , / $ % . E e 组成的字符串识别为数值型数据,中间不可有"空格" Excel 将忽略数字前面的正号(+),并将单个句点视作小数点。所有其他数字与非数字的组合均作文本处理。 输入分数为避免将输入的分数视作日期,请在分数前键入0(零),空格 ,如键入0 1/2。 输入负数请在负数前键入减号 (-),或将其置于括号( )中。 对齐数字在默认状态下,所有数字在单元格中均右对齐。如果要改变其对齐方式,请单击“格式”菜单“单元格”命令,再单击“对齐”选项卡,并从中选择所需的选项。 数字的显示方式 单元格中的数字格式决定 Excel 在工作表中显示数字的方式。如果在“常规”格式的单元格中键入数字,Excel 将根据具体情况套用不同的数字格式。例如,如果键入$14.73,Excel 将套用货币格式。如果要改变数字格式

钢筋长度计算规则

上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 端支座负筋长度:第一排为Ln/3+端支座锚固值;第二排为Ln/4+端支座锚固值 上部中间支座负筋(第二排)=1/4净跨长(取大值)*2+支座宽

下部钢筋长度=净跨长+左右支座锚固值 腰筋抗扭钢筋:构造钢筋长度=净跨长+2×15d

拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d ?拉筋直径取值:梁宽≤350取6mm,>350取8mm ?拉筋长度=梁宽-2*保护+2*1.9d+2*max(10d,75mm)+2d ?拉筋根数=((净跨长-50*2)/非加密间距*2+1))*排数 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 长度=(梁宽b-保护层*2+d*2)*2+(梁高h-保护层*2+d*2)*2+1.9d*2+max(10d,75mm)*2 吊筋长度=2*锚固+2*斜段长度+次梁宽度+2*50

?吊筋夹角取值:梁高≤800取45度,>800取60度 ?吊筋长度=次梁宽+2*50+2*(梁高-2保护层)/正弦45度(60度)+2*20d 负筋长度=负筋长度+左弯折+右弯折 钢筋理论质量=钢筋计算长度*该钢筋每米质量 钢筋理论质量=钢筋直径的平方(以毫米为单位)*0.00617 单位是千克 钢筋弯钩增加长度的理论计算值:对装半圆弯钩为6.25d,对直弯钩为3.5d,对斜弯钩为4.9d。 正筋就是正弯矩筋,就是对于受弯构件来说,如梁板等,下部受拉的部位的钢筋,对于连续梁板,一般就在跨中, 同理,负筋一般在支座处(上部受拉) 通长钢筋就是指在所标的区段内通长设置,直径可以不相同,可以采用搭接连接形式,保证梁各个部位的这个部分钢筋都能发挥其抗拉强度,而且两端应按受拉锚固的钢筋 贯通筋是指贯穿于构件(如梁)整个长度的钢筋,中间既不弯起也不中断,当钢筋过长时可以搭接或焊接,但不改变直径。贯通筋既可以是受力钢筋,也可以是架力钢筋。 支座有负筋,是相对而言的,一般应该是指梁的支座部位用以抵消负弯矩的钢筋,俗称担担筋。一般结构构件受力弯矩分正弯矩和负弯矩,抵抗负弯矩所配备的钢筋称为负筋,一般指板、梁的上部钢筋,有些上部配置的构造钢筋习惯上也称为负筋。当梁、板的上部钢筋通长时,大家也习惯地称之为上部钢筋。 至于端支座负筋,中间支座负筋就是两端的和中间的 盖筋又名盖铁、扣筋,通常设置在板的支座(端支座,中间支座),位置在板的上皮,其作用是抵抗板的负弯矩,也可以叫板负筋 现在板中差不多都有两层,下层筋都是通长的,应该叫主筋,而板负筋是架起来的,板负筋根据设计的不同也不一样,有板上全放的,也有不全放的,不全放的设计一般是长度有梁短跨的1/4 吊筋是将作用于混凝土梁式构件底部的集中力传递至顶部,是提高梁承受集中荷载抗剪能力的一种钢筋,形状如元宝,又称为元宝筋。 主要作用是:由于梁的某部受到大的集中荷载作用,可能会使梁上引起斜裂缝,特别是力作用在受拉区内,为了使梁体不产生局部严重破坏,同时使梁体的材料发挥各自的作用而设置的,主要布置在剪力有大幅突变部位,防止该部位产生过大的裂缝,引起结构的破坏,就必须配吊筋了,还要加配附加箍筋。 一般来说,常碰到的负弯矩筋有两种,一种是楼板与梁交接的地方,也就是楼板“生根”的地方,一般长度为跨过梁面1米左右;另一种就是梁的支座处,因为梁支端两端受向下的弯矩,在梁支座处,存在负弯矩,这是一个关键部位,常按锚固要求放一定的负筋。

