当前位置:文档之家› 大一微积分复习资料

大一微积分复习资料

大一微积分复习资料
大一微积分复习资料

大学的考试比较简单,主要以书本为主,下面的复习指导可作提引作用。

10—11学年第一学期“微积分”期末复习指导

第一章 函数

一.本章重点

复合函数及分解,初等函数的概念。 二.复习要求

1、 能熟练地求函数定义域;会求函数的值域。

2、理解函数的简单性质,知道它们的几何特点。

3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。其中

⑴. 对于对数函数ln y x =不仅要熟记它的运

算性质,还能熟练应用它与指数函数 x

y e

=互为反函数的关系,能熟练将幂指函数作如下代数运算:

ln v u v u e =

⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值.

4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。

5、 知道分段函数,隐函数的概念。 . 三.例题选解

例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的 ⑴.2

sin x y e =

⑵.2

1

arctan(

)1y x =+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。 解: ⑴.

2,,sin u y e u v v x

===⑵.21

arctan ,, 1.y u u v x v

==

=+

例2. cot y arc x =的定义域、值域各是什么

cot1arc = 答:

cot y arc x = 是cot ,(0,)y x x π=∈ 的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是

(,)f D =-∞+∞,值域为(0,)f Z π=.

cot14

arc π

=

四.练习题及参考答案

1. ()arctan f x x =

则f (x )定义域为 ,值域为 f (1) = ;(0)f = .

2.()arcsin f x x =

则f (x )定义域为 ,值域为 f (1) =

;f = .

3.分解下列函数为简单函数的复合: ⑴.3x y e -= ⑵.3

ln(1)y x =- 答案:

1.(-∞ +∞), (,

)2

2

π

π

-

,

,04

π

2. []1,1,,,,2223ππππ

??--????

.3. ⑴.,

3u y e u x ==-

⑵.3ln ,

1.

y u u x ==-

自我复习:习题一.(A )55.⑴、⑵、⑶;

习题一.(B ).11.

第二章 极限与连续

一.本章重点

极限的计算;函数的连续及间断的判定;初等函数

的连续性。

二.复习要求

1.了解变量极限的概念,掌握函数f (x )在x 0点有极限的充要条件是:函数在x 0点的左右极限都存在且相等。

2.理解无穷小量与无穷大量的概念和关系,掌握无穷小量的运算性质,特别是无穷小量乘以有界变量仍为无穷小。例如:

01

sin lim sin 0,lim 0x x x

x x x

→→∞== 3.会比较无穷小的阶。在求无穷小之比的极限时,

利用等价无穷小代换可使运算简化,常用的等价无穷小代换有: 当()

x α0时,有:

sin ()x α~()x α; tan ()x α~()x α

()1x e α-~()x α;

ln(1())x α+~()x α;

1()1n

x α+~

()

x n

α

1cos ()x α-~

2

()

2

x α.…….

(参见教材P79)

4.掌握两个重要极限:

(Ⅰ).0sin lim

1x x

x

→=

(Ⅱ).1

01lim(1)lim(1)x

x x x e x x

→∞→+==+

记住它们的形式、特点、自变量的变化趋势及扩展形式(变形式).并能熟练应用其求极限,特别是应用重要极限(Ⅱ)的如下扩展形式求1∞型未定式极限:

1

0lim(1)lim(1)x

k x x x k e kx x

→∞→+==+ 1

0lim(1)lim(1)x k

x x x k e kx x

-→∞→-==- 5.掌握函数连续的概念, 知道结论:初等函数在其定义区间内都是连续的,分段函数在定义区间内的不连续点只可能是分段点。函数f (x )在分段点x 0处连续的充要条是:函数在x 0点极限存在且等于

0()f x ,即:

0lim ()()x x f x f x →=

当分段函数在分段点0x 的左右两边表达式不相同时,函数f (x )在分段点x 0处连续的充要条件则是:

0lim ()lim ()()x x x x f x f x f x -

+→→==.

6. 掌握函数间断点及类型的判定。

函数的不连续点称为间断点,函数()f x 在

0x 点间断,必至少有下列三种情况之一发生:

⑴、()f x 在0x 点无定义; ⑵、0

lim ()x x f x →不存在;

⑶、存在0

lim ()x x f x →,但0

0lim ()()x x f x f x →≠.

