当前位置:文档之家› 直接转矩控制

直接转矩控制

直接转矩控制
直接转矩控制

摘要:直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。本文对直接转矩控制原理进行了简介,以及目前应用直接转矩控制的产品介绍。

关键词:直接转矩控制,异步电机

目录

1直接转矩控制的基本原理及特点与规律 (3)

1.1直接转矩控制系统原理与特点 (3)

1.2直接转矩系统的控制规律和反馈系统 (4)

2 直接转矩控制的基本原理和仿真模型 (6)

2.1直接转矩控制的基本原理 (6)

2.2直接转矩控制的仿真模型总图 (7)

3 三相异步电机的数学模型 (8)

4 磁链信号和转矩信号产生 (10)

4.1定子磁链的观测控制 (10)

4.2 电磁转矩的有效控制 (11)

总结 (12)

参考文献 (13)

1直接转矩控制的基本原理及特点与规律

直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。

1.1直接转矩控制系统原理与特点

如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*

T,在*

T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。

图1-1直接转矩控制系统图

的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链

s

保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。在直接转矩控

制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度 的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。

直接转矩控制作为一种交流调速的控制技术具有以下特点:

①直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,直接控 制电机的磁链和转矩。它不需要将交流电动机和直流电动机做比较等效简化,不 需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型,它 省掉了矢量旋转变换等复杂的变换与计算。因此,它所需要的信号处理工作特别 简单,所用的信号使观察者对于交流电动机的物理过程能够做出直接和明确的判 断。

②直接转矩以定子磁场定向,只要知道定子参数就可以把它观测出来。而 矢量控制磁场定向所用的是转子磁链,观测转子磁链需要知道电动机的转子电阻 和电感。因此,直接转矩控制大大减少了矢量控制技术中控制性能易受参数变化 影响的问题。

③直接转矩控制采用空间电压矢量和六边形磁链轨迹,直接控制转矩。 ④转矩和磁链都采用两点式调节,把误差限制在容许的范围内,控制直接 又简化。

⑤控制信号的物理概念明确,转矩响应快,具有较高的静、动态性能。由 于以上的优点所以直接转矩控制技术在现代控制理论中得到广泛的运用。

1.2直接转矩系统的控制规律和反馈系统

在DTC 系统中采用的是两相静止坐标(αβ坐标),为了简化数学模型,由三相坐标变换成两相是非常重要的,所以可以避开旋转变换。由式(1-1)和式(1-2)可得

ααααααψs s s s m s s s s s p i R pi L pi L i R u +=++= (1-1) ββββββψs s s s m s s s s s p i R pi L pi L i R u +=++= (1-2)

移项并积分后得

(1-3)

(1-4)

式(1-3)和式(1-4)就是图1-1中所采用的定子磁链模型,其结构框图如图1-2所示。它适合于中低速时切换到电流模型,这是上述能提高鲁棒性的优点就不得不丢弃。

图1-2 定子磁链模型结构框图 在两相静止坐标系上的电磁转矩表达式为

)(βααβs s r s m p e i i i i L n T -= (1-5) 整理可得

)(βααβs s r s p e i i i i n T -= (1-6)这就是DTC 系统所用的系统模型,结构图如图1-3所示。

?-=dt i R u s s s s )(α

α

α

ψ?

-=dt i R u s s s s )(αααψA

u B

u C

u A i B

i C

i α

ψS β

ψS

图1-3 转矩模型结构框图

2 直接转矩控制的基本原理和仿真模型

2.1直接转矩控制的基本原理

图2-1 直接转矩控制系统的基本原理图

α

ψs β

ψs e

如图所示2-1。其基本原理是将速度传感器检测出的电机实际转速n 与电机给定转速n* 比较的值输入PI 调节器后得到给定转矩值*e T ;由霍尔传感器得到的异步电机定子电压和电流经过磁链和转矩转矩估计器得到转矩实际值e T ,两相定子磁链分量s αψ、s βψ以及定子磁链幅值s ψ 。定子磁链幅值s ψ与给定的磁链幅值比较后输入磁链滞环调节器得到磁链信号Q ψ;给定转矩值*e T 与转矩实际值e T 经过比较后输入到转矩滞环调节器得到转矩信号TQ ;定子磁链在两相静止坐标系下的α、β分量经过区间判断单元得到定子磁链所处扇区信号SN ;磁链开关信号Q ψ、转矩开关信号TQ 以及定子磁链扇区信号SN 通过查阅开关表得到所要的电压矢量信号a S 、b S 、c S 进而控制异步电机运行状态。

2.2直接转矩控制的仿真模型总图

异步电机直接转矩控制系统主要由以下几个子系统组成:异步电机模型、转速调节器、磁链信号和转矩信号产生模块、定子磁链扇区判断模块、电压矢量选择模块和逆变器模块组成,完整系统模型图如图2-2所示。