钢筋锚固长度表

下图为03G101-1图集第34页的受拉钢筋抗震锚固长度查询表 常规情况下可以通过查表直接得到锚固长度Lae,较为方便。

下图为11G101-1图集第53页基本锚固长度(Lab)、基本抗震锚固长度(LabE)查询表 新版图集中如需求得锚固长度La及抗震锚固长度Lae需要根据表中的基本锚固长度乘以几个系数才能求得,相比03G图集查询相对麻烦,应部分网友建议,现将直径25划分以及环氧树脂涂层带肋钢筋划分条件调整至查询表范围内,以方便有需要的朋友直接查询。

表中数值均是根据GB50010-2010《混凝土结构设计规范》第8.3.1条之公式推导计算的,黄色部分为图集数值与计算数值不同之处,不知是图集计算错误还是图集有意如此所致,图集中此处数值为31d,环氧树脂涂层为39d,直径大于25为34d,直径大于25的环氧树脂涂层钢筋为43d(均比表中数值大1),如无需显示环氧树脂涂层钢筋,可见下表 以上内容仅是个人整理,以方便查询,原作者不能保证被转载后之数据无误,如有转载请注明原帖出处。 钢筋的表示方法有很多种,在不同的施工中用到的钢筋会不一样,一般在标识钢筋符号的时候要注意钢筋的根数、直径和等级,还有中心距等等,钢筋主要分为有Ⅰ级钢筋、Ⅱ级钢筋、Ⅲ级钢筋、Ⅳ级钢筋、Ⅴ级钢筋等等,这些钢筋的表示方法不一样,下面我们就简单的来看看: 热扎钢筋等级和直径符号:

这种钢筋符号的表示方法主要是根据钢筋的外形,性能和等级来分得,可以看出,钢筋的性能分为很多种,等级也分很多种,我们在购买钢筋的时候就要注意这些问题。

钢筋的标注: 一般在施工过程中,我们还是会对所需钢筋的数量和大小,以及钢筋间的直径做一个表示,表示方法就是以上的这种表示方法了,在施工过程中才能做得比较完善。 一般钢筋的表示方法: 以上是一般的钢筋的表示符号,这些符号在建筑施工图中是比较常见的,通过这些我们就能了解到具体的钢筋的某一个部位的衔接了。 连梁是指两端与剪力墙相连且跨高比小于5的梁(具体条文详见“高规”第7.1.8条);框架梁是指两端与框架柱相连的梁,或者两端与剪力墙相连但跨高比不小于5的梁。

word完整版七年级上学期求线段长度的方法

七年级上学期求线段长度的方法、练习、巩固提高 1、已知C是线段AB上任意一点,M是AC的中点,N是BC的中点,求证MN=AB. 2、已知A、B、C在同一直线上AC=AB,已知BC=12cm,求AB的长度。 3、已知C是线段AB的中点,D是CB上的点,DA=6,DB=4,求CD的长。 14、已知C是AB上一点,M是AC的中点,N是AB的中点,求证: MN= BC. 2 CDF为为,EAB的中点,:AD上顺次两点且AB:BCCD=2:3:2、、已知5AD=14cm,BC是 EF的长。的中点,求 CDF为E为AB的中点,::上顺次两点且C是ADAB:BCCD=2:32,、,、已知6AD=14cmB 的长。的中点,求EF PAQMBN 1 7、如下图,C、D、E将线段AB分成4部分且AC:CD:DE:EB=2:3:4:5,M、P、Q、N分别是AC、CD、DE、EB的中点,若MN=21,求PQ的长度 MQNP ABDCE

8、如下图,B、C、D依次是线段AE上的点,已知AE=8.9cm,BD=3cm,则图中以A、B、C、D、E 这5个点为端点的所有线段长度之和等于多少? BEACD 9、如下图,C是线段AB上一点,D是线段BC的中点,已知图中所有线段长度之和为23,线段AC与线段CB的长度都是正整数,则线段AC的长度是多少? CBDA 10、已知C是线段AB上一点,BC比AC的2倍少2cm,而AB比BC的2倍少6cm,求AB的长度。 11、已知A、B、C三点在同一条直线上,AB=20cm,BC=8cm,M是AB的中点,N是BC的中点,求MN的长度。 2 的长度。3,求线段ACAB=12cm,AC:BC=1:、已知12A、B、C三点共线, 自我测评: 1.已知C、D两点分线段AB为三部分,且AC:CD:BD=2:3:4,若AB中点为M,BD的中点为N,且MN=5cm,求AB的长。

