当前位置:文档之家› 光伏系统设计中的组件超配

光伏系统设计中的组件超配

光伏系统设计中的组件超配
光伏系统设计中的组件超配

光伏系统设计中的组件超配与投资收益提升

——超配方案中的逆变器选型及影响

如何降低系统投资成本,提升投资收益,是光伏电站系统设计和优化的主要目标之一。欧美国家对光伏系统精细化设计研究较早,其中关于组件容量与逆变器容量的配比方案和应用,也已引起了国内业主、设计院和行业专家的关注。

“过去,光伏系统的容量按直流功率定义,而现在则按并网交流功率,过去光伏-逆变器容量比为1:1,现在为1.2:1,甚至更高”这是国内光伏行业著名专家王斯成老师在2014年的一次研讨会上给大家介绍的,同时王老师进一步分析说:“通过提高容配比,如10MW 光伏电站超配到12MW,每年可增加收益256万元,新增投资IRR(内部收益率)大于28%。

光伏组件容量和逆变器容量比,习惯称为容配比。光伏应用早期,系统一般按照1:1的容配比设计。在应用研究中发现,以系统平均化度电成本(Levelized Cost Of Electricity, LCOE)最低为标准衡量系统最优,在各种光照条件、组件铺设倾斜角度等情况下,达到系统最优的容配比都大于1:1。也就是说,一定程度的提升光伏组件容量,有利于提升系统的整体经济效益,这就是我们谈的组件超配。

一、系统容配比主要影响因素

合理的容配比设计,需要结合具体项目的情况,综合考虑,主要影响因素包括辐照度、系统损耗、组件安装角度等方面,具体分析如下。

1、不同区域辐照度不同

根据国家气象局风能太阳能评估中心划分标准,将我国太阳能资源地区分为四类,不同区域辐照度差异较大。即使在同一资源地区,不同地方的全年辐射量也有较大差异。例如,同是I类资源区的西藏噶尔和青海格尔木,噶尔的全年辐射量为7998 MJ/m2,比格尔木的6815 MJ/m2高17%。意味着相同的系统配置,即相同的容配比下,噶尔地区的发电量比格尔木高17%。若要达到相同的发电量,可以通过改变容配比来实现。

2、系统损耗

光伏系统中,能量从太阳辐射到光伏组件,经过直流电缆、汇流箱、直流配电到达逆变器,当中各个环节都有损耗。如图1所示,直流侧损耗通常在7-12%左右,逆变器损耗约1-%,总损耗约为8-13%(此处所说的系统损耗不包括逆变器后面的变压器及线路损耗部分)。也就是说,在组件容量和逆变器容量相等的情况下,由于客观存在的各种损耗,逆变器实际输出最大容量只有逆变器额定容量的90%左右,即使在光照最好的时候,逆变器也没有满载工作。降低了逆变器和系统的利用率。

图1:光伏系统各环节损耗组成

3、组件安装角度

不同角度安装的组件所接收到的辐照度不同,如分布式屋顶多采用平铺的方式,则相同容量的组件,输出能量比有一定倾角的低。 二、补偿超配与主动超配

由上分析可见,选择合适的系统容配比需要考虑诸多因素,为了进一步说明这个问题,这里将超配分为两部分,一是通过提高组件容量,补偿各种原因引起的损耗部分,使逆变器的实际输出最大功率达到逆变器的额度功率,定义为补偿超配。同时进一步提高组件的容量,提高系统满载工作时间,定义为主动超配。主动超配时,系统在中午光照较好时段存在一定时间的限功率运行,但系统的LCOE 达到最低值,即收益最大化。 1、补偿超配

由于光伏系统中的系统损耗客观存在,通过适当提升组件配比,补偿能量在传输过程中的系统损耗,使得逆变器可达到满功率工作的状态,这就是光伏系统补偿超配方案设计思路。

时间

功率 8:0018:00

组件理想输出功率(1000W/m 2)

系统损耗Pn 0.9Pn

时间

功率 系统损耗1.1Pn Pn

8:0018:00

逆变器实际输出功率

逆变器实际输出功率

组件理想输出功率(1000W/m 2)

(Pn 为逆变器额定功率)

(a )补偿超配前 (b )补偿超配后

图2:补偿超配前后光伏逆变器输出功率对比

如图所示,通过将容配比从1:1提升到1.1:1,使得逆变器在光照最好的时候能达到满载输出。提高了逆变器的利用率。也降低了系统每W 的成本。 2、主动超配

在补偿超配使得逆变器部分时间段达到满载工作后,继续增加光伏组件容量,通过主动延长逆变器满载工作时间,在增加的组件投入成本和系统发电收益之间寻找平衡点,实现

LCOE 最小,这就是光伏系统主动超配方案设计思路。

时间

功率 8:0018:00组件理想输出功率(1000W/m 2)

系统损耗Pn

时间

功率 系统损耗>1.1Pn

Pn

8:0018:00

逆变器实际输出功率

逆变器实际输出功率

组件理想输出功率(1000W/m 2)

舍弃的功率

(Pn 为逆变器额定功率)

