当前位置:文档之家› 公路挡土墙抗倾覆稳定性设计若干问题探讨

公路挡土墙抗倾覆稳定性设计若干问题探讨

公路挡土墙抗倾覆稳定性设计若干问题探讨
公路挡土墙抗倾覆稳定性设计若干问题探讨

公路挡土墙抗倾覆稳定性设计若干问题探讨

发表时间:2012-12-04T14:39:15.357Z 来源:《建筑学研究前沿》2012年7月供稿作者:曾英锋[导读] 公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。

曾英锋福州晟祥工程咨询设计有限公司 35002 【摘要】挡土墙是公路工程中广泛采用的一种构造物。笔者结合多年工作经验,对公路挡土墙在抗倾覆稳定性设计相关方面进行分析探讨,以供参考。

【关键词】公路;挡土墙;稳定性

前言

公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。在路基工程中,挡土墙可用以稳定路堤和路堑边坡,减少土石方工程量和占地面积,防止水流冲刷路基,并经常用于整治坍方、滑坡等路基病害。挡土墙的形式多种多样,按其结构特点,可分为:石砌重力式、石砌衡重式、加筋土轻型式、砼半重力式、钢筋砼悬臂式和扶壁式、柱板式、锚杆式、锚定板式及垛式等类型;按其中路基横断面上的位置,又可分:路肩墙、路堤墙及路堑墙;按所处的环境条件,又可分为:一般地区挡墙、浸水地区挡土墙及地震地区挡土墙。考虑挡土墙设计方案时,应与其他工程方案进行技术经济比较,分析其技术的可行性、可靠性及经济的合理性,然后才确定设计方案,并根据实际情况进行挡土墙的选型。

1.挡土墙倾覆破坏模式

通过工程实例与理论分析可得,当挡土墙抗滑稳定性和基底承载力满足要求时,挡土墙产生倾覆破坏的原因是墙后土压力过大。挡土墙基底地基反力分布一般开始接近梯形分布,但随着墙后土压力的增大,挡土墙合力偏心距增大。当墙后土压力增大到一定值时,地基反力发生重分布,变化为接近三角形分布;当墙后土压力继续增大到一定值时,地基最大反力将达到地基极限承载力,地基出现塑性,这时出现塑性部分的地基反力不再增加,产生较大的地基沉降,地基反力分布接近矩形与三角形的组合型分布;最后,当挡土墙即将发生倾覆稳定破坏时,可假定地基反力分布为矩形,其值为地基的极限承载力,墙踵一侧的地基反力为0,地基反力分布宽度小于墙底宽度。

2.抗倾覆稳定系数的新定义与计算

2.1抗倾覆稳定系数的新定义

挡土墙力系力臂如图1所示。挡土墙在一般受力状态下是稳定的,只有在最不利情况下,如主动土压力增大时,挡土墙才有可能出现倾覆破坏。因此,可考虑给挡土墙施加1个增大的主动土压力,设增大系数为K0。随着K0增大,墙趾部分的地基反力增大,增大至地基极限承载力时将不再增加,墙踵部分的地基反力减小,当其减小至0时,基底与地基分离。当挡土墙出现倾覆破坏时,K0增大到最大值,定义该最大的K0即为挡土墙抗倾覆稳定系数。K0越大,表明挡土墙抗倾覆的安全储备越大,越能满足抗倾覆稳定的要求。黄勇等将挡土墙达到倾覆极限平衡时,土压力水平分力的增大系数定义为挡土墙的抗倾覆稳定系数,该方法未考虑土压力竖向分力的变化对抗倾覆稳定性的影响[3]。

2.2抗倾覆稳定系数的计算

如图1所示,设挡土墙抗滑稳定性和基底承载力满足要求,并设挡土墙基底倾角为a0;挡土墙重力为G,挡土墙重力G对墙趾0点的力臂为ZG,土压力竖直方向分力为Ey,水平方向分力为Ex,Ex对墙趾O点的力臂为Zy, Ey对墙趾O点的力臂为Zx,地基反力为地基极限承载力Pu,地基反力分布宽度为L,对墙趾0点的力臂为L/2,基底摩擦因数为f,不计墙趾前被动土压力。挡土墙在倾覆破坏发生前瞬时抗倾覆应处于极限平衡状态, K0可由静力平衡条件求得。

挡土墙稳定性验算

附件1 滑坡稳定性及挡土墙稳定性验算 1、滑坡体工况1稳定性计算 计算项目:土层滑坡稳定性计算-自重工况 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数10 坡面线号水平投影(m) 竖直投影(m) 超载数 1 0.000 2.320 0 2 9.340 1.780 0

3 3.710 4.880 0 4 3.030 0.700 0 5 3.620 2.000 0 6 3.330 1.000 0 7 0.590 0.800 0 8 2.830 0.200 0 9 3.080 1.000 0 10 9.780 4.000 0 [土层信息] 坡面节点数11 编号X(m) Y(m) 0 0.000 0.000 -1 0.000 2.320 -2 9.340 4.100 -3 13.050 8.980 -4 16.080 9.680 -5 19.700 11.680 -6 23.030 12.680 -7 23.620 13.480 -8 26.450 13.680 -9 29.530 14.680 -10 39.310 18.680 附加节点数8 编号X(m) Y(m) 1 0.000 -0.870 2 7.970 0.000 3 27.620 6.400 4 39.310 8.080 5 4.470 -4.200 6 39.310 0.860 7 6.540 -4.200

公路挡土墙设计

生毕业论文(设计)挡土墙的类型及适用条件

内容摘要 随着我国公路事业的迅速发展,公路挡土墙的应用日益广泛。公路挡土墙的建设是公路施工中的一项重要内容。挡土墙对公路的养护作用至关重要,因此要严格控制挡土墙的设计和施工质量的控制。 本文介绍了挡土墙的类型及使用条件,挡土墙设计的基础资料及设计参数,挡土墙的初定尺寸,分析了挡土墙设计中的土压力计算方法,探讨了采用容许应力法进行挡土墙验算的内容及方法,并对挡土墙设计中的重要问题提出较为合理可行的建议与措施。后附设计实例。 关键词:挡土墙;土压力;稳定性验算;