数据类型

第四课数据类型 先来简单说说C语言的标识符和关键字。标识符是用来标识源程序中某个对象的名字的,这些对象可以是语句、数据类型、函数、变量、数组等等。C语言是大小字敏感的一种高级语言,如果我们要定义一个定时器1,可以写做"Timer1",如果程序中有"TIMER1",那么这两个是完全不同定义的标识符。标识符由字符串,数字和下划线等组成,注意的是第一个字符必须是字母或下划线,如"1Timer"是错误的,编译时便会有错误提示。有些编译系统专用的标识符是以下划线开头,所以一般不要以下划线开头命名标识符。标识符在命名时应当简单,含义清晰,这样有助于阅读理解程序。在C51编译器中,只支持标识符的前32位为有效标识,一般情况下也足够用了,除非你要写天书:P。 关键字则是编程语言保留的特殊标识符,它们具有固定名称和含义,在程序编写中不允许标识符与关键字相同。在KEIL uVision2中的关键字除了有ANSI C标准的32个关键字外还根据51单片机的特点扩展了相关的关键字。其实在KEIL uVision2的文本编辑器中编写C程序,系统可以把保留字以不同颜色显示,缺省颜色为天蓝色。 先看表4-1,表中列出了KEIL uVision2 C51编译器所支持的数据类型。在标准C语言中基本的数据类型为char,int,short,long,float 和double,而在C51编译器中int和short相同,float和double相同,这里就不列出说明了。下面来看看它们的具体定义:

表4-1 KEIL uVision2 C51编译器所支持的数据类型 1.char字符类型 char类型的长度是一个字节,通常用于定义处理字符数据的变量或常量。分无符号字符类型unsigned char和有符号字符类型signed char,默认值为signed char类型。unsigned char类型用字节中所有的位来表

钢筋理论长度计算

箍筋的理论长度计算 在钢筋的预算工程量计算时,因钢筋混凝土柱、梁中的箍筋长度没有统一的计算规定,方法比较混乱。目前常用以下几种方法: (1)箍筋长度=箍筋矩(方)形长度+6.25×2(钩) (d,为箍筋直径,下同); (2)箍筋长度=箍筋矩(方)形长度+4.9×2(钩) (3)箍筋长度=箍筋矩(方)形长度+不同直径的估计钩长 (4)箍筋长度=构件横截面外形长度-5cm。 上述种种计算方法,计算程序繁琐,计算结果都有出入,并且从理论上经不起推敲,给施工图预算的编制与审查带来很多麻烦。为了保证预算工程量的准确性,按照《混凝土结构工程施工及验收规范》(GB50204-92)(以下简称“规范”),从理论上探求一种准确而简化的箍筋长度计算方法。 从图3-11可以看出,为了控制主筋的混凝土保护层的厚度,箍筋的尺寸是按其内孔尺寸控制的(控制和固定主筋相对位置),它的理论长度应按应按箍筋中心线

长度计算的。 1.90°弯曲(三处)的中心曲线长度 按“规范”规定:箍筋的弯曲直径不应小于箍筋直径的2.5倍,现取等于2.5倍计算。箍筋在弯曲范围内的中心线长度(即中心曲线长度)如图3-12所示:中心

曲线AB=1.75d×2×π×90°/360° =2.75d三处90°弯曲中心曲线长度计:2.75d×3 =8.25d ① 2.135°弯曲(二处)的中心曲线长度(箍筋闭口处弯钩)从图3-13看出,135°弯曲同 理,中心曲线 AB=1.75d×2×π×135°/360° =4.123d 两处135°弯曲中心线长度计: 4.123d×2=8.25d ② 二处钩端平直段长度:钩端平直长度×2 ③ 3.矩(方)形箍筋四直线部分长度 如图3-11所示,箍筋四面直线部分长度: (a-2d0-1.25d×2)×2+(b-2d0-1.25d×2)×2 =2(a+b)-8d0-10d ④ 据以上计算,135°双钩箍筋长度为:

数据库数据类型的使用与区别

数据库数据类型的使用与区别 整型数据类型: 1、INT (INTEGER) INT (或INTEGER)数据类型存储从-2的31次方(-2 ,147 ,483 ,648)到2的31次方-1 (2 ,147 ,483,647)之间的所有正负整数。每个INT 类型的数据按4 个字节存储,其中1 位表示整数值的正负号,其它31 位表示整数值的长度和大小。 2、SMALLINT SMALLINT 数据类型存储从-2的15次方( -32, 768)到2的15次方-1( 32 ,767 )之间的所有正负整数。每个SMALLINT 类型的数据占用2 个字节的存储空间,其中1 位表示整数值的正负号,其它15 位表示整数值的长度和大小。 3、TINYINT TINYINT数据类型存储从0 到255 之间的所有正整数。每个TINYINT类型的数据占用1 个字节的存储空间。 4、BIGINT BIGINT 数据类型存储从-2^63 (-9 ,223, 372, 036, 854, 775, 807)到2^63-1( 9, 223, 372, 036 ,854 ,775, 807)之间的所有正负整数。每个BIGINT 类型的数据占用8个字节的存储空间。 浮点数据类型: 浮点数据类型用于存储十进制小数。浮点数值的数据在SQL Server 中采用上舍入(Round up 或称为只入不舍)方式进行存储。所谓上舍入是指,当(且仅当)要舍入的数是一个非零数时,对其保留数字部分的最低有效位上的数值加1 ,并进行必要的进位。若一个数是上舍入数,其绝对值不会减少。如:对3.14159265358979 分别进行 2 位和12位舍入,结果为 3.15 和3.141592653590。 1、REAL 数据类型 REAL数据类型可精确到第7 位小数,其范围为从-3.40E -38 到3.40E +38。每个REAL类型的数据占用4 个字节的存储空间。 2、FLOAT FLOAT数据类型可精确到第15 位小数,其范围为从-1.79E -308 到1.79E +308。每个FLOAT 类型的数据占用8 个字节的存储空间。 FLOAT数据类型可写为FLOAT[ n ]的形式。n 指定FLOAT 数据的精度。n 为1到15 之间的整数值。当n 取1 到7 时,实际上是定义了一个REAL 类型的数据,系统用4 个字节存储它;当n 取8 到15 时,系统认为其是FLOAT 类型,用8 个字节存储它。 3、DECIMAL DECIMAL数据类型可以提供小数所需要的实际存储空间,但也有一定的限制,您可以用2 到17 个字节来存储从-10的38次方-1 到10的38次方-1 之间的数值。可将其写为DECIMAL[ p [s] ]的形式,p 和s 确定了精确的比例和数位。

钢筋长度计算公式最新版本

钢筋长度计算原理及计算方法 钢筋重量=钢筋长度*根数*理论重量 钢筋长度=净长+节点锚固+搭接+弯钩(一级抗震) 柱 基础层:筏板基础〈=2000mm时,基础插筋长度=基础层层高-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接长度LLE(如焊接时,搭接长度为0) 筏板基础〉2000mm时,基础插筋长度=基础层层高/2-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 地下室:柱纵筋长度=地下室层高-本层净高HN/3+首层楼层净高HN/3+与首层纵筋搭接LLE(如焊接时,搭接长度为0) 首层:柱纵筋长度=首层层高-首层净高HN/3+max(二层净高HN/6,500,柱截面边长尺寸(圆柱直径))+与二层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 中间层:柱纵筋长度=二层层高-max(二层层高HN/6,500,柱截面尺寸(圆柱直径))+max(三层层高HN/6,500,柱截面尺寸(圆柱直径))+与三层搭接LLE(如焊接时,搭接长度为0) 顶层: 角柱:外侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5LAE 内侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+LAE 其中锚固长度取值: 当柱纵筋伸入梁内的直径长〈LAE时,则使用弯锚,柱纵筋伸至柱顶后弯折12d,锚固长度=梁高-保护层+12d;当柱纵筋伸入梁内的直径长〉=LAE时,则使用直锚:柱纵筋伸至柱顶后截断,锚固长度=梁高-保护层, 当框架柱为矩形截面时, 外侧钢筋根数为:3根角筋,b边钢筋总数的1/2,h边总数的1/2。 内侧钢筋根数为:1根角筋,b边钢筋总数的1/2,h边总数的1/2。 边柱:

相关主题
文本预览
相关文档 最新文档