图2-2 异步电机直接转矩控制

3 三相异步电机的数学模型

要想对三相异步电机进行高效控制,其数学模型的准确建立是不可或缺的。如大家所知,三相异步电机本身是一个非线性、强耦合的高阶多变量系统,建立一个系统的、完整的反映异步电机真实性能的数学模型是研究直接转矩控制技术在异步电机中应用的理论基础。为了建立三相异步电机数学模型,一般在异步电机理论基础上进行如下的假设:

(1)忽略空间谐波,设电机三相绕组对称分布,在空间互差120°电角度,各项电流所产生的磁动势沿气隙空间正弦规律分布。 (2)忽略磁路饱和,电机定转子表面光滑。 (3)忽略铁心损耗。

(4)忽略频率变化和温度变化对电机绕组电阻的影响。

在上述假设基础上,由于电机的电压和电流测量都处于静止坐标系中,因而若将三相异步电机的在三相静止坐标系下的各个状态方程变换到两相静止坐标系下,会简化数学模型和状态方程,两相静止坐标系一般称为α-β坐标系,如图3中(a )、(b )即分别为三相定子坐标系和两相静止坐标系下的定子电流,三相/两相变换矩阵如式(1-1)。

3/2111220C ?

--

?

=

? (1-1

图3坐标变换关系图

异步电机数学模型在两相静止坐标系下的数学模型包括电压方程、磁链方程、转矩方程和运动方程,具体如下:

电压方程:

00

0000s s m s s s m s m m r r r m

m

r

r r R pL pL u R pL pL u pL wL R pL wL wL pL wL R pL αβ+????????+?

???=??

??+?

?

??--+???? (1-2) 磁链方程:

0000000

s s s m s s s m r r m r r r m

r i L L i L L i L L i L L ααββααββψψψψ????

??????????????=??????????????????????

(1-3) 转矩方程:

3

()2

e p m s r s s T n L i i i i βααβ=

- (1-4) 运动方程:

()p

e L n dw T T dt J =- (1-5) 其中,s u α,s u β为两相静止坐标系下定子电压α,β分量,s i α,s i β为两相静止坐标下的定子电流分量,r i α,r i β为两相静止坐标系下转子电流分量,s R ,r R 为电机定子和转子每相电阻,s L 为定子自感,r L 为转子自感,m L 为定转子互感,p

代表微分运算。

s αψ,s βψ为两相静止坐标系下定子磁链分量,r αψ,r βψ分别为两相静止坐标系下转子磁链分量。e T 代表电机电磁转矩,L T 代表负载转矩,J 代表电机的转动惯量,p n 代表极对数,ω为电机角速度。

4 磁链信号和转矩信号产生

4.1定子磁链的观测控制

定子磁链和电磁转矩的观测控制是直接转矩控制技术中的关键环节,如图6中,定子磁链偏差和电磁转矩偏差各自被限制在滞环比较器的容差范围内。当定子磁链容差设置过大,会使定子磁场产生低次谐波,因此会使定子电流发生较大的畸变;当定子磁链容差设置过小,会导致逆变器的开关频率增大,提高器件损耗。同样,当电磁转矩容差设置过大,会增大电磁转矩脉动;当电磁转矩容差设置过小时,照样会增大逆变器开关频率和提高损耗。

为了获得定子磁链偏差值,首先得知道定子磁链实际值。在直接转矩控制技术中,定子磁链实际值是根据定子电压、电流和转速的检测值以及电动机参数通过估计得到的。本文采用的异步电机定子磁链估计模型是u-i 模型。

()s s s s u i R d t ψ=-? (1-6)

图6 u-i 模型结构图

使用u-i 模型来确定异步电机定子磁链的优点是在计算过程中唯一需要用到的电机参数只有定子电阻,式(1-6)中的定子电压、定子电流和定子电阻属于易于测量的物理量,因此该方法是定子磁链观测中最简单的方法。在异步电机高速运行时,定子电阻引起的压降可以忽略不计,利用u-i 模型估算法可以得到非常准确的观测结果。但是在低速时,定子电压很小,定子电阻变化引起的影响不能忽略,因此定子电阻参数变化对积分结果影响很大,u-i 模型的观测结果会失真,需要随着温度的变化对电阻值进行修正。而且实际检测定子电压和电流时,不可避免的会产生幅值偏差和相位偏差。积分器存在误差积累和直流温漂问题,

这些问题在电机处于低速运行时将十分突出。

u-i 模型观测定子磁链的算法中不包含电子转子参数的信息,且计算时不需要电机转速信息,适合无速度传感器直接转矩控制系统。

定子磁链的控制目标是选择定子电压矢量实现定子磁链对给定值的动态跟踪,将定子磁链幅值控制在容差限制的范围内,使定子磁链轨迹接近于圆形。定子磁链的幅值和相位可由式(1-7)求出。

s ψ= t a n (/)(0,s s s a c i f β

ααθψψψθθπ

=<

=+ (1-7)

在直接转矩控制中,定子磁链由磁链滞环比较器来控制,对定子磁链幅值进行两点式调节,滞环比较器的带宽为2ψε,上下限分别为ψε和-ψε,它们是定子磁链偏差允许的波动范围,磁链滞环比较器的原理图如图7所示。