(a )补偿超配 (b )主动超配

图3:补偿超配与主动超配后逆变器输出功率对比

如图所示,在主动超配的情况下,由于受到逆变器额定功率的影响,在组件实际功率高于逆变器额定功率的时段内,系统将以逆变器额定功率工作;在组件实际功率小于逆变器额定功率的时段内,系统将以组件实际功率工作。最终所产生的系统实际发电量曲线将出现如图所示的“削顶”现象。

主动超配方案设计,系统会存在部分时间段内处于限发工作,此段时间内逆变器控制组件工作偏离实际最大功率点。但是,在合适的容配比值下,系统整体的LCOE 是最低的,即收益是增加的。

补偿超配、主动超配与LCOE 关系如下所示,LCOE 随着容配比的提高不断下降,在补偿超配点,系统LCOE 没有到达最低值,进一步提高容配比到主动超配点,系统的LCOE 达到最低。再继续提高容配比后,LCOE 则将会升高。因此,主动超配点是系统最佳容配比值。

容配比

LCOE

1补偿超配点2

0.20.40.60.8主动

超配点

图4 容配比与LCOE 关系图

通过合理的超配方案设计,可以实现对光伏系统的优化,发电量进一步提升,系统平均化度电成本(Levelized Cost Of Electricity, LCOE )进一步降低,投资方整体收益进一步

提升。

在组件超配方案设计中,需要考虑当地光照条件、系统损耗、铺设倾斜角度等因素的影响,同时,逆变器的性能和选型也十分重要。集中型逆变器由于单机容量大,过载能力强,比组串型逆变器更适于超配。此外,超配后由于接入逆变器的组件容量提高了,会不会超过逆变器的运行范围,造成逆变器长期过载运行而影响逆变器安全?限功率运行时,直流电压会不会超过逆变器的允许范围?带着这些疑问,我们做了详细分析。

一、集中型逆变器设计超配方案更灵活

在光伏系统设计中,光伏组件是以组串为单位接入逆变器的。以常见的地面电站为例,一般每串22块组件,以每块组件为250Wp计算,也就是每个组串的功率为5500W。在系统设计中,不论是否进行超配,不论是选用集中型还是组串型,方案都必须满足每个逆变器所接入的组件容量为5500W的整数倍数这一基本要求。

以国内市场上主流的30KW额定功率的组串逆变器、和500KW额定功率的集中逆变器,可实现超配的容配比方案进行比较,如下表:

表1:组串型和集中型逆变器在相同容配比范围内可实现的超配方案对比

单机额定功率可接入组串数接入组件总功率容配比可选方案数量

组串型30kW 5串27.5kW 0.92

4种6串33.0kW 1.10

7串38.5kW 1.28

8串44.0kW 1.47

集中型500kW

84串462.0kW 0.92

53种85串467.5kW 0.94

... ...

91串500.5kW 1.00

92串506.0kW 1.01

... ...

136串748.0kW 1.50

如表1所示,在容配比(容配比=组件功率/逆变器额定功率)0.92到1.50之间,30KW 的组串逆变器可现实4种方案,500KW的集中逆变器可实现53种方案;也就是说,在容配比1.5以下,选用30KW的组串型逆变器仅有3种超配方案设计,选用500KW的集中型逆变器则可以有46种超配方案设计,可以满足不同项目配置的需要。

另外,部门厂家的组串式逆变器,直流输入端子数量都是按照标准额定容量配置的,无法接入更多的组串数量,尤其是针对光照资源较差的二三类区域,容配比可以相对较大的情况下,由于输入端子数量的限制,根本无法实现最优的容配比,而采用集中型逆变器方案中,

因为有直流汇流箱对组串的汇流环节,可接入的组串数量基本不受限制,进行超配方案时非常灵活。

二、超配对逆变器的影响

超配时,由于组件容量超过逆变器容量,对逆变器的安全运行有哪些影响呢?

1、逆变器是否会过载运行

补偿超配时,去除系统损耗后,逆变器实际输出的最大功率等于逆变器的额度功率,在逆变器的正常工作范围内,这很容易理解。而主动超配时,去除系统损耗后,若组件都工作在最大功率点,则将超过逆变器额度功率,会造成逆变器过载运行,甚至会超过逆变器的工作范围到达逆变器过载保护点,这是不允许的。如何解决这个问题呢?唯一的办法只有限制组件的输出,也就是通过逆变器控制,使得组件输出偏离最大工作点,以确保逆变器输出不超过其额度功率。由此可见,超配仅增加了逆变器满载运行的时间,提高了逆变器的利用率。逆变器不会过载运行,也就不会超过逆变器的运行范围。

2、限功率运行时会有哪些影响

由组件输出特性可知,在主动超配时,由于系统部分时间段内出现了限功率运行,逆变器控制组件输出偏离最大功率点,如下图所示,当工作点由A点向右偏离到C点时,组件输出电流减小,输出电压将升高。

主动超配中限功率运行时,组件工作点偏离

由图1曲线可见,当超配的功率越大,被限制的功率也就越大,每块组件的输出电流越小,组件工作点越向右偏移,电压越大,也就是说,超配功率越大,输出电压越高。通过分析计算,可获得不同容配比下逆变器实际工作电压如表2所示。可见,当容配比为1.5倍时,逆变器实际工作电压电压从MPPT电压673V抬升到770V,在逆变器的允许工作范围内。也就是说,即使在超配1.5倍时,系统的直流电压也不会影响逆变器的安全运行。