目录 内容摘要 ........................................................................................................................... I 概述 . (1) 1 挡土墙的类型及适用条件 (2) 1.1 重力式挡土墙 (2) 1.2 悬臂式挡土墙 (2) 1.3 扶壁式挡土墙 (2) 1.4 锚定板式及锚杆式挡土墙 (2) 1.5 加筋土挡土墙 (2) 1.6 土钉墙 (3) 2 挡土墙设计的基础资料及设计参数 (4) 2.1 基础资料 (4) 2.2 设计参数的选取 (4) 2.2.1 墙背填料的物理学性质 (4) 2.2.2 墙背摩擦角 (4) 2.2.3 基底摩擦系数 (4) 2.2.4 地基容许承载力 (4) 2.2.5 建筑材料的容重 (4) 2.2.6 砌体的容许应力和设计强度 (4) 2.2.7 砼的容许应力和设计强度 (4) 3 挡土墙选型 (5) 3.1 材料选择 (5) 3.2 截面形式的选择 (5) 3.3 挡土墙的位置选择 (5) 4 挡土墙初定尺寸 (6) 4.1 挡土墙的高度 (6) 4.2 挡土墙的顶宽 (6) 4.3 挡土墙的底宽 (6) 5.挡土墙的稳定性验算 (7)

理正挡土墙设计详解

第一章功能概述 挡土墙是岩土工程中经常遇到的土工构筑物之一。为了满足工程技术人员的需要,理正开发了本挡土墙软件。下面介绍挡土墙软件的主要功能: ⑴包括13种类型挡土墙――重力式、衡重式、加筋土式、半重力式、悬臂式、扶壁式、桩板式、锚杆式、锚定板式、垂直预应力锚杆式、装配式悬臂、装配式扶壁、卸荷板式; ⑵参照公路、铁路、水利、市政、工民建等行业的规范及标准,适应各个行业的要求;可进行公路、铁路、水利、水运、矿山、市政、工民建等行业挡土墙的设计。 ⑶适用的地区有:一般地区、浸水地区、抗震地区、抗震浸水地区; ⑷挡土墙基础的形式有:天然地基、钢筋砼底板、台阶式、换填土式、锚桩式; ⑸挡土墙计算中关键点之一是土压力的计算。理正岩土软件依据库仑土压力理论,采用优化的数值扫描法,对不同的边界条件,均可快速、确定地计算其土体破坏楔形体的第一、第二破裂面角度。避免公式方法对边界条件有限值的弊病。尤其是衡重式挡土墙下墙土压力的计算,过去有延长墙背法、修正延长墙背法及等效荷载法等,在理论上均有不合理的一面。理正岩土软件综合考虑分析上、下墙的土压力,接力运行,得到合理的上、下墙的土压力。保证后续计算结果的合理性; ⑹除土压力外,还可考虑地震作用、外加荷载、水等对挡土墙设计、验算的影响; ⑺计算内容完善――土压力、挡土墙的抗滑移、抗倾覆、地基强

度验算及墙身强度的验算等一起呵成。且可以生成图文并茂的计算书,大量节省设计人员的劳动强度。

1第二章快速操作指南 1.1操作流程 图2.1-1 操作流程 1.2快速操作指南 1.2.1选择工作路径 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某一计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。

挡土墙稳定性计算学习资料

挡土墙稳定性计算

2、农田护墙(挡土墙)稳定性计算书 (1):墙身尺寸: 墙身高: 1.500(m) 墙顶宽: 0.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.400(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 (2):物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 墙身砌体容许压应力: 2100.000(kPa)

墙身砌体容许剪应力: 110.000(kPa) 墙身砌体容许拉应力: 150.000(kPa) 墙身砌体容许弯曲拉应力: 280.000(kPa) (3):挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 (4):坡线土柱:

坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) (5):稳定性计算书: 第 1 种情况: 一般情况 [土压力计算] 计算高度为 1.807(m)处的库仑主动土压力 按实际墙背计算得到: 第1破裂角: 38.300(度) Ea=21.071 Ex=18.463 Ey=10.154(kN) 作用点高度 Zy=0.615(m) 因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=10.021(度) 第1破裂角=39.550(度) Ea=23.256 Ex=16.438 Ey=16.450(kN) 作用点高度 Zy=0.632(m) 墙身截面积 = 1.603(m2) 重量 = 36.866 kN 墙背与第二破裂面之间土楔重 = 0.733(kN) 重心坐标(0.633,-0.594)(相对于墙面坡上角点) (一) 滑动稳定性验算 基底摩擦系数 = 0.500

挡土墙工程质量控制

挡土墙工程质量控制 由于赤水港东门码头为重力式码头,挡土墙的稳定性将直接影响到整个后方的安全,是整个工程质量控制关键点,主要措施如下: (1)确保挡土墙的基础严格按图施工。基槽开挖底标高达到设计标高后,监理工程师核对其土质是否符合设计要求,进行了认真核实,符合设计要求,方进行隐蔽工程基础验收有关工作,如不符合设计要求则及时与设计单位研究控制标准,直至满足规范及设计要求后,方及时会同业主、质监、设计等单位进行基础验收,验收合格后方通知施工单位进行挡土墙基础的施工。 (2)挡土墙混凝土与墙身结构处理,现场监理工程师严格按设计单位提供的混凝土与浆砌条石之间结合面的处理方案,督促施工单位对结合面进行处理,确保了混凝土与浆砌条石之间结构的连续性。 (3)现场监理工程师严格按照设计要求及规范规定,对泄水孔的数量、位置及高度、间距、孔径尺寸进行隐蔽工程验收,验收合格后方允许进行倒滤层的施工。挡土墙墙背回填之前,再次对泄水孔、倒滤层是否畅通进行实况检查。 (4)现场监理工程师严格监督砌筑砂浆的品种、配合比设计、砂浆试件材料试验报告单必须符合设计要求,其强度必须符合规范有关规定。并督促施工单位按规范规定坚持每50m3砌体留置一组砂浆试块,不足50m3砌体的也应留置一组砂浆试块的见证取样制度。 3.4.2 回填工程质量控制 赤水河东门码头水位变幅较大,挡土墙高度较高,形成陆域回填量较大。而回填质量直接影响到挡土墙的稳定及后方陆域的沉降与否,因此,现场监理工程师在回填质量控制过程中采取了以下措施: (1)现场监理工程师按照设计严格控制各层填料的质量,不合格填料严禁入场,所需填料必须按设计要求级配均匀。 (2)挡土墙墙后回填必须在挡土墙混凝土强度达设计强度的允许值范围内后,