图7 磁链滞环比较原理

上图中输入信号是计算定子磁链幅值与给定定子幅值的比较值s ψ?,输出信号为磁链信号ψQ 。当s ψ?>ψε时,磁链信号ψQ=1;当s ψ?<-ψε时,磁链信号ψQ=-1;当s ψψε?<时,磁链信号ψQ 不变。

4.2 电磁转矩的有效控制

直接转矩控制中电磁转矩方程可以写为:

(1-8) 式中,

p

n为异步电机的极对数,θ为定子磁链和转子磁链之间的夹角。可以看出电磁转矩是由定子磁链和转子磁链的矢量积决定,通过改变定子磁链和转子磁链之间的夹角可以控制电磁转矩的大小。在直接转矩控制中电磁转矩的控制和定子磁链的控制类似都是通过滞环比较器来完成,与磁链滞环比较器采用的是两点式调节不同,转矩滞环调节器采用的三点式调节方法,其原理图如图8所示。

图8 转矩滞环比较器原理

转矩调节采用三点式调节的原因是若采用两点式调节,当转速处于低速或者突然降至低速时会使零电压矢量的作用时间变长,容易引起圆形磁链产生畸变,

增加转矩脉动。转矩滞环比较器的输入信号是给定转矩*

e

T和实际转矩

e

T的比较

e

T,输出为转矩信号T

e

?,上下限分别为

T

ε和-

T

ε。当

e

+

T

?≥时,转矩信

号TQ=1;当

e

+

T

?≤时,转矩信号TQ=-1,其他情况转矩信号TQ=0。

总结

直接转矩控制技术是继矢量控制技术之后,在交流传动领域内发展迅速的一种高性能调速技术,该控制方法以其思路新颖、结构简单及性能良好等优点引起了广泛关注和研究。与矢量控制技术不同,直接转矩控制技术采用定子磁场定向,直接将磁通和电磁转矩作为控制量,对电磁转矩的控制更加简捷快速,提高了系统的动态响应能力。由于直接转矩控制技术本身的固有优势,使直接转矩控制的

3

sin

2

p

e s r

n

T

L

δ

ψθ

理论研究和技术开发越来越受到重视,进展的步伐也越来越快。本文将直接转矩控制技术应用于异步电机中,从异步电机的数学模型出发,介绍了直接转矩控制技术的基本理论

参考文献

[1]陈伯时.电力拖动自动控制系统.机械工业出版社,2002.

[2]邹伯敏.自动控制理论.机械工业出版社,2003.

[3]徐月华,汪仁煌.MATLAB在直流调速设计中的应用.广东工业大学,2001.

[4]马葆庆,孙庆光.直流电动机的动态数学模型.电工技术,1997.

[5]周渊深.交直流调速系统与MATLAB仿真.中国电力出版社,2003.

[6]Leonhard W. Control of Electrical Drives Springer-Verlag,2001.

变频器基础知识

变频器基础知识 变频器是把工频电源(50Hz 或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CP U 以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、G T O(门极可关断晶闸管)、B JT(双极型功率晶体管)、M OSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、S I TH(静电感应晶闸管)、M GT(MOS 控制晶体管)、M CT(MOS 控制晶闸管)、I GBT(绝缘栅双极型晶体管)、H VIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM 模式优化问题吸引着人们的浓厚兴趣, 并得出诸多优化模式,其中以鞍形波PWM 模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的V VVF 变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM 控制变频器、PWM 控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f 控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 V VVF :改变电压、改变频率 CVCF :恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz 或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n =60 f(1-s)/p (1) 式中 n ———异步电动机的转速; f ———异步电动机的频率; s ———电动机转差率; p ———电动机极对数。 由式(1)可知,转速n 与频率f 成正比,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V ,输出功率为0.75~400kW ,工作频率为0~400Hz ,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U /f=C 的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统 开关电源设计学习园地 https://www.doczj.com/doc/a514876220.html,