表2 不同超配比例下逆变器实际过电压

超配比例超配功率MPPT电压逆变器实际工作电压

1.05 525KW 678 677.8

1.1 550KW 677 677.3

1.2 600KW 676 73

2.84

1.3 650KW 675 751.36

1.4 700KW 674 76

2.46

1.5 750KW 673 770.03

三、总结

通过分析,在系统超配设计过程中,逆变器的选型十分关键,集中式逆变器由于单机容量与单个组串容量比值大,过载能力强,因此可方便的进行不同比例的配置,设计灵活,满足不同区域容量各异的要求。同时,合理的超配对逆变器及系统的正常工作没有任何影响,不会超过逆变器的安全运行范围。

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

太阳能光伏组件生产制造实用技术教程

太阳能光伏组件生产制造实用技术教程第1xx 太阳能光伏发电及光伏组件 1.1 太阳能光伏发电概述 1.2 太阳能光伏发电系统的构成及工作原理 1.3 太阳能光伏组件与方阵 第2xx 太阳能光伏组件的主要原材料及部件 2.1 太阳能电池片 2.2 面板玻璃 2.3 EVA胶膜 2.4 背板材料TPT 2.5 铝合金边框 2.6 互连条及助焊剂 2.7 有机硅胶 2.8 接线盒及连接器 2.9 原材料的检验标准及方法 第3xx 太阳能光伏组件生产工序及工艺流程 第4xx 电池片的分选、检测和切割工序 第5xx 电池片的焊接工序 第6xx 叠层铺设工序 第7xx 层压工序 第8 章装边框及清洗工序

第9xx 光伏组件的检验测试 第10xx 光伏组件的包装 第11xx 常用设备及操作、维护要点 第12xx 光伏组件的生产管理 12.1 光伏组件生产常用图表及技术文件 12.2 光伏组件的板型设计 12.3光伏组件生产的6S管理 12.4 光伏组件生产车间管理制度 12.5 光伏组件生产工序布局 附录 1 常用光伏组件规格尺寸及技术参数 附录2 IEC61215质量检测标准 附录3 ............. 第1xx 太阳能光伏发电及光伏组件 本章主要介绍太阳能光伏发电系统的特点、构成、工作原理及分类。 使读者对太阳能光伏发电系统有一个大致的了解。 1.1 太阳能光伏发电概述 1.1.1 太阳能光伏发电简介 太阳能光伏发电的基本原理是利用太阳能电池(一种类似于晶体二极管的半导体器件)的光生伏打效应直接把太阳的辐射能转变为电能的一种发电方式,太阳能光伏发电的能量转换器就是太阳能电池,也叫光伏电池。当太阳光照射到由P、N 型两种不同导电类型的同质半导体材料构成的太阳能电池上时,其中一部分光线被反射,一部分光线被吸收,还有一部分光线透过电池片。被吸收的光能激发被束缚图1-1 太阳能光伏电池发电原理

太阳能光伏产业产品分类

太阳能光伏产业产品分类 一、光伏应用产品 太阳能光伏组件、太阳能电池片、光伏逆变器 太阳能光伏发电系统、光伏支架、光伏控制器 光伏电气成套设备、光伏稳压器、太阳能蓄电池 光伏监测系统、光伏接线盒、连接器、光伏线缆 太阳能水泵、太阳能监控系统、其他光伏产品 二、光伏生产检测设备与材料 晶硅电池组件制造检测设备、薄膜组件制造检测设备 其他光伏生产检测设备、硅片、晶圆生产检测设备 晶硅电池片制造检测设备、硅棒、硅锭生产检测设备 光伏封装胶膜、光伏焊带及相关设备、光伏封装玻璃 光伏浆料、光伏组件边框、光伏背板、光伏生产用材料三、光伏原材料 硅片、硅原料、金属铜、不锈钢、铝型材 聚氨酯发泡料、镀铝锌板、塑料、光伏玻璃 橡胶、其它原材料、光伏回炉原料 四、太阳能灯、照明系统 太阳能路灯、太阳能庭院灯、太阳能草坪灯 风光互补灯、太阳能野营灯、太阳能LED灯 太阳能警示灯、太阳能杀虫灯、太阳能景观灯 太阳能台灯、太阳能交通灯、太阳能工艺灯 太阳能装饰灯、太阳能道钉灯、太阳能地埋灯 太阳能广告灯、太阳能应急灯、太阳能楼道灯 太阳能灯配件、光导照明系统、阳光导入器 其他太阳能灯 五、太阳能小家电 太阳能手电筒、太阳能电动玩具、太阳能移动电源 太阳能背包、太阳能充电器、太阳能手机充电器 太阳能收音机、太阳能风扇帽、太阳能汽车用品 太阳能钥匙扣、太阳能风扇、太阳能计算器 太阳能手表、太阳能家用应急灯、太阳能时钟 太阳能电子秤、太阳能手机、其他太阳能小家电 六、太阳能大家电 太阳能冰箱、太阳能家用空调、太阳能电视 太阳能洗衣机 七、光热产品