DB63_T 1850-2020公路波纹钢板挡土墙设计规范

ICS 93.080.01 P 66 备案号:DB63青海省地方标准 DB 63/T 1850—2020 公路波纹钢板挡土墙设计规范 2020 - 11 - 12 发布2020 - 12 - 31 实施青海省市场监督管理局发布

目次 前言 (Ⅲ) 1范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4材料及构件 (3) 4.1波纹钢面板 (3) 4.2筋带 (5) 4.3连接件 (5) 4.4加劲肋 (7) 4.5排水材料 (7) 4.6防腐材料 (8) 4.7加筋体填料 (8) 4.8基础及附属工程材料 (8) 5构造设计 (9) 5.1总体构造 (9) 5.2地基及基础 (9) 5.3墙身断面形式 (10) 5.4波纹钢面板连接 (12) 5.5加劲肋布置 (13) 5.6加筋体 (14) 5.7 排水 (16) 6设计验算 (17) 6.1一般规定 (17) 6.2地基沉降计算 (17) 6.3 荷载 (17) 6.4波纹钢板面板计算 (17) 6.5稳定验算 (18) 6.6抗冻胀力计算 (18) 7 防腐 (18) 7.1镀锌防腐 (18) 7.2防腐涂装 (19) 8附属工程设计 (19) 附录A(规范性附录)设计计算一般内容及程序 (20) 附录B(规范性附录)波纹钢板挡土墙荷载 (22) I

附录C(规范性附录)波纹钢面板厚度及筋带结点 (25) 附录D(规范性附录)内部稳定计算 (26) 附录E(规范性附录)外部稳定性计算 (32) 附录F(规范性附录)填料与筋带的似摩擦系数试验 (36) II

前言 本标准按照GB/T 1.1—2020给出的规则编写。 本标准由青海省交通运输标准化专业技术委员会提出。 本标准由青海省交通运输厅归口。 本标准由青海省交通运输厅监督实施。 III

挡土墙施工设计说明

挡土墙施工设计说明 (1)材料及要求: 砌筑挡土墙所用石料分为片石、块石等,浇筑墙身材料有片石混凝土、水泥混凝土等。一般原则:1)石料比较充足的地区,当挡土墙高度≤4米时,可采用M7.5水泥砂浆砌筑片块石,其比例为片石占70%,块石占30%计;2)4米<挡土墙高度≤12米时,采用C20片石混凝土。3)挡土墙高度>12米时,原则上应采用C20水泥混凝土。4)有影响景观的全段应采用同一墙身结构。5)为方便施工,同一分段挡土墙宜采用同一种材料施工。 石料应是结构密实、石质均匀、不易风化、无裂缝的硬质石料,石料强度等级一般不小于MU40。强度等级以5cm×5cm×5cm含水饱和试件的极限抗压强度为准。 砂浆所用的水泥、砂、水的质量应符合有关规范的要求,按规定的配合比施工。反滤层可选用砂砾石等具有反滤作用的粗颗粒透水性材料。 水泥应采用强度高、收缩性小、耐磨性强、标号大于32.5号普通硅酸盐或旋窑硅酸盐水泥,水泥的化学成分、物理性能等路用品质要求应符合有关规定。 为了防止挡土墙因地基不均匀沉降或温度变化引起挡土墙裂缝而破坏,需设置变形缝(沉降缝和伸缩缝一般宽度为2~3cm),并在缝内填塞填缝料。为保证变形缝的作用,两种接缝均须整齐垂直、上下贯通,并且缝两侧砌体表面需要平整,不能搭接,必要时缝两侧的石料须修凿。接缝中需要填塞防水材料(如沥青麻絮),

可贴置在接缝处已砌墙段的端面,也可在砌筑后再填塞,但均需沿墙壁内、外、顶三边塞满、挤紧,填塞深度均不得小于15cm,以满足防水要求。 片石混凝土片石含量不得多于挡墙体积的20%,片石的强度不得低于MU50,片石混凝土施工时,应用质地坚硬、密实、耐久、无裂纹和无风化的石料,片石的厚度应为150~300mm。在混凝土中埋放片石时应符合下列规定: 1)片石应清洗干净并完全饱水,应在浇注时的混凝土中埋入一半左右。 2)当气温小于0摄氏度时,不得埋放片石。 3)片石应分布均匀,净距应不小于150mm,片石边缘距结构物侧面和顶面的净距应不小于150mm,片石不得触及构造钢筋和预埋件。 4)混凝土应采用分层浇(砌)筑的方式,每层混凝土的厚度不应超过300mm,大致水平,分层振捣,边振捣边加片石。 片石混凝土的施工应符合《公路桥涵施工技术规范》(JTG/T F50-2011)的相关规定。 有抗震要求的混凝土挡土墙施工缝和衡重式挡土墙的变截面处,应采用短钢筋加强、设置不少于占截面面积20%的榫头等措施提高抗剪强度。 (2)施工准备及放样: 挡土墙施工前应做好地表排水和安全生产的准备工作,施工前先将墙后地表的虚方全部清除,并将原地面开挖成台阶状,同时必须对设挡土墙段落的横断面重新放样,若发现实地墙趾地面线与设