直接转矩控制基本原理和仿真研究报告

直接转矩控制的基本原理和仿真研究 摘要:直接转矩控制技术是继矢量控制技术之后,在交流传动领域内发展迅速的一种高性能调速技 术,该控制方法以其思路新颖、结构简单及性能良好等优点引起了广泛关注和研究。与矢量控制技 术不同,直接转矩控制技术采用定子磁场定向,直接将磁通和电磁转矩作为控制量,对电磁转矩的 控制更加简捷快速,提高了系统的动态响应能力。由于直接转矩控制技术本身的固有优势,使直接 转矩控制的理论研究和技术开发越来越受到重视,进展的步伐也越来越快。本文将直接转矩控制技 术应用于异步电机中,从异步电机的数学模型出发,介绍了直接转矩控制技术的基本理论。在深入 剖析原理的基础上将直接转矩算法模块化,在Simulink环境下建立了异步电机直接转矩近似圆形 磁链控制系统仿真模型。仿真结果表明,直接转矩控制技术动态响应能力快,控制方法直接,但是 低速性能较差,低速状态下存在转矩脉动过大,定子电流畸变严重等缺点。 关键字:直接转矩控制,异步电机,simulink The Basic Principle and Simulation Study of Direct Torque Control Kong Fei,Ye Zhen,Shao Zhuyu technology is a high-speed technology in the field of AC drive following the technique of vector control and it has rapid development in recent years.This control strategy attracts wide attention and research for its novel idea, simple structure and good performance. Differ from the vector control technologies, DTC technology uses the stator flux orientation and directly makes the flux and electromagnetic torque as the control volume, therefore the control of the electromagnetic torque is simple and fast, the system dynamic response capability is improved. Due to the inherent advantages of DTC technology, its theoretical research and technological development is receiving increasing attention, also the pace of progress faster and faster.In this article, we make direct torque control techniques applied to asynchronous motors. From a mathematical model of induction motor starting, introduced the basic theory of DTC technology. Based on depth analysis of the basis and principles, we module the DTC algorithm. In the Simulink environment, the asynchronous motor direct torque control system of quasi-circular flux simulation model is established. Simulation results show that the DTC technologies has fast dynamic response capability and directly control method, but the low-speed performance is poor, such as torque ripple is too large in low speed state and the stator current distortion is serious. Key words:direct torque control (DTC>,asynchronous motor,simulink 1前言 直接转矩控制技术作为一种新颖的电机控制策略,基本思想就是直接将电磁转矩作为被控制量,与矢量控制相比,无需进行复杂的坐标变换,对电机的控制更加快捷迅速,控制系统的动态响应能力得到进一步提高。为了将直接转矩控制方法应用于异步电机中,我们在分析三相异步电机的数学模型基础上,详细阐述直接转矩控制的基本原理,并将各个部分模块化,在MATLAB/Smulink环境下建立了直接转矩控制仿真模型进行了仿真研究。 2直接转矩控制的基本原理和仿真模型 2.1 直接转矩控制的基本原理和仿真图 2.1.1直接转矩控制的基本原理

直接转矩控制

太原科技大学 题目:直接转矩控制 专业:电气工程 班级:研1403 姓名:安顺林 学号:S2*******

直接转矩控制 摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。 关键字直接转矩控制,异步电动机 一直接转矩控制系统介绍 1.1 异步电动机调速系统的发展状况 在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。就变频调速而言,其形式也有很多。传统的变频调速方式是采用v/f控制。这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。 1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。 矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。一般地,转子磁链检测可以采用直接法或间接法来实现。 直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。因此,间接法是实际应用中实现转子磁链检测的常用方法。

最新电力电子技术在轨道交通牵引系统中的发展知识分享

电力电子技术在轨道交通牵引系统中的 发展

电力电子技术在轨道交通牵引系统中的发展 第一组 电力牵引传动与电力电子器件存在相互促进和相互依存的密切关系,电力传动是按照直一直传动、交一直传动再到交一直一交传动的过程发展的,而为了满足这一发展历程,离不开电力电子器件和现代计算机控制技术的高速发展。现代电力电子器件的发展迅猛,开发周期愈来愈短,如快速晶闸管、GTO晶闸管、GIBT、IPM等,每种新器件的诞生都迫使我们加快了对新器件的基础应用研究,从而促进了牵引传动方式的进步。 1轨道车辆牵引领域电力电子器件的发展 1.1 电力电子器件的发展 自1957 年晶闸管问世,标志着电力电子技术的诞生,从此电子技术向两个分支发展。一支是以晶体管集成电路为核心形成对信息处理的微电子技术,其发展特点是集成度愈来愈高,集成规模越来越大,功能越来越全。另一支是以晶闸管为核心形成对电力处理的电力电子技术,其发展特点是晶闸管的派生器件越来越多,功率越来越大,性能越来越好。 传统的电力电子器件已发展到相当成熟的阶段,但在实际中却存在两个制约其继续发展的致命因素。一是控制功能上的欠缺,因为通过门极只能控制其开通而不能控制其关断,属于半控型器件。二是此类器件立足于分立元件结构,开通损耗大,工作频率难以提高,一般情况下难以高于400Hz,因而大大地限制了其应用范围。因此,半控制器件的发展已处于停滞状态。 到了70 年代末,可关断晶闸管(GTO)器件日趋成熟,标志着电力电子器件已经从半控型器件发展到全控制型器件。进入80 年代以后,伴随着GTO器件的发展及成熟,MOS 器件的开发则繁花似锦。绝缘栅双极晶体管(IGBT)独占鳌头。至此电力电子器件又从电流控制型器件发展到电压控制型器件。90 年代,电力电子器件又在向智能化、模块化方向发展,力求将电力器件与驱动电路、保护电路、检测电路等集成在一个芯片或模块内,使装置更趋小型化、智能化,其典型器件是IPM。而IGCT 器件既具有IGBT 器件的开关特性,同时又具有GTO 器件的导通特性,且制造成本较低(与GTO和IGBT相比),可以获得和GTO晶闸管一样的产量,即其集IGBT与GTO二者优势于一身,预计今后会在更多的