若0x 为()f x 的间断点,当)(lim 0

x f x x +→及

)(lim 0x f x x -

→都存在时,称0x 为()f x 的第一类间断

点,特别)(lim 0

x f x x +→=)(lim 0

x f x x -→时(即0

lim ()

x x f x →

存在时),称0x 为()f x 的可去间断点;

)(lim )(lim 0

0x f x f x x x x -+

→→≠时称0x 为()f x 的跳

跃间断点。

不是第一类间断点的都称为第二类间断点。 7.了解连续函数的运算性质及闭区间上连续函数的性质,特别要知道闭区间上的连续函数必有最大值与最小值。

8.能够熟练地利用极限的四则运算性质;无穷小量、无穷大量的关系与性质;等价无穷小代换;教材P69公式();两个重要极限;初等函数的连续性及洛必达法则(第四章)求函数的极限。

三.例题选解

例1.单项选择题

⑴下列极限中正确的是( )

A.sin lim 1x x x

→∞= B. 1sin

lim

11x x x

→∞= C. 2

0sin lim

1x x x

→= D. 0tan lim 1x x x →= ⑵ 当0x →

1是2

sin x 的

( )

A.低阶无穷小;

B.高阶无穷小;

C.同阶无穷小,但不是等价无穷小;

D. 等价无穷小; 分析与解:

⑴. A 与 C 显然都不对,对于D, 记tan ()x

f x x

=

, 则tan 0

()tan 0

x x x

f x x x x

?>??=?

?

∴0

tan lim ()lim 1x x x

f x x

++

→→==

tan lim ()lim 1x x x

f x x

--

→→==--0lim ()x f x +

→≠ 即D 也不对,剩下的B 就是正确答案。

⑵. 由于

2

2

222000212lim lim lim 1sin x x x x x x x

x →→→-===代换 ∴ 应选择D. 例3.求极限:

⑴0lim x →2ln(1)1cos x x

-- ⑵lim x →∞

2(

)5

x

x x --

解: ⑴ 此极限为

00

型 ∵当0x →时,有

2

ln(1)x -~2

()x -, 1cos x -~2

2

x

∴0lim x →2ln(1)

1cos x x

-- 220lim 22

x x x →-==-

⑵ 此极限为1∞

型,可用重要极限()II 。

lim x →∞

2(

)5x x x -- =x

x x )5

31(lim -+∞→

x x x x x ?-?-∞→-+=5

3

35)5

3

1(lim x x x x x ?--∞→??

????-+=5

3

35

)531(lim

3e =. )35

3lim 53lim

(=-=?-∞→∞→x x x x x x

例2.判断函数229

6

x y x x -=-- 的间断点,并

判断其类型。

解:由于229(3)+3)

6(3)(2)

x x x y x x x x --==---+(

∴3,2x x ==-是函数y 无定义的点,因而是

函数y 的间断点。 ∵33(3)(3)36

lim

lim (3)(2)25

x x x x x x x x →→-++==-++

∴ 3x =为函数 y 的可去间断点; ∵22(3)(3)3

lim

lim (3)(2)2

x x x x x x x x →-→--++==∞-++

∴ 2x =-为函数 y 的第二类(无穷型)间断。

例3.函数

2

1cos 2

()00

x f x x x x k ?

-??=≠??

=??

在点0x =处连续,求常数k .

分析与解:由于分段函数()f x 在分段点0x =的左右两边表达式相同,因此()f x 在0x =连续的充要条件是

lim ()(0).x f x f k →==

2220001cos 82lim ()lim lim x x x x x f x x

x →→→-==代换

1.8=

∴1

.8

k =

四.练习题及参考答案

1.填空

⑴.当0x →时,(1)sin 2x

e x -与

1)ln(12)x +相比,是

__________________无穷小; ⑵.21lim(

)23

x

x x x →∞

-=+ __________________;

⑶.220[cos(3)1]tan

3lim (1)ln(15)

x

x x

x e x →-=-+______________. 2.单项选择题 ⑴.设2

(3)(2)

56

x x y x x +-=

-+,下面说法正确的是________;

A. 点3,2x x =-=都是可去间断点;

B. 点2x =是跳跃间断点,点3x =是无穷间断

点;

C. 点2x =是可去间断点,点3x =是无穷间断

点;

D. 点2x =是可去间断点,点3x =是跳跃间断

点;

⑵.下面正确的是______________. A.0tan lim

1x x

x

→= ; B. 01lim sin 0x x x →=;

C. 0

tan lim

x x

x

→不存在; D. 0tan lim

1x x x →=. 答案:1. ⑴.同阶而不等价的 ;⑵.2

e - ;⑶.3

20

-

. 2. ⑴.C; ⑵.B . 自我复习.习题二(A) 11. (4).24. ⑴,(4),⑺.