太阳能灶、太阳能集热器、太阳能采暖、光热产品生产检测设备太阳能光热发电系统、太阳能热泵、太阳能干燥 太阳能海水淡化、太阳能空调、其它光热产品 八、太阳能热水器 真空管热水器、分体式热水器、平板式热水器 壁挂式热水器、热水工程、其它太阳能热水器 九、太阳能热水器配件 控制仪、水箱、热水器配件生产设备、集热器 支架、传感器、热管、电热带、电加热、内胆 硅胶制品、真空管、阀门、保温管、管材 尾托、排气帽、内、外封头、端盖、热水增压泵 其它热水器配件 十、太阳能工程 太阳能光伏工程、太阳能光热工程、其他太阳能工程

光伏组件生产四 EL检测

光伏组件生产四——EL检测 太阳能电池组件缺陷检测仪——即EL测试仪是利用晶体硅的电致发光原理、利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。 EL 检测仪具有灵敏度高、检测速度快、结果直观形象等优点,是提升光伏组件品质的关键设备;红外检测可以全面掌握太阳电池内部问题,为改进生产工艺提供依据,提升产品质量,可以对问题组件进行及时返修,尽可能的降低损失。方便层压前和层压后太阳能电池组件的测试,更换不同规格的太阳能电池组件后设备能方便地调整,保证太阳能电池组件的安全。 使用EL检测仪 通过EL测试仪可以清楚的发现太阳能组件电池片上的黑斑、黑心以及组件中的裂片,包括隐裂和显裂、劣片及焊接缺陷等问题,从而及时发现生产中出现的问题,及时排除,进而改进工艺。对提高效率和稳定生产都有重要的作用,因而太阳电池电致发光测试仪被认为是太阳电池产线上的“眼睛”。 EL检查的生产工艺及注意事项 不同规格的电池片要使用不同的电流和电压,具体如下 注意事项

1.使用前确保太阳能电池组件规格是否有调整,严禁未经调整随意测试 不同规格的组件。 2.太阳能电池组件在传输过程中不得随意拉动或者停止太阳能电池组件,确保人员和产品的安全。 3.在检查直流电源前,请在切断电源10分钟后再用万用表等确认进行工作。 4.禁止随意使用U盘拷贝数据,避免病毒传染,重要数据流失。 5.如一段时间不使用,应同时关闭电脑及所有电源。 6.打开直流稳压电源后,确认电源上面的数值是否符合规格。 7.请勿在暗箱内放置任何物体。 EL检测阶段常见问题及解决方法 1、破片 生产过程中由于铺设、层压操作不当导致热应力、机械应力作用不均匀都有可能出现破片现象。 2、黑芯 黑芯一般是由于原材料商在拉硅棒的时候没有拉均匀所致。 3、断栅 断栅的原因是丝网印刷参数没调好或丝网印刷质量不佳,或者是硅片切割不均匀,也有可能出现断层现象。 4、暗片

独立光伏发电系统设计

独立光伏发电系统设计 目录 1引言 (1) 2 独立光伏发电系统工作原理 (1) 3 独立光伏发电系统的设计 (2) 3.1 系统容量的设计 (2) 3.2 太阳能电池组件及方阵的设计 (3) 3.2.1 光伏组件方阵设计需要考虑的问题 (3) 3.2.2 太阳能电池组件(方阵)的方位角与倾斜角 (4) 3.2.3 一般设计方法 (4) 3.3 直流接线箱的选型 (5) 3.4 光伏控制器的选型 (7) 3.6 光伏逆变器的选型 (8) 结论 (9)

独立光伏发电系统设计 摘要 太阳能光伏发电是一种最具可持续发展理想特征的可再生能源发电技术,发展太阳能光伏发电系统也具有很高的可行性,首先能缓解我国目前的能源问题以及日益严重的环境问题,还能解决边远地区居民用电难,成本高的问题。本论文将从小型独立系统的发电原理,系统设计原理,及其本身具有的优势结合其受众群体的所需考虑的各方面因素来设计适合家庭使用的小型系统。通过理论与实际市场调查相结合的方法设计适合全国各地人民使用的优惠且实用的系统。 关键词:小型;独立光伏发电;系统;优惠实用 1引言 当下,许多国家已把发展可再生能源作为未来实现可持续发展的重要方式,而中国也将以太阳能为代表的可再生能源作为未来低碳经济的重要组成部分。近年来,国家财政对太阳能产业的补贴力度逐年增强。独立光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。 2 独立光伏发电系统工作原理 通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统。其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。 太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。直流或交流负载通过开关与控制器连接。控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。在交流光伏发电系统中,DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