直接转矩控制仿真

为了能让大家在已经泛滥的知识上少走弯路,本人把自己在SVPWM上的认识与看到此贴的读者们一起分享,废话少说,切入正题:在看下面内容之前,您应该至少对SVPWM的原理有大致的了解,如果不了解也没关系,你只要按照我交给你的步骤来做,也可以轻而易举的跨过SVPWM这道坎,在仿真之前您必须安装MATLAB7.0或以上版本,必须确保simpowersysm工具箱已被安装,如果以上要求已经达到,那么就可以执行以下步骤了: 步骤1:打开matlab主界面,然后在command window界面中的“>>”旁边输入simulink,打开simulink开发环境后新建一个mdl文件,在simulink下拉菜单中的ports&subsystems中找到subsystem模块,用其建立一个如图1的总的模块,这个模块有两个输入口,一个输出口(实际上包含六路PWM信号),接来的东西都将在这个模块中添加,输入输出模块的名称可以在双击模块后自己更改,其中Vahar,Vbetar是需要输出的电压在两相静止坐标系下的两个分量,输出是控制逆变器六个IGBT的pwm脉冲信号。 也许有人会问,输入参数不是还包括直流电压和功率开关频率吗?别急,下面接着让您看到上述模块的内部情况 步骤2:根据图2,添加subsystem的内核模块,里面用到的模块有以下几种:in,out,mux,demux,repeatingsequence,rationaloperator,logical operator 和里面的主角S-Function builder模块。

可以看到输入有四个参数Vapha,Vbeta,Tz,Vdc,输出为六路PWM信号,这个仿真模块没考虑死区的问题; 取Tz为1/(1e+4)这就是说开个频率是10kHz,Vdc为500,这两个参数要根据实际情况自己设置,这里是我任意设的,repeating sequence的设置如图3所示,这样设的目的是想产生一个周期为Tz,峰值为Tz/2的等腰直角三角形调制波,接下来设置两个比较模块和取反模块,比较模块是大于等于关系,各模块的其他参数,我没说的就当默认设置,细心的读者会在图4中的第一幅图中看到仿真时间设为Ts,这是我设的系统仿真步长,这里就用默认值-1,此外比较模块和取反模块的信号属性signal atrributes均应设为Boolean格式。 图3

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

正版直接转矩控制系统仿真

目录 1直接转矩控制的基本原理及特点与规律 (1) 1.1直接转矩控制系统原理与特点 (1) 1.2直接转矩系统的控制规律和反馈系统 (3) 2系统建模与仿真 (5) 2.1模块模型实现 (5) 2.1.1电机模型 (6) 2.1.2磁通和转矩滞环控制器 (7) 2.1.3磁链选择器 (8) 2.1.4电压矢量选择 (9) 2.1.5其他模块 (10) 3感受和体会 (11) 附录 (12) 参考文献 (18)

直接转矩控制技术仿真分析 1直接转矩控制的基本原理及特点与规律 直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。 1.1直接转矩控制系统原理与特点 如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号* T,在* T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。 图1-1直接转矩控制系统图 的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链 s 保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。在直接转矩控

制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。 直接转矩控制作为一种交流调速的控制技术具有以下特点: ①直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,直接控 制电机的磁链和转矩。它不需要将交流电动机和直流电动机做比较等效简化,不 需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型,它 省掉了矢量旋转变换等复杂的变换与计算。因此,它所需要的信号处理工作特别 简单,所用的信号使观察者对于交流电动机的物理过程能够做出直接和明确的判 断。 ②直接转矩以定子磁场定向,只要知道定子参数就可以把它观测出来。而 矢量控制磁场定向所用的是转子磁链,观测转子磁链需要知道电动机的转子电阻 和电感。因此,直接转矩控制大大减少了矢量控制技术中控制性能易受参数变化 影响的问题。 ③直接转矩控制采用空间电压矢量和六边形磁链轨迹,直接控制转矩。 ④转矩和磁链都采用两点式调节,把误差限制在容许的范围内,控制直接 又简化。 ⑤控制信号的物理概念明确,转矩响应快,具有较高的静、动态性能。由于以上的优点所以直接转矩控制技术在现代控制理论中得到广泛的运用。

直接转矩控制原理

直接转矩控制原理 直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。 传统直接转矩控制方法偏差分类: 磁链: 1,需要增大 2,需要减小 转矩: 1,需要增大 2,不变 3,需要减小 可见共有6中要求控制状态。在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。仿真系统中这个功能由滞环比较单元与查表单元结合产生。 一、引言 电动机调速是各行各业中电动机应用系统的必需环节。直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。 交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。 1.交流传动的发展简述 首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接 转矩控制(DTC)调速系统。由于VVVF系统只是维持电动机内的磁链恒定,