27.⑴. (4).28.⑴,⑵. 30.⑵.37.⑴,⑶. 习题二(B).14.

第三章 导数与微分

一.本章重点.

导数的概念,导数及微分的计算.

二.复习要求

1.掌握函数()x ?在0x 处可导的定义,并能熟练应用导数的定义式求分段函数在分段点的导数。 导数是一个逐点概念,()x ?在0x 处的导数的定义式常用的有如下三种形式:

0000

()()

()lim

x f x x f x f x x

?→+?-'=?

000

()()

lim

h f x h f x h

→+-=

00

()()

lim

x x f x f x x x →-=- .

2.知道导数的几何意义,会求()x ?在0x 处的切线方程。

3.熟记基本求导公式及求导的运算法则,熟练掌握下列求导方法,并能熟练应用它们求函数的导数: ⑴运用基本求导公式及求导的四则运算法则求导; ⑵复合函数求导法; ⑶隐函数求导法; ⑷取对数求导法。

4.理解高阶导数的概念,能熟练求函数的二阶导数。

5.理解微分的概念,能应用微分基本公式及运算法则求函数的微分。

6.掌握函数可微,可导及连续的关系。

三.例题选解

例1.求下列函数的导数:

⑴.2

(1)y f x =+ ,求,

.y y '''

⑵.y

= 求.y '.

⑶.设y =tan x

e

,求dy

⑷. 3

ln(1)y x =+ ,求y ''

解:⑴、本题为抽象函数求导,由复合函数求导法,

得:

221()(1)y f x x '''=++ 2(1)2f x x '=+? 22(1)x f x '=?+ .

2

2

2(1)2(1)2y f x xf x x '''''=+++?

2

2

2

2(1)4(1)f x x f x '''=+++

⑵ 本题为幂指函数求导,必须用取对数求导法。

原方程两边取对数:

ln ln y x =

上式两边对x 求导,视y 为中间变量:

'y y

1

ln x x +

1ln 12y x ?'=?+???

1ln 12x ?

=?+???

1

2

ln (

1)2

x

-

=+ 注:本题除此方法外,也可以:

x

x e

y ln 3?=

)1

3ln 3321

(

ln 3x x x x

e

y x

x ?+??='∴?

⑶. ∵tan (tan )x

y e

x ''=? tan 2sec x e x =? . ∴tan 2sec x

dy e

xdx =?

⑷. 2

3

31x y x '=+

322326(1)33(1)x x x x y x +-?''=+ 332

3(2)(1)x x x -=+

例2. 设()x ?在1x =处可导,且'(1)2?=.

求1(43)lim

1

x x x →---??(1)

分析:将()x ?在1x =处的导数的定义式理解为结构式:

(1)'?=0

(1)

(1)

lim

→+

-??

其中

为1-=?x x 或x ?的函数.且当0

→?x 时,0→即可. 解:

11(43)lim 1

(1)]lim (3)3(1)3(1)6

x x x x x x f →→-----=?---'=-=-??(1)?[1-3?(1) 例3.求曲线 3

3

3

3x y axy a +-=在点

()0,a 处的切线方程。

解:显然,点()0,

a 在曲线上,

现求切线的斜率,即(0,)y a ' 曲线方程两边对x 求导:

2233330x y y ay axy ''+?--=

解得 2

2ay x y y ax

-'=-

∴(0,)y a '=1

切线方程为:y a x -= 即 y x a -=

例4、设2

1()000

x e f x x x

x -?-?

=≠??=?

试讨论()f x 在0x =处的连续性及可导性。 分析与解:由已知,(0)0f =; (1)讨论()f x 在0x =处的连续性。

∵ 2

00201

lim ()lim lim 0(0).

x x x x e f x x x

f x

-→→→-=-=代换==

∴()f x 在0x =处连续。

(2)讨论()f x 在0x =处的可导性。

分段函数在分段点的导数必须用定义求:

(0)

()lim

x f x f f x →-'=-()0

2

1

lim

x x e x x -→--=-

2

2

2

2001lim lim 1x x x e x x x -→→--===-代换 即存在 () 1.

f '=-0

四.练习题及参考答案

1.单项选择题 .设22

ln(1)0()10

x x x f x x ?-?

≠??

=?

?-=???