五种常见挡土墙的设计计算实例

挡土墙设计实例 挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基地;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。 根据挡土墙的设置位置不同,分为路肩墙、路堤墙、路堑墙和山坡墙等。设置于路堤边坡的挡土墙称为路堤墙;墙顶位于路肩的挡土墙称为路肩墙;设置于路堑边坡的挡土墙称为路堑墙;设置于山坡上,支承山坡上可能坍塌的覆盖层土体或破碎岩层的挡土墙称为山坡墙。 本实例中主要讲述了5种常见挡土墙的设计计算实例。 1、重力式挡土墙 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 6.500(m) 墙顶宽: 0.660(m)

面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.500(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 砌体种类: 片石砌体 砂浆标号: 5 石料强度(MPa): 30 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 10.000(m) ===================================================================== 组合1(仅取一种组合计算)

挡土墙设计的基础资料及设计参数

1 前言 公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。在路基工程中,挡土墙可用以稳定路堤和路堑边坡,减少土石方工程量和占地面积,防止水流冲刷路基,并经常用于整治坍方、滑坡等路基病害。 挡土墙的形式多种多样,按其结构特点,可分为:石砌重力式、石砌衡重式、加筋土轻型式、砼半重力式、钢筋砼悬臂式和扶壁式、柱板式、锚杆式、锚定板式及垛式等类型;按其中路基横断面上的位置,又可分:路肩墙、路堤墙及路堑墙;按所处的环境条件,又可分为:一般地区挡墙、浸水地区挡土墙及地震地区挡土墙。考虑挡土墙设计方案时,应与其他工程方案进行技术经济比较,分析其技术的可行性、可靠性及经济的合理性,然后才确定设计方案,并根据实际情况进行挡土墙的选型。 在山区公路中,由于地形条件更为复杂,地势更为陡峭,因此,挡土墙的应用更为广泛。近几年来,笔者参加了二十多段、共三百多公里的山区公路(二、三级)的设计,主要负责路基防护工程,特别是挡土墙的设计,对山区公路挡土墙的设计积累了一定的经验与体会,在此提出,仅供同类工程设计时参考。 2 挡土墙设计的基础资料及设计参数 2.1 基础资料 挡土墙设计时,必须具备以下资料:路线平面图、纵断面图、横断面图,地质资料(包括工程地质勘察报告、工程物探报告),地震勘探报告,水文资料,总体设计资料及构造物一览表等。 2.2 设计参数的选取 2.2.1 墙背填料的物理力学性质对于山岭重丘二、三级公路的挡土墙设计,当缺乏试验数据时,填料的计算内摩擦角及容重可参照表1及表2选用: 表1 填料内摩擦角ψ参考值 表2 填料标准容重

2.2.2 墙背摩擦角填土与墙背间的摩擦角δ应根据墙背的粗糙程度及排水条件确定。山区公路中,对于浆砌片石墙体、排水条件良好,均可采用δ=ψ/2。 2.2.3 基底摩擦系数基底摩擦系数μ应依据基底粗糙程度、排水条件和土质确 定。 2.2.4 地基容许承载力地基容许承载力可按照《公路设计手册2路基》及有关设计规范规定选取。 2.2.5 建筑材料的容重根据有关设计规范规定选取。 2.2.6 砌体的容许应力和设计强度根据有关设计规范规定选取。 2.2.7 砼的容许应力和设计强度根据有关设计规范规定选取。 3 挡土墙的选型 3.1 材料选择 浆砌片石挡土墙取材容易,施工简便,适用范围比较广泛。山区公路中,石料资源较为丰富,在挡土墙高≤10米时,因地制宜,采用浆砌片石砌筑,可以较好地满足经济、安全方面的要求。 3.2 截面形式选择 根据挡土墙结构类型及其特点分析,当墙高<5时,采用重力式挡土墙,可以发挥其形式简单,施工方便的优势。同时,由于山区公路地面横坡比较陡峭,若采用仰斜式挡土墙,会过多增加墙高,断面增大,造成浪费,采用俯斜式挡土墙会比较经济合理。一般在路堑墙、墙趾处地面平缓的路肩墙或路堤墙等情况下,才考虑采用仰斜式挡土墙。当墙高≥5且地基条件较好时,采用衡重式挡土墙,可以有效地减小截面,节省材料。 3.3 位置选择 在挖方边坡比较陡峭时,采用路堑挡土墙,可以降低边坡高度,减少山坡开挖,避免破坏山体平衡;在地质条件不良情况下,还可以支挡可能坍滑的山坡土体。

挡土墙设计详解

加筋土支挡结构课程设计 班级: 姓名: 学号: 指导老师: 时间:2016年12月

第一章加筋土挡土墙 一、概述 加筋土挡土墙指的是由填土、拉带和镶面砌块组成的加筋土承受土体侧力的挡土墙。 加筋土挡土墙是在土中加入拉筋,利用拉筋与土之间的摩擦作用,改善土体的变形条件和提高土体的工程特性,从而达到稳定土体的目的。加筋土挡土墙由填料、在填料中布置的拉筋以及墙面板三部分组成。一般应用于地形较为平坦且宽敞的填方路段上,在挖方路段或地形陡峭的山坡,由于不利于布置拉筋,一般不宜使用。 挡土墙是公路工程中应用中最广泛的一种构筑物。是一种支撑路堤土和山体土坡,防止填土和土体变形失稳,承受侧向土压力的建筑物,随着时代的发展和对出行的需要,高速公路建设要求也日益增高,挡土墙也显着越来越重要。其结构形式也向着多样化发展,设计理念也不断创新,可谓是与时俱进。加筋土挡土墙是在土中加入拉筋,利用拉筋与土之间的摩擦作用,改善土体的变形条件和提高土体的工程特性,从而达到稳定土体的目的。 二、加筋土挡土墙特点 加筋土实质上是填土、拉筋、面板三者的结合体。土和拉筋之间的摩擦改善了土的物理力学性质,使土与拉筋结合成为一个整体。在这个整体中起控制作用的是填土与拉筋间的摩擦力。面板的作用是阻挡填土或填砂的坍塌挤出,迫使填料与拉筋结合为整体。加筋土挡墙就是利用填土与拉筋的摩擦力去平衡填土的侧压力。这样就使得加筋土挡墙更加轻型化和简单化。近年来加筋土技术广泛应用于土木工程,其优越性愈来愈明显。 经归纳,其特点概括如下: (1)组成加筋土的面板和筋带可以预先制作,在现场用机械(或人工)分层