并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。 1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。 2.矢量控制(FOC)和直接转矩控制(DTC)的简略对比 (1)控制原理:FOC是在转子磁通坐标系中,通过分别控制q轴和d轴定子电流分量,实现转速和磁链的解耦控制。其实质是通过坐标变换重建的电动机数学模型等效为直流电动机,从而象直流电动机那样进行快速的转矩和磁通控制。DTC是在定子坐标系下通过检测电动机定子电压和电流,采用空间矢量理论计算电动机的转矩和磁链,并根据与给定值比较所得差值,实现转矩和磁链的直接控制。 (2)控制性能:FOC的调速范围较宽(1:20~200),调速精度较高,低速特性连续,响应速度较快,但受参数变化影响较大,且计算复杂,控制相对繁琐。DTC的调速范围较窄(1:15~100),调速精度也较高,响应速度快,低速特性有脉动现象,但其不仅计算简便,而且控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确,动静态性能均佳,有广阔的应用前景。 图1异步电动机的空间矢量等效电路 直接转矩控制的基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电动机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。 二、数学模型 1.异步电动机转矩的数学模型

ABB变频器直接转矩控制

直接转矩控制 直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。 直接转矩控制(Direct Torque Control,DTC)变频调速,是继矢量控制技术之后又一新型的高效变频调速技术。20 世纪80 年代中期,德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi教授分别提出了六边形直接转矩控制方案和圆形直接转矩控制方案。1987 年,直接转矩控制理论又被推广到弱磁调速范围。 直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。直接转矩控制也具有明显的缺点即:转矩和磁链脉动。针对其不足之处,现在的直接转矩控制技术相对于早期的直接转矩控制技术有了很大的改进,主要体现在以下几个方面: (1)无速度传感器直接转矩控制系统的研究 在实际应用中,安装速度传感器会增加系统成本,增加了系统的复杂性,降低系统的稳定性和可靠性,此外,速度传感器不实用于潮湿、粉尘等恶劣的环境下。因此,无速度传感器的研究便成了交流传动系统中的一个重要的研究方向,且取得了一定的成果。对转子速度估计的方法有很多,常用的有卡尔曼滤波器位置估计法、模型参考自适应法、磁链位置估计法、状态观测器位置估计法和检测电机相电感变化法等。有的学者从模型参考自适应理论出发,利用转子磁链方程构造了无速度传感器直接转矩控制系统,只要选择适当的参数自适应律,速度辨识器就可以比较准确地辨识出电机速度。 (2)定子电阻变化的影响

异步电动机直接转矩控制系统仿真

现代电力传动及其自动化 —课程作业

异步电动机直接转矩控制系统仿真 1、直接转矩控制系统的基本思想 直接转矩控制系统简称 DTC ( Direct Torque Control) 系统,在它的转速环里面,利用转矩反馈直接控制电机的电磁转矩,因而得名。直接转矩控制是标量控制。它借助于逆变器提供的电压空间矢量,直接对异步电动机的转矩和定子磁链进行二位控制,也称为砰-砰(bang-bang )控制。 三相异步电动机电磁转矩表达式为: ))()((m e t t K T r s ΨΨ?= )(sin m t K r s θψψ= r s ψψ、分别为定子、转子磁链的模值,)(t θ为定子、转子磁链之间的夹角, 称为磁通角。 对式()分析,电磁转矩决定于定子磁链和转子磁链的矢量积,即决定于两种幅值和其间的空间电角度。若r s ψψ、 是常数,改变转矩角可改变转矩。而且Ψr 的变化总是滞后于Ψs 的变化。但是在动态过程中,由于控制的响应时间比转子的时间常数小得多,在短暂的过程中,就可以认为Ψr 不变。可见只要通过控制保持Ψs 的幅值不变,就可以通过调节转矩角来改变和控制电磁转矩,这是直接转矩控制的基本原理。 图 直接转矩控制系统原理图 ω

在定子两相静止坐标系下,根据磁链给定值与异步电机的实际磁链观测值相比较得到磁链误差,进而确定磁链的调节方向,根据给定的电磁转矩值与异步电机的实际电磁转矩观测值相比较得到转矩误差,进而确定转矩的调节方向,然后根据定子磁链信号、转矩信号以及定子磁链所在位置确定选择合适的电压空间矢量,从而确定三相电压源逆变器的开关状态,使异步电机的电磁转矩快速跟踪外部给定的电磁转矩值。 由图得直接转矩控制系统仿真结构框图,如图所示。 图直接转矩控制系统仿真结构框图 2、单元模块说明 定子电压与定子电流的三二变换 三相/两相变换矩阵如式(),其仿真结构框图如图所示。

异步电动机的直接转矩控制系统

异步电动机直接转矩控制系统 1 直接转矩控制简介 直接转矩控制(Direct Torque Control—DTC),国外的原文有的也称为Direct self-control—DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。直接转矩控制系统的主要特点有: (1)直接转矩控制是直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。 (2)直接转矩控制的磁场定向采用的是定子磁链轴,只要知道定子电阻就可以把它观测出来。 (3)直接转矩控制采用空间矢量的概念来分析三相交流电动机的数学模型和控制各物理量,使问题变得简单明了。 (4)直接转矩控制强调的是转矩的直接控制效果。 直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。 为了让读者更好的理解直接转矩控制,在正式介绍三相异步电机的直接转矩控制系统前,先从直接转矩控制的基本物理概念讲起。 2 直接转矩控制的基本物理概念 2.1 直接转矩控制中磁通和转矩的测量 在几种用于控制感应电机的方法中,直接转矩控制(DTC)占有很重要的地位。DTC 将转矩和定子磁通分别控制在两个滞环内,这就意味着转矩和磁通各自被限制在最大值和最小值的范围内。