下面说法正确的是( ). A.()f x 在0x =不连续;

B. .()f x 在0x =连续,但不可导;

C. ()f x 在0x =可导,且(0)1f '=-;

D. ()f x 在0x =可导,且(0)0f '=.

2.填空题

()f x 在0x x =处可导,且0()1f x '=-,则

(1)000

()()

lim

______h f x h f x h h

→+--=

3.求函数的导数或微分: ⑴

1x

y x

=, 求y '

⑵[]

ln(1)

(1)y f x x =-<,

求,y y '''

⑶.y =dy .

4.设3

cos()y x xy =+确定y 是x 的函数,求

dy

dx

,并求出函数在点(0,1)的切线方程。

5、证明:(1)若)(x f 是偶函数且可导,那么)(x f '是奇函数,(2)若)(x f 是奇函数且可导,那么

)(x f '是偶函数,

答案:. 2. 2- 3.⑴.1

2(1ln )x

y x x -'=-

(2).[]1

ln(1)1

y f x x ''=

?-- ; [][]2

21

ln(1)(1)

1ln(1)(1)

y f x x f x x ''''=

--'---

⑶.2

1

x

dy dx x =

-. 4.21sin()3sin()

dy y xy dx y x xy -=+; 切线方程:33y x -=.

自我复习:习题三(A) 13; 21,⑹,⑼; 24.⑴,⑵; 25;26.⑴,⑺; 27.⑸;29.⑵,⑹,⑺; 47.⑴,⑵.54.

习题三(B) 1 ;3;11.

第四章 中值定理与导数的应用

一.本章重点

求未定式极限的洛必达法则;应用导数判定函数的单调性,求函数的极值和最值;应用导数确定曲线的凹向与拐点;对经济问题作边际分析;

二.复习要求

1知道罗尔定理、拉格朗日中值定理的条件和结论,会求定理中的ξ,掌握拉格朗日定理推论的意义。

2.熟练掌握用洛必达法则求未定式极限的方法。 注意:⑴洛必达法则只能直接用于求“

00”型或“∞

”型未定式的极限,对于其他类型的未定式极限,必

须将其转化为“

00”型或“∞

”型未定式才能使用法则。

⑵洛必达法则可以连续使用,当再次使用法则时,一定要检验法则的条件是否成立,当条件不满足时必须停止使用,改用其他求极限的方法计算.

⑶.在求未定式极限时,将洛必达法则和等价无穷小代换等其它方法结合使用,可使运算更简便。

3.掌握用一阶导数判定函数单调性的方法,并能利用函数的单调性证明不等式。

4.掌握函数极值的概念及求函数极值方法.

5.掌握最值的概念及其与极值的关系,能熟练求闭区间上连续函数的最大、最小值;会求经济应用问题的最值.如求最大总收入,最大总利润等.

6.掌握函数的凹向,拐点的概念及求曲线凹向,拐点的方法.

三.例题选解

例1. 求下列极限

(1). 0sin 21

lim ln(1)

x x e x x x x →+--+

(2).

2sin 0

lim x x x +

→ (3). 011lim ln(1)x x x →??-??+??

解:

(1) 0sin 21

lim

()ln(1)

x x e x x x x →+--+ 20sin 21lim x x e x x x

→+--代换

= 0cos 20

lim ()20x x e x x →+-洛

= 0sin lim ()2

x x e x →-洛

=不是未定式

1

2

=

. (2) 原式为幂指型不定式(0

0型),利用代数变

换:ln v

u v u

e =,得:

02sin 2si ln n 2si 0

li ln n m lim lim x x x x x x

x x

e

x e ++

+

→?→→?==

其中 0

lim 2sin ln (0)x x x +

→??∞

x x x ln 2lim 0

?=+→ (代换)

2ln lim 1x x x

+

→= (∞∞

) 0

22

lim 1x x x

+

→=-洛

lim(2)0x x +

→=-=. ∴原式=0

1e =

(3) 011

lim ln(1)x x x →??-??+??

()∞-∞型 =0ln(1ln(1)lim

)x x x x x →+-+ 0

()通分化为型

=0ln(1)lim

x x x

x x

→+-? (代换)

01

11lim 2x x x

→-+= (洛必达) =01

lim

2(1)2

x x x x →-=-+.