太阳能光伏产品关键词

产品关键词 公司网站 中文:晶体硅硅片,太阳能电池,太阳能组件,光伏发电系统, 太阳能LED路灯,英文:Solar panel, BIVP module series, PV system series 德语:Solar Module, Solarzelle, Silizium Wafer, Silizium Ingot/Block, PV Anwendungsystem 法语:Les panneaux solaires, Les cellules solaires, Silicium barres de silicium / lingots, des systèmes de puissance 西班牙语:Silicon Ingot, Silicon Wafer, Solar Cell, Solar Panel, PV Application System 意大利语:Pannelli solari, Celle solari, Wafer in silicio Lingotti in silicio, PVSistemi solari 主流关键词 Solar system Solar Tecgnology Solar energy

solar panel system Sun energy Sun energy system Solar Modules BIPV Modules solar panel Standard silicon modules poly solar panel mono solar panels Polycrystalline Solar Panel Pv Solar Panel Standard silicon modules pv power system solar pv power system Solar PV system

太阳能发电系统的设计分析

太阳能发电系统的设计分析 发表时间:2018-06-04T16:55:59.477Z 来源:《基层建设》2018年第10期作者:林刚张少利[导读] 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。 江苏四季沐歌有限公司江苏省连云港市 222000 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。太阳能发电系统采用太阳能电池阵列、太阳能控制器、蓄电池(组)、DC/AC 逆变器(并网/不并网)、低压输配电网及交、直流负载等部分组成。下面就谈谈自己对太阳能发电系统的设计的看法。 关键词:太阳能;发电系统;设计太阳能电池发电是基于“光生伏打效应”的原理,利用充电效应把太阳辐射直接转化为电能。太阳能具有永久性、清洁性和灵活性三大优点,是其他能源无法比拟的。总之,太阳能发电的过程没有机械转动部件也燃料消耗,不排放包括温室气体在内的任何有害物质,无噪音、无环境污染,太阳能资源分布广泛没有地域限制。维修保养简单,维护费用低,运行可靠性、稳定性好。无需架设输电线路即可就地发电供电及建设周期短。 1太阳能的特点 利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。太阳能是一种普遍存在的能源,并且无需采集、运输就可以直接开发利用;其次,太阳能作为一种清洁能源,对环境不会造成任何损害,在环保意识逐步提高的今天,值得推广应用;有数据显示,4年地球接受到的太阳能相当于130万亿吨煤产生的能量,应用潜力巨大;此外,太阳能量可持续时间如果用地球的寿命来换算,儿乎是取之不尽用之不竭的。然而,与此同时,太阳能的利用目前还存在一些问题,比如太阳能虽然普遍存在,但是也存在严重的不稳定性,同时总量虽大但是能流密度却相对较低,并且人类对于太阳能的利用率还处于较低的水平,同时应用成本也较高。 2太阳能发电系统 太阳能发电系统分为独立发电系统与并网发电系统:独立发电系统也叫离网发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电后直接接入公共电网。并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,目前还没有太大发展。而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是目前并网发电的主流。 太阳能电池板、太阳能控制器、蓄电池组是太阳能发电系统的主要组成部分,此外逆变器也是常见的辅助设备,用于输出合适交流电太阳能电池板的主要功能是转换太阳的辐射能为电能,送往电池组中进行存储,并推动负载作用,是太阳能发电系统中最核心、最有价值的组成部分,它的质量也直接决定了整个太阳能发电系统的质量。太阳能控制器负责对整个太阳能发电系统进行监控,并对蓄电池组起到一个保护的作用,此外,部分控制器可能还兼具有光控和时控功能。值得注意的是,一个合格的控制器在温差较大的地方,还应该配备温差补偿功能。太阳能蓄电池组的功能,就是将太阳能发电系统产生的电能储存起来以备用,铅酸电池、镍氢电池、镍锅电池或铿电池是最常见的蓄电池种类,除铅酸电池外,主要用于小微型的太阳能发电系统中。我们知道,太阳能直接输出的电能为12VDC,24VDC,48VDC,而我们日常使用的电能则为220VAC,110VAC,囚此逆变器的主要作用就是为我们提供合适的电能。 3太阳能发电系统的效率在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。 4太阳能发电系统的运行 4.1并网全自动运行方式 设计的太阳能发电系统产生的电能将直接分配到需要太阳能供电的用电负载上,包括楼道间照明以及地下停车场照明,不足的电力将由连接的电网进行补充调节。具体工作起来,就是太阳能发电系统在旱晚分别对太阳能电池板阵列的电压进行监测:旱上达到设定值即执行并网发电,并将产生的直流电经由逆变器转换为可供使用的交流电;晚上低于设定值时,并网发电系统将自动停止运行。 4.2并联运行方式 太阳能发电系统并联运行方式与并网全自动运行方式在电能利用和调节方式上基本一致,是一个相对独立的发电系统。该方式的配电方式与柴油发电机的配电方式基本相同,即增加一路交流市电供电,将经逆变器转换的交流电和市电组成A'1'SE双电源自动切换,这是一种简单、灵活、独立的发电系统,A'1'SE双电源自动切换系统会在太阳能供电中断,或者供电不足的时候自动切换到市电供电,供电的可靠性也随之提高然而,并联运行方式也有一定缺点,那就是A'1'SE双电源自动切换的过程中,将会中断一段时间的供电,这将不利于一些用电设备的正常运行,甚至可能会造成一定的损坏。同时,考虑到太阳能发电的不稳定性,并联运行方式的用电量也很难达到平衡。不过,由于并联运行方式可以尽量更多的发挥太阳能的发电量,从而部分节约备用的蓄电池,进而节约投资。 5太阳能光伏发电需要考虑的因素 5.1地理位置及气象条件 利用太阳能光伏发电必须要综合考虑各种因素,包括地点、纬度、经度、海拔等,太阳能每月的总辐射量。直接辐射量,年平均气温,最长连续阴雨天数,最大风速降雪及冰雹等特殊气象情况。 5.2最大负载及用电特性