填筑,这种装配式的方法,施工简便、快速,并且节省劳力和缩短工期; (2)加筋土是柔性结构物, 能适应地基轻微的变形; (3)加筋土挡土墙抗振动性强,因此它也是一种良好的抗震结构物; (4)加筋土挡土墙节约占地, 造型美观。加筋土挡土墙的墙面板可以垂直砌筑,可大量减少占地。挡土墙的总体布设和面板的型式图案可根据周围环境特点和需要进行设计; (5)加筋土挡土墙造价比较低。加筋土挡土墙与钢筋混凝土挡土墙相比,可减少造价一半;与石砌重力式挡土墙比较,也可节约20%以上。同时,加筋土挡土墙的造价随墙高的增加而节省效果愈显著。因此它具有良好的经济效益。三、工作原理 加筋土的工作原理是拉筋与填土(通常是颗粒材料)之间的摩擦作用,可以解释为:加筋土看作是由拉筋和土组成的一种复合材料。三轴试验表明,对干燥的砂土试样施加竖向压力,试样会产生侧向膨胀;如果土中水平放置不易延伸的拉筋后,由于筋土的摩擦作用,使拉筋受到拉力,而给予土料的侧向位移以约束力,这就好象在试样上又施加一个侧向压力。当竖向压力增加时,侧向约束力随之增大,直到土与拉筋之间出现滑移或拉筋断裂,试样才破坏。因而,加筋土的强度相应获得提高。 为使侧向约束力较大,一方面要设法增加土粒和拉筋接触面上的摩擦力,也就是采用料径较大的填料和表面粗糙的扁形拉筋;另一方面,应使用延展性较差的材料做拉筋;材料的延展性过大,拉筋将随土料侧向位移一起变形,而起不到侧向约束使用,就不能提高土的强度。拉筋一般应水平布设并垂直于墙面,拉筋在稳定区内必须有足够的长度,以防止拉筋被拔出。 五、加筋土挡墙的形式 常见的加筋土挡土墙形式有下列几种: (1)单面式加筋土挡土墙; (2)双面式加筋土挡土墙,双面式中又分为分离式、交错式以及对拉式加筋土挡土墙; (3)台阶式加筋土挡土墙; (4)无面板加筋墙。

抗滑桩上部、挡土墙及冠梁专项施工方案设计

抗滑桩、挡土板及冠梁专项施工方案 一、施工工艺流程 1、总施工工艺 脚手架搭设清坡清底清桩头施工抗滑桩上部施工挡土板回填抗滑桩和挡土板与边坡之间的空隙土方施工冠梁脚手架拆除 2、分项工程施工工艺 抗滑桩上部、挡土板及冠梁施工工艺流程图 二、施工技术要求及质量保证措施 1、脚手架搭设与拆除 1)、材料要求 (1)、钢管:采用外径48mm,壁厚3.5mm的Q235-A级焊接钢管,材质符合《碳素结构钢》(GB/T700)的相应规定。不得有明显变形、裂纹、压扁和锈蚀。必须进行防锈处理。 (2)、扣件:材质符合现行国家标准《钢管脚手架扣件》(GB15831)的规定,扣件不得有加工不合格、无出厂合格证、表面裂纹变形、锈蚀等质量问题,活动部位灵活转动;夹紧钢管时,开口处的最小距离不小于5mm,表面涂刷橘黄色油漆。

2)、操作工艺 (1)立杆:横距为1.05m,纵距为1.5m,抗滑桩周围适当进行调整。立杆采用对接扣件连接,相邻立杆的接头位置错开布置在不同的步距,与相近大横杆的距离不宜大于步距的1/3,立杆与大横杆必须用直角扣件扣紧,不得隔步或遗漏。双立杆必须底下钢管支撑相对应,即在同一条直线上。 (2)大横杆:大横杆长度为6m,间距1.8m(需要时进行适当调整),对立杆起约束作用,大横杆设置在立杆侧与立杆用直角扣件扣紧,不得遗漏。大横杆采用对接扣件连接,接头与相邻立杆距离≤500mm。同一平面上步和下步相邻的两根大横杆的接头均相互错开,不得出现在同一跨且相邻接头在水平方向错开的距离≥500mm。同一排大横杆水平偏差不大于该片脚手架总长度的1/250且不大于50mm。 (3)小横杆:每一主节点处必须用直角扣件在大横杆上搭设小横杆,该杆轴线偏离主节点距离不大于150mm。在任何情况下不得拆除贴近立杆的小横杆。立杆与大横杆交点处设小横杆,小横杆间距1m。(4)剪刀撑: a每组剪刀撑跨越立杆根数为5-7根,斜杆与地面夹角在45~60度角之间。 b在外侧立面必须沿长度和高度连续设置。 c剪刀撑斜杆应与立杆和伸出的小横杆进行连接,底部斜杆的下端应置于垫板上。 d剪刀撑斜杆的接长均采用搭接,搭接长度不小于1m,设置2个

挡土墙稳定性计算

2、农田护墙(挡土墙)稳定性计算书 (1):墙身尺寸: 墙身高: 1.500(m) 墙顶宽: 0.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.400(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 (2):物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 墙身砌体容许压应力: 2100.000(kPa) 墙身砌体容许剪应力: 110.000(kPa) 墙身砌体容许拉应力: 150.000(kPa) 墙身砌体容许弯曲拉应力: 280.000(kPa) (3):挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000

墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 (4):坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) (5):稳定性计算书: 第 1 种情况: 一般情况 [土压力计算] 计算高度为 1.807(m)处的库仑主动土压力 按实际墙背计算得到: 第1破裂角: 38.300(度) Ea=21.071 Ex=18.463 Ey=10.154(kN) 作用点高度 Zy=0.615(m) 因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=10.021(度) 第1破裂角=39.550(度) Ea=23.256 Ex=16.438 Ey=16.450(kN) 作用点高度 Zy=0.632(m) 墙身截面积 = 1.603(m2) 重量 = 36.866 kN 墙背与第二破裂面之间土楔重 = 0.733(kN) 重心坐标(0.633,-0.594)(相对于墙面坡上角点) (一) 滑动稳定性验算 基底摩擦系数 = 0.500 采用倾斜基底增强抗滑动稳定性,计算过程如下: 基底倾斜角度 = 11.310 (度) Wn = 36.869(kN) En = 19.355(kN) Wt = 7.374(kN) Et = 12.893(kN) 滑移力= 5.519(kN) 抗滑力= 28.112(kN) 滑移验算满足: Kc = 5.093 > 1.300 地基土摩擦系数 = 0.500 地基土层水平向: 滑移力= 16.438(kN) 抗滑力= 29.149(kN) 地基土层水平向: 滑移验算满足: Kc2 = 1.773 > 1.300 (二) 倾覆稳定性验算 相对于墙趾点,墙身重力的力臂 Zw = 0.865 (m) 相对于墙趾点,Ey的力臂 Zx = 1.425 (m) 相对于墙趾点,Ex的力臂 Zy = 0.325 (m) 验算挡土墙绕墙趾的倾覆稳定性 倾覆力矩= 5.334(kN-m) 抗倾覆力矩= 56.294(kN-m)

公路挡土墙设计

第一章绪论 1.1毕业设计课题——挡土墙的概述 公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。在路基工程中,挡土墙可用以稳定路堤和路堑边坡,减少土石方工程量和占地面积,防止水流冲刷路基,并经常用于整治坍方、滑坡等路基病害。在山区公路中,挡土墙的应用更为广泛。 路基在遇到下列情况时可考虑修建挡土墙: (1)陡坡地段; (2)岩石风化的路堑边坡地段; (3)为避免大量挖方及降低边坡高度的路堑地段; (4)可能产生塌方、滑坡的不良地质地段; (5)高填方地段; (6)水流冲刷严重或长期受水浸泡的沿河路基地段; (7)为节约用地、减少拆迁或少占农田的地段。 在考虑挡土墙的设计方案时,应与其他方案进行技术经济比较。例如,采用路堤或路肩挡土墙时,常与栈桥或填方等进行方案比较;采用路堑或山坡挡土墙时,常与隧道、明洞或刷缓边坡等方案进行比较,以求工程技术经济合理。

1.2挡土墙的类型及适用条件 挡土墙类型的划分方法较多,一般以挡土墙的结构形式分类为主,常见的挡土墙形式有:重力式、衡重式、悬臂式、扶壁式、加筋土式、锚杆式和锚定板式。各类挡土墙的适用范围取决于墙址地形、工程地质、水文地质、建筑材料、墙的用途、施工方法、技术经济条件及当地的经济等因素。 1.2.1重力式挡土墙 重力式挡土墙一般由块石或混凝土材料砌筑。重力式挡土墙是靠墙身自重保证墙身稳定的,因此,墙身截面较大,适用于小型工程,通常墙高小于8米,但结构简单,施工方便,能就地取材,因此广泛应用于实际工程中。 1.2.2悬臂式挡土墙 当地基土质较差或缺少石料而墙又较高时,通常采用悬臂式挡土墙,一般设计成L型,由钢筋混凝土建造,墙的稳定性主要依靠墙踵悬臂以上土重来维持。墙体内设置钢筋以承受拉应力,故墙身截面较小。 1.2.3扶壁式挡土墙 由墙面板、墙趾板、墙踵板和扶肋组成,即沿悬臂式挡土墙的墙长方向,每隔一定距离增设一道扶肋,把墙面板和墙踵板连接起来。适用于缺乏石料的地区或地基承载力较差的地段。当墙高较高时,比悬臂式挡土墙更为经济。 1.2.4锚定板及锚杆式挡土墙