例2.求函数2

1x

y x =+的单调区间和极值,凹凸区

间和拐点。 解:函数2

1x

y x

=

+的定义域为(,)-∞+∞ 22

22

22

(1)21(1)(1)x x x x y x x +-?-'==++, 222224

(2)(1)2(1)2(1)

(1)x x x x x y x -?+-+??-''=+

223

2(3)(1)

x x x -=+ 。 令22

(1)(1)

0(1)

x x y x -+'=

=+,得驻点1x =-, 1x =;无不可导点。

两驻点分定义域为三个子区间,列表讨论如下:

令23

2(0(1)

x x x y x +''=

=+ 得 0,

x x ==y ''不存在的点。曲线的

凹向及拐点列表讨论如下:

由上面的讨论看出: 函数2

1x

y x =

+的单减区间为 (,1)(1,)-∞-?+∞;

单增区间为[1,

1]-。极小值是1

(1)2

y -=-

, 极大值是1(1)2

y =

。 曲线2

1x

y x

=

+的凸区间是(,-∞? 凹区间是()?+∞。

曲线2

1x

y x =

+的拐点有三个:

(4-,

(0,0)

,。 例3.证明不等式

2

1(1)ln(1)(0)2

x x x x x ++<

+>

分析与证:证明不等式的方法很多,利用函数的单调性或最值证明不等式是常用的方法之一。这里用单调性来证明。即令

2

1()(1)ln(1)2

f x x x x x =++-

- 则问题转化为证()0(0)(0)f x f x <=>

即证在0x >时,()f x 单减。

∵1()ln(1)11x

f x x x x

+'=++

--+ ln(1)x x =+-

1()1011x

f x x x

-''=-=<++

∴0x >时,()f x '单减,有

()(0)0f x f ''<=

∴()f x 也单减,有()(0)0f x f <=, 证毕。 例4.证明:对任意1x ≥,有

1arcsin

2

x π

= 分析: 本题为恒等式的证明。我们设

1

()arcsin F x x

=+

由拉格朗日定理的推论,若能证明

()0F x '= 则()F x c ?≡,再确定 2

c π

=

即可。

证:当1x ≥时,

1()()F x '

''=+

22111

11x x =-

+-

0=

-

=

∴ ()F x c ≡

∵2

1arcsin 0arctan )1(π

=

+=F

∴ 2

c π

=

,证毕!

例5求出函数5

4

3

551y x x x =-++在区间

[2,1]-上的最大、最小值。

解:显然函数5

4

3

551y x x x =-++在闭区间

[2,1]-上连续,因而必存在最大、最小值。

4322520155(1)(3)y x x x x x x '=-+=--

由0y '=,解得区间(1,2)-内的可疑点为:

120,1x x ==. 比较以下函数值,

(1)10,(0)1,(1)2,(2)7f f f f -=-===-

得 max min (1)2,

(1)10f f =-=-.

例 6.某食品加工厂生产x 单位的总成本为

2()20040.03C x x x =++,得到的总收益是2()80.02R x x x =-,求出生产该商品x 单位的

边际利润、生产300单位时的边际利润,当生产多少单位时利润最大。 解:⑴.利润函数

2()()()0.014200L x R x C x x x =-=-+-

边际利润函数()0.024L x x '=-+. ⑵.当300x =时,

(300)0.0230042L '=-?+=

⑶.令()0.0240L x x '=-+= 解得:200x =

(200)0.020L ''=-<,

∴产量200x =单位时,可获最大利润。 注:设函数)(x f y =可导,导函数)(x f '也称为边际函数。

四.练习题与参考答案

1. 求极限 (1) 2

1lim (1cos

)x x x

→∞

- ⑵ 0

11lim(

)sin x x x

→- ⑶ 1ln 0

lim(tan )x

x x +

2. 证明. 当1x >时,有: (1)ln 2(1)x x x +>-.

3证明: 21cos 1(0)2

x x x >-

>

4 .求3

2

399y x x x =--+单调区间和极值,凹凸区间和拐点。

5. 证明当0x >时,有:

C =,并求出常数C.

参考答案: 1. (1).

1

2

; ⑵.0 ; ⑶.e . 4. 单增区间(,1)(3,)-∞-?+∞;

单减区间(1,1)-;极大值(1)14y -=, 极小值(3)18y =-;

上凹区间(1 +∞);下凹(凸)区间(-∞ 1) ; 拐点(1 , -2). 5. 2

C π

=

.

自我复习:

习题四 (A )

8, 9.⑸,⑻,⑼,⑾ ,⑿; 14.⑴,⑶,⑸; 18.⑴,⑵;19.⑴ ;20.⑴,⑶;32.⑵,⑷;37; 41。

习题四 (B ) 10;12.

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限;

⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章导数与微分 一、本章提要 1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.