光伏发电系统设计方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (6) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (7)

3.3光伏阵列设计 (12) 3.4系统效率分析 (15) 四、电气部分 (16) 4.1概述 (16) 4.2系统方案设计选型 (16) 4.3电气主接线 (20) 4.4主要设备选型 (20) 4.5防雷及接地 (30) 4.6电气设备布置 (31) 4.7电缆敷设及电缆防火 (31) 五、工程案例 ........................................................................... 错误!未定义书签。 六、系统配置以及报价.............................................................. 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规》; 2)GB50057《建筑物防雷设计规》; 3)GB31/T316—2004《城市环境照明规》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规》; 6)GBJ16—87《建筑设计防火规》; 7)《中华人民国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。

光伏组件常见质量问题现象及分析

光伏组件常见质量问题现象及分析 网状隐裂原因 1.电池片在焊接或搬运过程中受外力造成. 2.电池片在低温下没有经过预热在短时间内突然受到高 温后出现膨胀造成隐裂现象 影响: 1.网状隐裂会影响组件功率衰减. 2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能 预防措施: 1.在生产过程中避免电池片过于受到外力碰撞. 2.在焊接过程中电池片要提前保温(手焊)烙铁温度要 符合要求. 3.EL测试要严格要求检验. 网状隐裂 EVA脱层原因

1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层 4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层 组件影响: 1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm

硅胶不良导致分层&电池片交叉隐裂纹原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层 4.电池片或组件受外力造成隐裂 组件影响: 1.分层会导致组件内部进水使组件内部短路造成组件报废 2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.总装打胶严格要求操作手法,硅胶需要完全密封 5. 抬放组件时避免受外力碰撞 组件烧坏原因 1.汇流条与焊带接触面积较小或虚焊出现电阻加大发热造成组件烧毁 组件影响: 1.短时间内对组件无影响,组件在外界发电系统上长时间工作会被烧坏最终导致报废 预防措施: 1.在汇流条焊接和组件修复工序需要严格按照作业指导书要求进行焊接,避免在焊接过程中出现焊接面积过小. 2.焊接完成后需要目视一下是否焊接ok. 3.严格控制焊接烙铁问题在管控范围内(375±15)和焊接时间2-3s

太阳能发电系统毕业设计

太阳能发电系统设计 1引言 从“蒸汽机”到“电动机”的一系列动力技术发明,人们逐渐认识到,能 源技术的革新带动人类社会日益进步,对社会发展起着巨大的推动作用。但至今所采用的化石燃料能源带给人类文明与进步的同时,却因能源需求消耗的大幅提高以及随之而来的环境污染,形成了巨大的能源缺口,同时给环境造成巨大灾难。目前,油气资源的供不应求已成为我国经济发展的瓶颈,电力供应不容乐观,天然气用量迅速增长…… 最新的资料表明太阳光的充分利用,是最清洁,环保,取之不尽的可再生能源。 太阳能的利用 我国太阳能资源丰富,陆地每年接受的太阳辐射能,相当于2.431012tce,2/3国土面积的太阳能总辐射量超过0.6MJ/m2。如果将太阳能源充分加以利用,不仅有可能节省大量常规能源,而且有可能在某些区域完全利用太阳能采暖。 目前,太阳能利用主要有两个途径,即光热和光伏。光伏是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。光伏发电在太阳能利用上是主流,前景好。 太阳能原理 太阳能电池发电的原理是基于半导体的光电效应,即一些半导体材料受到光照时,载流子数量会剧增,导电能力随之增强,这就是半导体的光敏特性。 在晶体中电子的数目总是与核电荷数相一致,所以P(N)型硅对外部来 说是电中性的。若将P(N)型硅放在阳光下照射,仅是被加热,外部看不出 变化。但内部通过光的能量,电子从化学键中被释放,由此产生电子-空 穴对,但在很短的时间内(在μS范围内)电子又被捕获,即电子和空穴 “复合”。 1 / 20