变频器基础知识

变频器基础知识 一、变频器的定义 通常所说的变频器,是指将频率固定的电源(如50Hz三相交流电)变成频率可变的电源(如在0~50Hz之间随意变换)的转换设备。如果原有电源的频率为0(即为直流电源供电),则变频器可以省去直流变换环节,退化成单一的逆变器(DC→AC)。 二、变频器的分类 从不同的角度,可以对变频器进行不同的分类。 1、按电压等级不同,变频器可分为:高压变频器、中压变频器、低压变频器 按照国际惯例,电压≥10kV时称高压,1-10kV为中压,小于1kV时称低压,与其电压范围相对应的变频器分别称为高压变频器、中压变频器、低压变频器。 在我国,习惯上把10KV、6kV或3kV的电机称为高压电机,相应的电压为10KV、6kV或3kV的变频器均称高压变频器。平常所说的“高-高”、“高-低-高”、“高-低”只是变频器的不同应用形式。 2、按主回路结构不同,变频器可分为:交-直-交变频器,交-交变频器。交-直-交变频器 1)交-直-交变频器先将电网交流电用整流电路整成直流电,再用逆变电路将直流电转换为频率可变的交流电。整流电路、直流回路、逆变电路是交-直-交变频器的三个基本组成部分。 整流电路可以是不控的(二极管全波整流)、也可以是可控的,如果是可控整流,则它也能工作在逆变状态,将直流回路的能量逆变回电网。

逆变电路肯定是可控的,主要功能是将直流回路电能变成交流电输出给电机。如果电机工作在发电工况时(比如制动场合),逆变电路工作在整流状态,将电机的能量送到直流回路。 交-交变频器 2)交-交变频器没有直流回路,每相都由两个相互反并联的整流电路组成,正桥提供正向相电流,反桥提供负向相电流。 3、按储能方式不同,变频器可分为:电流源型、电压源型。 电流源型变频器 1)电流源型: 电流源变频器输入采用可控整流,控制电流的大小。中间采用大电感,对电流进行平滑。逆变桥将直流电流转换为频率可变的交流电流,供给交流电机。在电流源变频器中,直接受控量是电流。整流桥控制电流大小,逆变桥控制电流频率,电机侧得到的是幅值和频率可变的方波电流。 特点:①电流源变频器具有很好的抗过流能力,甚至负载短路都不会导致变频器损坏。②由于整流桥输出电压可以为负,从而进入逆变状态工作,实现能量由变频器向电网的回馈,可用于频繁正反转或需要制动的场合。 缺点:其网侧功率因数不高,电流谐波较大。 2)电压源型:

三相异步电动机直接转矩控制系统仿真报告

三相异步电动机直接转 矩控制系统仿真报告 Document number:PBGCG-0857-BTDO-0089-PTT1998

三相异步电动机直接转矩控制系统仿真报告 摘要:利用直接转矩控制( DTC )理论,研究异步电动机直接转矩控制调速系统的基本组成 和工作原理,建立了异步电动机直接转矩控制系统的仿真模型。利用MATLAB /Simulink软件对异步电动机直接转矩控制系统进行建模和仿真。结果表明: DTC系统具有动态响应速度快、精度高、易于实现的优点。仿真结果验证了该模型的正确性和该控制系统的有效性。 关键词:异步电机;直接转矩控制; MATLAB仿真 1 引言 自从20世纪70年代矢量控制技术发展以来,交流拖动技术就从理论上解决了交流调速系统在静动态性能上与直流调速系统相媲美的问题。所谓矢量控制,就是将交流电动机模拟成直流电动机来控制,通过坐标变换实现电机定子电流的励磁分量和转矩分量的解耦,然后分别独立控制,从而获得高性能的转矩和转速响应特性。 直接转矩控制(Direct Torque Control DTC)是在矢量控制基础之上发展起来的,是继矢量控制以后提出的又一种异步电动机控制方法。其思路是把异步电动机和逆变器看成是一个整体,采用电压矢量分析方法直接在静止坐标系下分析和计算电动机的转矩和磁链,通过磁链跟踪得出PWM逆变器的开关状态切换的依据从而直接控制电动机转矩"与矢量控制相比,直接转矩控制的主要优点是:在定子坐标系下对电动机进行控制,摒弃了矢量控制中的解藕思想,直接控制电动机的磁链和转矩,并用定子磁链的定向代替转子磁链的定向,避开了电动机中不易确定的参数(转子电阻)"由于定子磁链的估算只与相对比较容易测量的定子电阻有关,所以使得磁链的估算更容易、更精确,受电动机参数变化的影响也更小"此外,直接转矩控制通过直接输出转矩和磁链的偏差来确定电压矢量,与以往的调速方法相比,它具有控制直接!计算过程简化的优点"因此,直接转矩控制一问世便受到广泛关注,目前国内外围绕直接转矩控制的研究十分活跃。 2 三相异步电机的直接转矩控制系统组成 三相异步电动机直接转矩控制系统模块图标如图1所示,其仿真模型如图2所示,模型由7个主要模块组成:三相不控整流器