大一上微积分知识点重点(供参考)

大一(上) 微积分 知识点 第一章 函数 一、A ?B=?,则A 、B 是分离的。 二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。 A-B={x|x ∈A 且x ?B}(属于前者,不属于后者) 三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。 四、笛卡尔乘积:设有集合A 和B ,对?x ∈A,?y ∈B ,所有二元有序数组(x,,y )构成的集合。 五、相同函数的要求:①定义域相同②对应法则相同 六、求反函数:反解互换 七、关于函数的奇偶性,要注意: 1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数; 2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数; 3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。 第二章 极限与连续 一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。 二、极限存在定理:左、右极限都存在,且相等。 三、无穷小量的几个性质: 1、limf(x)=0,则 2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f 3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0= 4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0 四、无穷小量与无穷大量的关系: ①若 y 是无穷大量,则y 1是无穷小量; ②若y (y ≠0)是无穷小量,则y 1是无穷大量。

一元微积分多元微积分高等数学复习提纲(同济大学版)

(1) 1,补集的记号 2,什么是笛卡尔乘积 3,什么是邻域,记号,中心,半径 4,去心邻域,记号,左邻域,右邻域 5,两个闭区间的直积 6,映射的概念,原像,满射,单射,一一映射7,泛函,变换,函数 8,逆映射,复合映射 9,多值函数,单值分支 10,绝对值,符号函数,取整函数,最值函数11,上界、下界,有界,无界的定义 12,奇偶性、周期性 13,初等函数,基本初等函数 (2) 1,数列极限的定义,用符号语言 2,收敛数列的四个性质 3 (3) 1,函数在某点的极限定义,符号语言 2,函数在无穷大处的极限,符号语言 3,函数极限的性质 (4) 1,无穷小的定义 2,函数极限的充分必要条件,用无穷小表示3,无穷大 4,无穷大和无穷小的定义 (5) 1,有限个无穷小的和 2,有界函数与无穷小的乘积 3,极限的四则运算 4,函数y1始终大于y2,那么极限的关系是 (6) 1,极限存在的夹逼准则 2,单调有界的数列是否存在极限 3,(1+1/x)^x的极限 4,柯西审敛准则

1,什么是高阶无穷小,低阶无穷小,同阶无穷小,k阶无穷小,等价无穷小 2,等价无穷小的充要条件 3,两组等价无穷小之间的比例关系 (8) 1,函数连续性的定义,左连续,右连续 2,什么是连续函数 3,间断点的三种情况 4,第一类间断点,第二类间断点,可去间断点,条约间断点,无穷间断点,振荡间断点 (9) 1,连续函数的四则运算后的连续性 2,反函数和复合函数的连续性 3,初等函数的连续性 (10) 1,有界性与最大最小值定理 2,零点定理 3,介值定理和推论 第二章 (1) 1,导数的定义 2,函数在一点可导的充要条件,用等式表示 3,可导和连续的关系 (2) 1,函数的和差积商如何求导 2,tanx、secx的导数,cscx和cotx 3,反函数的求导法则是什么 4,arcsinx的导数,arccos的导数,arctanx, areccotx的导数 5,复合函数求导法则 (3) 1,二阶导数的微分表示法 2,莱布尼兹公式 3,a^x\sinkx\coskx\x^a\lnx\1/x\的n阶导 4,隐函数的求导 5,对数求导法的应用 6,参数所表示的函数怎样求导 7,什么是相关变化率

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

大学微积分l知识点总结(一)

大学微积分l 知识点总结 【第一部分】大学阶段准备知识 1、不等式: ab 2b a ≥+ ab 2b a 22≥+ 3abc 3c b a ≥++ ()n n 21n 21...a a a n a ...a a ≥+++ abc 3c b a 333≥++ 2b a 2b a ab b 1a 12 2 2+≤+≤≤+ b a b a b -a +≤±≤ () n n 21n 21n 21n x ...x x y p p x ...x x x ...x x y ? ? ? ??+++=+++???=的最大值为:则为常数,且扩展:若有 柯西不等式:设a 1、a 2、...a n ,b 1、b 2、...b n 均是实数,则有: ()()()()()()()()() 22221222212n n 2211......a a b a ...b a b a n n b b b a +++++≤+++ ()时取等号 为常数,当且仅当,n ...3,2,1i b a i i ==λλ 2、函数周期性和对称性的常用结论 1、若f (x+a )=±f (x+b ),则f (x )具有周期性;若f (a+x )=±f (b-x ),则f (x )具有对称性。 口诀:“内同表示周期性,内反表示对称性” 2、周期性 (1)若f (x+a )=f (b+x ),则T=|b-a| (2)若f (x+a )=-f (b+x ),则T=2|b-a| 引申双向不等式: 两侧均在ab ≥0或ab ≤0时取等号