当 P 型和 N 型半导体结合在一起时,在两种半导体的交界面区域里 会形 成一个特殊的薄 层,界面的 P 型一侧 带负电,N 型一侧带正电 。这是由于 P 型半导体多空穴,N 型半导体多自由电子,出现了浓度差。N 区的电 子会扩 散到 P 区,P 区的空穴会扩散到 N 区,一旦扩散就形成了一 个由 N 指向 P 的 “内 电场”, 从而阻止扩散 进行。达到 平衡后,就形 成了这样一 个特殊的 薄层形成电势差,这就是 P -N 结。 至 今为 止,大多 数太阳能 电池厂家都是 通过扩散工艺, 在 P 型硅片 上形成 N 型区 ,在两个 区交界就 形成了一个 P -N 结(即 N+ /P )。太 阳能电池的基本结构就是一个大面积平面 P -N 结) 如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的 光子能够在 P 型硅和 N 型硅中将电子从共价键中激发,以 致产生 电子-空 穴对。界面层附近的电子和空穴在复合 晶片受光过程中,空穴(电子)往 P(N)区移 之 前,将 通过空 间电荷 的电 场作用 被 相互分离。电子 向带正 电的 N 区 和空 穴向带负电的 P 区运动。通过界 面层 晶片受光后,空穴(电子)从 P(N)区正(负)电极流出 产生 一个向外 的可测试的电 压。通过光 照在界面层 产生的电 子- 空穴对越 多, 电流越大 。界面层吸收 的光能越多 ,界面层即 电池面积 越大,在太 阳 能电池中形成的 电流也 越大。 此即为光生伏特效应。 光伏系统 光伏系统是利用太阳电池组件和其他辅助设 备将太阳能转换成电能的系统。一般分为独立系 统、并网系统和混合系统。 白天,在光照条件下,太阳电池组件产生一 定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输 入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电 能贮存起来。晚上,蓄电池组为逆变器提供输入 电,通过逆变器的作用,将直流电转换成交流电, 2 / 20 的电荷分离,将在 P 区和 N 区之间

太阳能光伏发电系统设计思路

太阳能光伏发电设计思路

摘要:简要介绍太阳能光伏发电系统设计思路和组成光伏系统器件选型方法,分析和研究太阳能光伏发电的热点和核心技术。 前言:当今世界,能源是促进经济发达与社会进步的原动力。目前所使用之主要能源为化石能源,然而其蕴藏量有限,且在开发过程造成空气污染、环境破坏,积极开发低污染及低危险性的新能源乃为迫切需要。 太阳能发电是指太阳能光伏发电,光伏发电是利用半导光生伏特效应将光能直接转变为电能的一种发电技术。太能是一种非常理想的干净、安全且随处可得的清洁能源,因此各国均不断地研发各种相关技术,藉以提高系统发电效率并降低发电成本,推广普及使用太阳能。

第一部分 太阳能电池发电系统原理 太阳能电池发电系统(又称光伏发电系统),从大类上分为 独立(离网)和并网光伏发电系统两大类。 目前应用比较广泛的光伏发电系统,主要是在偏远地区可以 作为独立的电源使用,也可以与风力发电机或柴油机等组成混合发电系统,在城市太阳能光伏建筑集成并网发电得到了快速发展,光伏发电与建筑一体化是太阳能光伏与建筑的完美结合,属于分布式发电的一种。它能够减少电网用电,大大减轻公共电网的压力,就近向电网输送电力。 1.1独立的电源使用(光伏离网发电系统) 太阳能光伏组件组成太阳电池方阵,在充足情况下,一方面给负载供电(直流负载,若交流负载需要逆变器),另一方面给蓄电池组充电,晚上依靠蓄电池组放电供负载使用(如下图示意)。 图1-1直流负载光伏发电示意图 在方阵工作时,阻塞二极管防止向电池方阵反充电,止逆二极管两端有一定的电压降,对硅二极管通常为0.60.8V ;肖特基或锗 太阳电池方阵 控制器 负载 阻塞二极管 蓄电池

光伏组件生产工艺流程

光伏组件生产工艺流程: A、工艺流程: 1、电池检测—— 2、正面焊接一检验一 3、背面串接一检验一 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)一一 5、层压一一 6、去毛边(去边、清洗)一一 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)一一 &焊接接线盒一一9、高压测试一一10、组件测试一外观检验一11、包装入库; B、工艺简介: 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同, 所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡 的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。(我们公司采用的是手工焊接) 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前 采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将前面电池”的正面电极(负极)焊接到后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA、 玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出, 然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150 C。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。 7、装框:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1工程概述 (3) 1.1工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 3.4.1电池组件 (6)

3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (8) 3.4.4 并网逆变器规格 (9) 4发电量估算 (10) 5系统的社会效益 (10) 5.1社会效益(25年) (10) 6设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7工程业绩表及典型工程 (11) 8合利欧斯优势 (16) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作 (17) 1工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。

1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。 表1 气象资料表

光伏组件分类介绍及采购要点

光伏组件分类介绍及采购要点 一个光伏电站组件占60%左右,可见组件的好坏对电站的质量起到关键的作用。市面上组件价格基本是2-4块钱一瓦不等。为什么组件的价格会有这样的差异呢?我就今天围绕2块钱和4块钱产品给大家作一下分析。 组件主要是电池片(电池片分为多晶和单晶)、玻璃、背板构成,分为A、B、C类组件。 晶硅电池片生产流程 组件的生产工艺流程,基本是原材料采购、入库、生产。最关键是自动焊接和承压。关键是EL检测,就可以包装入库。 刚才做了光伏组件的分类,现在说一下A、B、C三类都可以用到什么地方?A类用到地面大型电站,并网分布式、高网基站,此产品寿命在25年以上,售价在3.6-4元。 B类用于寓网路灯、寓网系统、太阳能产业部发达国家的并网系统,此产品寿命在5年左右,售价在3元左右。 C级用于用电不发达地区,如偏远地区、阿富汗、中东、南非等,寿命不详,售价在2.5元左右。 太阳能组件的主材:电池片。辅材:1、钢化玻璃、EVA胶膜。3、背板。4、接线盒等等。 太阳能组件分类 一、这里是高端产品。基本是3.5左右,一线厂家在3.6-3.7元每瓦。这里有A片和B片。钢化玻璃在28-32。EVA胶膜在8.5-9.2,背板是18-25。接线盒是25左右。焊带是40-80左右一公斤。