变频器的六大调速方法

电动机知识 变频器的六大调速方法 1.变极对数调速方法 这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。本方法适用于要求精度高、调速性能较好场合。变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。 2.串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装臵,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装

臵容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装臵故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。变频器调速原理及调速方法 3.绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 4.定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。调压调速的主要装臵是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点:调压调速线路简单,易实现自动控制;调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。调压调速一般适用于100KW以下的生产机械。 5.电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由

直接转矩控制

目录 摘要 (2) 一.直接转矩控制系统的原理和特点 (3) 二.直接转矩控制系统的控制规律和反馈模型 (4) 三.直接转矩控制系统与矢量控制系统的比较 (7) 四.直接转矩控制的应用 (8) 4.1 直接转矩控制技术在挖掘机行业上的应用 (8) 4.2 直接转矩控制技术在电动机车上的应用 (10) 五.直接转矩控制发展 (11) 参考文献 (14)

直接转矩控制 摘要 直接转矩控制系统简称 DTC ( Direct Torque Control) 系统,是继矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。在它的转速环里面,利用转矩反馈直接控制电机的电磁转矩,因而得名。本文首先介绍了直接转矩控制的原理,分析了它的模型,并且与矢量控制系统相比较,最后描述了直接转矩控制在挖掘机和电动机车方面的应用。 关键字:直接转矩控制、挖掘机、电动机车

一.直接转矩控制系统的原理和特点 图1所示为按定子磁链控制的直接转矩控制(DTC)系统原理图。 图1 按定子磁链控制的直接转矩控制系统 1.结构特点: (1)转速双闭环: ASR的输出作为电磁转矩的给定信号; 设置转矩控制内环,它可以抑制磁链变化对转速子系统的影响,从而使转速和磁链子系统实现了近似的解耦。 (2)转矩和磁链的控制器: 用滞环控制器取代通常的PI调节器。 2.控制特点: 与VC系统一样,它也是分别控制异步电动机的转速和磁链,但在具体控制方法上,DTC系统与VC系统不同的特点是: (1)转矩和磁链的控制采用双位式砰-砰控制器,并在 PWM 逆变器中直接用这两个控制信号产生电压的SVPWM 波形,从而避开了将定子电流分解成转矩和磁链分量,省去了旋转变换和电流控制,简化了控制器的结构。 (2)选择定子磁链作为被控量,而不象VC系统中那样选择转子磁链,这样一来,计算磁链的模型可以不受转子参数变化的影响,提高了控制系统的鲁棒性。

汽车动力知识点

直流电机由定子和电枢两大组成部分组成。√ 直流电机中,换向器的作用是直流电转为交流电 在直流电机中,电枢的作用是将交流电变为直流电 直流电动机的换向电流大,换向时火花愈强 直电动机的定子由机座、(主磁极)、换向圾、电刷装置、端盖等组成 直流电动机结构复杂、价格贵、制造麻烦、维护困难、但是(启动性能好)、调速范围大。 直流电动机的转子由电枢铁心、(电枢绕组)及换向器等部件组成。直流电机中,换向极的作用是改善换向,所以只要装置换向极都能起到换向的作用。× 根据励磁支路和电阻支路的相互关系,自励有哪些方式。并励,串励,复励 直流电机的控制方法不包括(定子电压调节法)。 哪种方法适用于电机基速(额定转速)以下的调速调节。电枢电压调节法 磁场调节法是通过调节磁极绕组励磁电流,改发磁极磁通量如来调节电机的转速。磁极绕组励磁电流 如何改变旋转磁场的方向(交换其中任意两相的输入电流) 三相异步电机在正常运行状态时转子转速n是(0

A 三相异步电机的机械特性是指转速与(电磁转矩T)之间的关系 三相异步电机的基本调速方法有(直接转矩控制,矢量控制(FOC))矢量控制的思想是模拟直流电机,求出交流电机电磁转矩与之对应的(磁场)和(电枢电流) 直接转矩控制在定子坐标下,通过检测电机定子电压和电流计算电机的(磁链)和(转矩),并且根据与给定值比较所得差值,实现直接控制。 下列哪项是矢量控制的特点(调速范围很宽,控制响应速度快,对转矩实行较为精确地控制) 三相永磁同步电机直接转矩控制主要包括(滞环比器,转速调节器,空间电压矢开关表,磁链估计,转矩估计,域判断环节) 直接转矩控制将两个滞环比较器输出值和区域判断作为空间电压矢量开关表的输入量,得到一组控制脉冲,去控制(三相逆变器)的通断,从而控制三相永磁同步电机。 斩波指的是(直流-直流变换(DC/DC变换)) MCU上接低压蓄电池的负极的是几号(24) 电机旋转变压器有几条信号线(6) 属于全控型器件(可关断晶闸管,功率场效应管,绝缘栅双极晶体管)由栅极G控制的器件(MOSFET,IGBT)

相关主题
文本预览
相关文档 最新文档