(3)若f (x+a )=±1/f (x ),则T=2a (4)若f (x+a )=【1-f (x )】/【1+f (x )】,则T=2a (5)若f (x+a )=【1+f (x )】/【1-f (x )】,则T=4a 3、对称性 (1)若f (a+x )=f (b-x ),则f (x )的对称轴为x=(a+b )/2 (2)若f (a+x )=-f (b-x )+c ,则f (x )的图像关于((a+b )/2,c/2)对称 4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。 (1)若f (x )的图像有两条对称轴x=a 和x=b ,则f (x )必定为周期函数,其中一个周期为2|b-a|。 (2)若f (x )的图像有两个对称中心(a ,0)和(b ,0),(a ≠b ),则f (x )必定为周期函数,其中一个周期为2|b-a|。 (3)若f (x )的图像有一个对称轴x=a 和一个对称中心(b ,0),(a ≠b ),则f (x )必定为周期函数,其中一个周期为4|b-a|。 3、三角函数 l n sin = ?正弦 l m cos =?余弦 m n tan = ?正切 n m cot =?余切 m l sec =?正割 n l csc = ?余割 倒数关系: ?= ?cot 1tan ?=?csc 1sin ?= ?sec 1 cos L m n α

微积分——多元函数及二重积分知识点(教学内容)

教育类别+ 241 第四章 矢量代数与空间解析几何 微积分二大纲要求 了解 两个向量垂直、平行的条件,曲面方程和空间曲线方程的概念,常用二次曲面的方程及其图 形,空间曲线的参数方程和一般方程.空间曲线在坐标平面上的投影. 会 求平面与平面、平面与直线、 直线与直线之间的夹角,利用平面、直线的相互絭(平行、 垂直、相交等)解决有关问题,点到直线以及点到平面的距离,求简单的柱面和旋转曲面的方程,求空间曲线在坐标平面上的投影方程. 理解 空间直角坐标系,向量的概念及其表示,单位向量、方向数与方向余弦、向量的坐标表达式 掌握 向量的运算(线性运算、数量积、向量积、混合积),用坐标表达式进行向量运算的方法, 平面方程和直线方程及其求法. 第一节 矢量代数 一、内容精要 (一) 基本概念 1.矢量的概念 定义4.1 一个既有大小又有方向的量称为矢量,长度为0的矢量称为零矢量,用0表示,方向可任意确定。长度为1的矢量称为单位矢量。 定义4.2两个矢量a 与b ,若它们的方向一致,大小相等,则称这两个矢量相等,记作b a . 换句话说一个矢量可按照我们的意愿把它平移到任何一个地方(因为既没有改变大小,也没改 变方向),这种矢称为自由矢量,这样在解问题时将更加灵活与方便。 k a j a i a a 3211( 称为按照k j i ,,的坐标分解式,},,{321a a a a 称为坐标式。 .||2 32221a a a a 若,0 a 记| |0a a a 。知0a 是单位矢量且与a 的方向一致,且0||a a a 。 因此,告诉我们求矢量a 的一种方法,即只要求出a 的大小||a 和与a 方向一致的单位矢量0 a ,则 .||0a a a 若},{321a a a a ,知 },cos ,cos ,{cos }, , { 2 3 2 22 13 2 3 2 22 12 2 3 2 22 11 0 a a a a a a a a a a a a a 其中 ..是a 分别与Ox 轴,Oy 轴,Oz 轴正向的夹角,而 ,cos ,cos ,cos 2 3 2 22 13 2 3 2 22 12 3 3 22211 a a a a a a a a a a a a 且.1cos cos cos 2 2 2 2.矢量间的运算 设}.,,{},,,{},,,{321321321c c c c b b b b a a a a

专升本高等数学知识点汇总情况

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

大学高数学习方法总结

2014年大学高数学习方法总结 一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近xx年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢? 在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。 很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。 所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。篇二:高等数学学习方法及经验总结高等数学学习方法及经验总结 大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。 高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。 首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。 (一)做题的方法和技巧 学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。 (二)考试后的反思