二、中端产品。成本价格在2.7元左右。电池片1.85。钢化玻璃22。EVA5-6平方。背板8-10平方。接线盒18。焊带80左右。铝型材是55左右。硅胶是12左右。 三、低端产品,成本价格在2元。电池片1.2;钢化玻璃22平方;EVA5-8平方;背板8-10平方。接线盒13左右;焊带40-80左右。铝型材43左右。 如果想买市场上便宜组件,可以在百度上让第三方帮我们把关。他们都是非常专业的。检测的费用是根据工程大小。如果工程项目小,不能请第三方的情况,可以看托盘标识都有组件的条形码,拍下来,给所在的工厂打电话,问这个组件什么情况,就都明白了。 如果说去组件厂买生产,要注意几点:1、工厂的BOM清单。2、外观标准和EL标准。3、检测恒温恒湿仓库。4、功率测试仪和标板。5、功率测试仪和所有数据。 检查恒温恒湿仓库是非常重要的,恒温是25度,恒湿是<75。 功率测试仪和标板。是AV测试,组件是多少瓦的,都是可以测试。要每年年检。还有标准版,检查是否在有效期内,6个月检一次。 功率测试和EL测试。测试仪和标板都合格后,在恒温25测试的组件是最准确的。 一般1KW单晶发电量=1KW多经发电量 组件常规峰值功率标识,不会低于260W,这是最常规标识。 组件转换效率,很多人说可以做到多少?他只是一个公式。标准辐射1KW 每平方。组件功率÷组件面积=转化率。 一般用的电池片比组件功率高,因为面积每平方转化率,电池片每个上都有空隙,把整体转化率拉低了。而不是电池片做成组件做成整体就低了。我们每平方多少瓦,不是老百姓问我们的和专业问的是一样的。而是每平方多少钱?每平方能发多少电?320W的组件就是164.9瓦,在峰值是1.649度电。

太阳能光伏照明控制系统的硬件电路项目设计方案

太阳能光伏照明控制系统的硬件电路项 目设计方案 1.1概述 传统的化石能源资源日益枯竭,严重的环境污染制约了世界经济的可持续发展。能 源的需求有增无减,能源资源已成为重要的战略物资,化石能源储量的有限性是发展可 再生能源的主要因素之一。根据世界能源权威机构的分析,按照目前已经探明的化石能 源储量以及开采速度来计算,全球石油剩余可采年限仅有 41年,其年占世界能源总消 耗量的40.5%,国内剩余可开采年限为15年;天然气剩余可采年限61.9年,其年占世 界能源总消耗量的24.1%,国内剩余可开采年限30年;煤炭剩余可采年限230年,其 年占世界能源总消耗量的25.2%,国内剩余可开采年限81年;铀剩余可采年限71年, 其年占世界能源总消耗量的 7.6%,国内剩余可开采年限为50年。 太阳能利用和光伏发电是最有发展前景的可再生能源,因此,世界各国都把太阳能 光伏发电的商业化开发和利用作为重要的发展方向,制定了相应的导向政策。在光伏发 电的历史上,最早规模化推广的是日本,而后是德国,再发展到现在大力推广的包括美 国、西班牙、意大利、挪威、澳大利亚、韩国、印度等超过 40个国家与地区,如日本 “新阳光计划”、欧盟“可再生能源白皮书”,以及美国国家光伏发展计划、百万太阳能 屋顶计划、光伏先锋计划等的相继推出,成为近年来推动太阳能光伏发电产业的主要动 力。根据欧盟的预测:到2030年太阳能发电将占总能耗10%以上,到2050年太阳能发 电将占总能耗20% 1.2光伏照明系统的结构 光伏照明系统主要由五大部分组成,即太阳能电池、蓄电池、控制器、照明电路、 负载,如下图1-1所示。 在系统中,控制器是整个系统的核心。它控制蓄电池的充电及蓄电池对负载的供电, 对蓄电池性能、使用寿命有非常大的影响。目前,光伏系统主要由于控制器控制蓄电池 充电方式不合理,降低了蓄电池寿命而导致整个系统可靠性不高,因此,在控制器的设 计中采用什么样的充电 图1- 1光伏系统组成框图

光伏发电系统_毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈现间歇性质,时高时低,时有时无。太阳能须加有储热装置,这些都使太阳能利用系统的初期投资变得昂贵。综上所述,太阳能利用具有以下明显的特点:(1)总能量很大,但太阳能通量密度较低; (2)是可再生的能源,但又具有间歇性; (3)无污染的清洁能源; (4)太阳能本身是免费的,有效利用它的初期投资较高; (5)太阳能热利用较容易实现热能能级的合理匹配,从而做到热尽使用。

相关主题
文本预览
相关文档 最新文档