挡墙设计说明

技术交底书挡土墙施工图设计说明 页脚内容1

技术交底书 页脚内容2 1、设计依据 《公路路基设计规范》 JTG D20-2004 《公路钢筋混凝土及预应力桥涵设计规范》 JTG D62-2004 《公路桥涵地基及基础设计规范》 JTG D63-2004 《公路挡土墙设计与施工技术细则》 2、地质说明 2.1 岩土层分布及其特征 经钻探及工程地质调查查明,场区内的土层为第四系全新统人工堆积层(Q 4ml )和黏土②(Q 4h )、第四 系冲积层(Q 4al )圆砾③。根据场地的地貌单元、岩土成因类型、风化程度、地层沉积年代,对场区内的岩土层进行划分,分为3层,现叙述如下: 1、填土①(Q 4ml ) 属第四系全新统人工堆积层,灰褐色、黄色,稍湿,稍密,成分主要为黏性土夹砾石, 局部有少里风化泥砂岩等,土质不均匀。层0.80~4.50m ,平均厚度1.93m ,该层分布于整个场地。 本层做标准贯入试验6次,平均击数4.0击/30cm ;修正后标准值3.3击30cm ; 本层属干燥类型土,土、石类别为松土,土、石等级为Ⅰ级。 2、黏土②(Q 4al ) 属第四系冲积层,褐黄色、黄色,硬塑,湿,粘性土为主,含铁锰结核、石英等,切面光滑,有光泽,干强度较高,韧性高,无摇震反应中等。层面埋深1.60~4.80m ,厚度1.20~8.3m ,该层仅分布于ZK12~ZK19号钻孔部分路段。本层取原状土样6件进行室内试验,试验结果表明:液性指数I L =0.09~0.19,平均值0.13;孔隙比e=0.603~0.830,平均值为0.670;属硬塑状。液限W L =35.2%~41.8%,平均值为38.3%,压缩系数21-α=0.14 Mpa-1~0.16Mpa-1,平均值为0.15Mpa-1,属中等偏低压缩性土。本层做标准贯入试验12次,平均击数12.1击/30cm ,修正后标准值11.8击/30cm 。 3、圆砾③(Q 4al ) 属第四系冲积层,黄褐色、黄色、,密实局部为中密,无摇震反应,圆砾成份为风化石英岩、砂岩、硅质岩,呈圆状、亚圆状,砾经多为2~35m m 不等;级配较好,磨圆度中等,占总质量60~75%,填充为中粗砾砂及粘性土。层面埋深0.8~4.50m ,最大揭露厚度22.60m ,该层分布于场地全部路段。 本层取扰动土样6组圆砾样做颗粒分析试验,结果表明:粒径﹤0.075mm 的颗粒含量平均值为13.52%,粒径0.075~0.25mm 的颗粒含量平均值为2.50%、粒径0.25~0.5mm 的颗粒含量平均值为6.88%、粒径0.5~2.0mm 的颗粒含量平均值为10.92%、粒径2.0~20mm 的颗粒含量平均值为53.42%、粒径大于20mm 的颗粒含量平均值为12.75%。 本层做动力触探试验11/ 11米/孔,平均击数19.8击/10cm ,修正后标准值19.6击/10cm 。。 本层属干燥类型土,土、石类别为普通土,土、石等级为Ⅱ级。经钻探查明,场地内的岩土层主要为填土、第四系冲、洪积相的碎石土以及古近系泥岩等,其中填土、风化岩及具胀缩性的古近系泥岩为特殊性岩土。 2.2 水文地质条件 本次钻探在ZK12~ZK19钻孔岩层中揭露地下水,地下水类型主要为孔隙水;孔隙水主要赋存于填土①、黏土②及圆砾③孔隙裂隙中,终孔后测得孔内稳定水位埋深 2.80~4.80m ,标高为76.33~83.35m 。主要受大气降水的补给,以蒸发、径流及下渗等形式排泄,水量很小,水位因季节变化而异,无统一水位,对施工有影响。 2.3 岩土层胀缩性评价 本场地较可能具膨胀性的地基土层为冲积成因的黏土②层,试验结果自由膨胀率δcf =23.0%﹤25%,按《广西膨胀土地区建筑勘察设计施工技术规程》(DB45/T396-2007)表3.1.4规定,该层土不具膨胀性。 2.4 结论与建议 1、经过本次勘察,线路工程地质条件及水文地质条件已查明。道路沿线土层简单。拟建线路自然斜坡基本稳定,地下水埋藏较深,水文地质条件简单。道路填方高度较不大,应对边坡采取适当的支护措施。场地无深大断裂通过,地质构造简单。因此路线宜于修建。 2、场地抗震设防烈度为6判别度,场地没有可液化土层,一般情况下不需要进行路基抗震强度、稳定性和液化验算。 3、场地填土①均厚度小,可开挖清除。 4、路基持力层选择:以粘土或圆砾为持力层。 5、在挖方较深路段K0+150~K0+300采用桩板式支护。 5、填土路堤应分层碾压夯实。路基填土的填料、填筑工序及压实度等,应符合规范的规定,应清除表面素填土后再进行回填。 6、施工时应先清除拟建路线范围内的有机质土等松软土体,并将基底土碾压密实后再进行填筑。新旧填土接触面建议开挖成阶梯状,以保证新旧填土表面衔接。必要时,可采用冲击碾压或强夯等进行增强补压,以消减路基填挖间的差异变形。 7、场地地下水及地基土对混凝土结构、对钢筋混凝土结构中钢筋及对钢结构均具微腐蚀性。 8、路线应设置有效的截、排水系统,防止地表水下渗对路基产生危害及影响线路稳定性。 9、设计施工中应注意核查是否有穿越埋在场地地下的天然气管、自来水管、电缆等管道设施,并作好防护措施。 10、施工中若遇疑难地质问题,请及时通知我院派有关员前去验槽,并共同研究解决。 3、设计参数 各岩土层主要物理力学指标建议值表 表7

公路挡土墙与高级路面设计

公路挡土墙与高级路面设计

路基路面课程设计公路挡土墙与高级路面设计

目录 道路工程课程设计任务书(附页)………………………………………………………………… 重力式挡土墙……………………………………………………………………………………………… 新建水泥混凝土路面设计……………………………………………………………………………… 新建沥青路面设计………………………………………………………………………………………… 改建沥青路面……………………………………………………………………………………………… 参考文献……………………………………………………………………………………………………

道路工程课程设计任务书(附页) 一、挡土墙设计: 设计资料: 1.浆砌片石重力式路堤墙,墙身高4-6米,墙上填土高2-3米,填土边坡1:1.5,墙背仰斜,坡度1:0.15-1:0.35,墙身分段长度15米。 2.公路等级二级,车辆荷载等级为公路-II级,挡土墙荷载效应组合采用荷载组合I、II。 3.墙背填土容重γ=18kN/m3,计算内摩擦角Φ=35°,填土与墙背间的内摩擦角 δ=Φ/2。 4.地基为砂类土,容许承载力f=350kPa,基底摩擦系数μ=0.40。 5.墙身材料2.5号砂浆砌25号片石,砌体容重23kN /m3,砌体容许压应力[σa]=600kPa,容许剪应力[τ]=50kPa,容许弯拉应力[σwl]=80 KPa。 根据设计资料进行挡土墙设计。 二、路面设计: 某国道天津段按一级公路标准修建,并将于2011年底通车,设计道路横断面为双向四车道。根据可行性研究报告提供的2009年的交通组成情况如下表:

04抗滑挡土墙的设计与施工

04抗滑挡土墙的设计与施工

第4章抗滑挡土墙的设计与施工 §4.1 概述 滑坡是岩土工程中常见的主要病害之一。当斜坡岩土体在各种自然因素或人为因素的影响下,斜坡岩土体在重力作用下,沿着一定的土层(软弱层)整体向下滑移的现象,即称为滑坡。大规模滑坡对人类的生产建设活动和人民的生命财产有着极大的危害,如重庆云阳滑坡和武隆滑坡等。因此,应对滑坡进行预防和处理。通过预防来预料可能发生的灾害,并在与处理工程所需费用权衡之后,或将居民和建筑物迁移到另一安全地带,或改移公路、河道等,或在稳定的基岩中修建隧道以避免滑坡,或在小规模滑坡情况下用桥梁通过。在不得已必须在滑坡区兴工动土进行建设,而改变自然环境时,就应事先修建整治工程,以提高滑坡体的稳定性,防止滑坡体产生滑坡。 滑坡整治工程大致分为减滑工程和抗滑工程两点。减滑工程的目的在于不改变滑坡的地形、土质、地下水等的状态,即通过改变滑坡体自然条件,而使滑坡运动得以停止或缓和。抗滑工程则在于利用抗滑构筑物来支挡滑坡体运动的一部分或全部,使其附近及该地区的设施及人民生命财产等免受危害。这类工程主要用来制止小规模滑坡或部分制止大规模滑坡。常用的抗滑工程主要有抗滑挡土墙和抗滑桩等。 减滑工程主要有排除地表水工程(水沟、防渗

工程)、排除地下水工程、截断地下水工程、刷方减重等工程措施。 本章主要介绍抗滑工程中的抗滑挡土墙的设计与施工特点。 §4.1.1 抗滑挡土墙类型、特点和适用条件 抗滑挡土墙是目前整治中小型滑坡中应用最为广泛而且较为有效的措施之一。根据滑坡的性质、类型和抗滑挡土墙的受力特点、材料和结构不同,抗滑挡土墙又有多种类型。从结构型式上分,有:(1)重力式抗滑挡土墙;(2)锚杆式抗滑挡土墙;(3)加筋土抗滑挡土墙;(4)板桩式抗滑挡土墙;(5)竖向预应力锚杆式抗滑挡土墙等型式。从材料上分,有:(1)浆砌条石(块石)抗滑挡土墙;(2)混凝土抗滑挡土墙(浆砌混凝土预制块体式和现浇混凝土整体式);(3)刚筋混凝土式抗滑挡土墙;(4)加筋土抗滑挡土墙等。 选取何类型的抗滑挡土墙,应根据滑坡的性质、类型(渐断性的滑坡或连续性的滑坡、单一性的滑坡或复合式的滑坡、浅层式的滑坡还是深层式的滑坡等)、自然地质条件、当地的材料供应情况等条件,综合分析,合理确定,以期达到整治滑坡的同时,降低整治工程的建设费用。 采用抗滑挡土墙整治滑坡,对于小型滑坡,可直接在滑坡下部或前缘修建抗滑挡土墙,对于中、大型滑坡,抗滑挡土墙常与排水工程、刷土减重工程等整治措施联合适用。其优点是山体破坏少,稳定滑坡收效快。尤其对于由于斜坡体因前缘崩塌而引起大规模滑坡,抗滑 挡土墙会起到良好的整治效果。但在修建抗滑挡土墙时,应尽量避免或减少对滑坡体前缘的开挖,

公路挡土墙设计

第八章其他结构形式的挡土墙 第一节竖向预应力锚杆档土墙 一、概述 竖向预应力锚杆挡土墙是由圬工砌体和竖向预应力锚杆构成,如图8—1所示。砌体一般是由浆砌片(块)石或素混凝土筑成,竖向预应力锚杆竖向设置,它的一端锚固在岩质地基中,另一端砌筑于墙身内,并设锚具与圬工砌体联系,最后对锚杆进行张拉。竖向预应力锚杆挡土墙就是利用锚杆的弹性回缩对墙身施加竖向预应力,以提高挡土墙的稳定性,从而代替部分挡土墙圬工的重力,减少挡土墙圬工断面,达到节省圬工、降低造价的目的。 竖向预应力锚杆挡土墙一般适用于岩质地基(即要求地基承载力高)及墙身所受侧压力(如滑坡推力)较大的情况。此种挡土墙我国铁路部门于1钌5年首先应用于成昆铁路狮子山滑坡病害整治工程中,以后在其他滑坡治理工程中陆续使用。 二、锚杆设计 灌浆预应力锚杆是利用锚孔中灌注的水泥砂浆锚固在挡土墙基底稳定岩层的钻孔中,锚杆受拉后由锚杆周边的砂浆握裹力将拉应力通过砂浆传递到岩层中。它由锚固段、张拉自由段及垫板锚具等三部分组成,如图8—1所示。 锚固段是指在挡土墙基底以下锚固在稳定地基中的一段锚杆,它是利用水泥砂浆对锚杆的握裹力、砂浆与孔壁岩层间的粘结

锚杆设计包括锚杆材料的选定和截面尺寸的确定,锚杆间距及锚杆锚固深度的确定等。 锚杆宜用经过双控冷拉处理后的单根粗钢筋制作,双控冷拉处理的目的在于提高钢筋的极限强度,一般采用螺纹钢筋。其截面应根据受力大小而定,锚杆直径尚需增加2mm作为防锈的安全储备,目前常用φ(18-32)mm。锚孔直径一般比锚杆直径大15-30mm,约 为50—lOOmm,视岩石的风化程度、水泥砂浆与岩石的粘结强度

相关主题
文本预览
相关文档 最新文档