微积分心得范文

微积分心得范文 微积分学习心得 学号11120472 姓名吴心怡班级七班学号11120471 姓名吴亚男班级七班时间,如同轨道上疾驰的列车,匆匆行驶,不留一点痕迹的我们的寒假就这样over掉了了。恍惚之间,我们就要开始正式上课了。我们依稀还记得,放假前,老师们说让好好复习,来学校不久便是冬季学期的期末考试了,可是,嘿嘿~~自己却不得不承认有很大一部分的时间是被荒废了的。但早早来学校,我们好好静下心来思考了一下学习的经验和方法。突然有了要好好学习的冲动,可能以前真的是我们对学习不够上心的缘故吧。 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手,而自己,并不是笨,只是有些方面自己做的不够,只要深切去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时,如果课后不再看老师局的

例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了哦我们深刻的教训,夯实基础知识,才能维纳最重要的考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是应用熟练程度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。 同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不 能让它成为大脑中的脂肪。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而定,以适合自己的为基准便可以。

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

微积分学习总结

第一章函数与极限 第一节函数§ 1.1函数内容网络图 定义域 函数 定义 区间 不等式 集合 对应法则 厂表格法 表达方法&图象法 函数的特性 重要的函数 『单调性 奇偶性 周期性 有界性 反函数 ?复合函数几个具体重要的函数 § 1.2内容提要与释疑解难 一、函数的概念 非初等函数 定义 存在性定理 1,x0, r符号函数:sgnx 0,x0, 1,x0. 取整函数:f X [X],其中[x]表示不超过x 狄里克雷函数:D x 1, 0, x为有理数, X为无理数. 的最大整数.

定义:设A、B是两个非空实数集,如果存在一个对应法则f,使得对A中任何一个实数X,在B 中都有唯一确定的实数y与x对应,则称对应法则f是A上的函数,记为 f : x y 或f :A B . y称为x对应的函数值,记为 其中x叫做自变量,y又叫因变量,A称为函数f的定义域,记为D ( f), f(A) f(x)x A ,称为函数的值域,记为R( f),在平面坐标系Oxy下,集合 (x,y) y f (x),x D称为函数y=f(x)的图形。函数是微积分中最重要最基本的一个概念,因为微积分是以函数为研究对象,运用无穷小及无穷大过程分析处理问题的一门数学学科。 1、由确定函数的因素是定义域、对应法则及值域,而值域被定义域和对应法则完全确定,故确定函数的两要素为定义域和对应法则。从而在判断两个函数是否为同一函数时,只要看这两个函数的定义域和对应法则是否相同,至于自变量、因变量用什么字母,函数用什么记号都是无关紧要的。 2、函数与函数表达式的区别:函数表达式指的是解析式子,是表示函数的主要形式,而函数除了用表达式来表示,还可以用表格法、图象法等形式来表示,不要把函数与函数表达式等同起来。 二、反函数 定义设y=f(x),x D,若对R⑴中每一个y,都有唯一确定且满足y=f(x)的x D与之对应,则按此对应法则就能得到一个定义在R(f)上的函数,称这个函数为f的反函数,记作 f 1 : R f D 或x f 1 y , y R f . 由于习惯上用x表示自变量,y表示因变量,所以常把上述函数改写成y f 1 x, x R f . 1、由函数、反函数的定义可知,反函数的定义域是原来函数的值域,值域是原来函数的定义域。 2、函数y=f(x)与x=f-1(y)的图象相同,这因为满足y=f(x)点(x,y)的集合与满足x=f-1(y)点(x,y) 的集合完全相同,而函数y=f(x)与y=f-1(x)图象关于直线y=x对称。 1 1 3、若y=f(x)的反函数是x=f-1(y),则y ff(y), x f f x . 4、定理1 (反函数存在定理)严格增(减)的函数必有严格增(减)的反函数。 三、复合函数 定义设y fu,u E, u x , x D,若D( f) R ,则y通过u构成x的函数,称为由y=f(u)与u x复合而成的函数,简称为复合函数,记作y f( (x))。 复合函数的定义域为xx D且(x) E,其中x称为自变量, y称为因变量,u称为中间变量,x称为内函数,f(u)称为外函数。 1、在实际判断两个函数y f(u), u x能否构成复合函数,只要看y f( x )的定义域是否为非空集,若不为空集,则能构成复合函数,否则不能复合函数。 2、在求复合函数时,只要指出谁是内函数,谁是外函数,例如y=f(x), y=g(x),若y=f(x)作为外

最新高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

相关主题
文本预览
相关文档 最新文档