当前位置:文档之家› 马氏体转变机制

马氏体转变机制

马氏体转变机制
马氏体转变机制

马氏体转变机制

(一)马氏体转变的形核理论

1、经典形核理论

自从发展了马氏体的等温转变以后,人们便提出马氏体转变也是一个形核及核长大过程,并用经典相变理论来分析马氏体转变过程。按这种处理,马氏体转变可以被看作为单元系的同素异构转变。

根据经典相变理论,计算出Fe-30%Ni(原子百分比)合金,在M S点(233K)时的临界晶核尺寸为,半径r c=490?,中心厚度C c=22?,临界形核功为G=5.4×108J/mol。按经典形核理论,形核功是由系统能量起伏提供的,但是在如此低的温度下要靠原子的热运动来获得这样大的激活能是很困难的。另外按经典相变理论提出的马氏体长大激活能为2510~4184J/mol,但实际上马氏体长大的激活能很小,几乎为零。因此,可以说用经典相变理论来处理马氏体相变是不合适的。

2、马氏体形核的位错理论

马氏体核胚在合金中是不均匀分布的,而是在其中一些有利的位置上优先形核。

试验:把小颗粒(100μm以下)的Fe-Ni-C合金,奥氏体化后,淬火到马氏体转变温度范围内,观察合金粒中马氏体转变的情况,结果如下图所示。由此可见,合金的成核是

很不均匀,在某些颗粒中有利于成核的位置很少,所以需要有更大的过冷度才能产生马氏体。合金中有利于成核的位置是那些结构上的不均匀区域,如晶体缺陷、内表面(由夹杂物造成)以及由于晶体成长或塑性变形所造成的形变区等。

这些“畸变胚芽”可以作为马氏体的非均匀核心,通常称之为马氏体核胚。目前一般认为在奥氏体中已预先存在具有马氏体结构的微区,这微区是在高温下母相奥氏体中的某些与各种晶体缺陷有关的有利位置,通过能量起伏及结构起伏形成的。这些微区随温度降低而被冻结到低温。从高温冻结下来的马氏体核胚有大有小,尺寸各不相同。在马氏体降温转变过程中,在不同的温度,就有不同尺寸的马氏体核胚可以达到临界晶核尺寸,这部分马氏体就会迅速长大,而尺寸较小的核胚达不到临界尺寸,就不能长大,若使马氏体转变得以进行,就必须继续降低温度,使尺寸更小的核胚达到临界尺寸。此即马氏体转变为什么只有在连续降温过程中才能进行的解释。至于马氏体转变的等温形成,可做如下解释,在等温保持时,尺寸接近临界晶核的马氏体核胚,可以通过热激活长大到临界尺寸,使马氏体在等温条件下也能形成。

关于钢中马氏体核胚的结构模型,学说较多,见解释也不统一,目前发展还不成熟。现在只介绍一些一般性的知识,以便对这个问题有个初步的了解。要说明马氏体核胚的结构,关键在于说明奥氏体和马氏体两相交界面的结构情况,

即说明奥氏体与马氏体是如何构成共格界面的。

Frank 界面结构模型:

Frank 最早建议,奥氏体与马氏体的交界面平行于惯习面(225)γ。按K-S 关系,这两种点阵以(225)γ为界面时,(111)γ和(110)αˊ应相互平行,但钢中马氏体马氏体和奥氏体的位向关系并不严格符合K-S 关系,因为{111}γ和{110}αˊ的晶面间距不相等,对α-Fe ,它们相差1.6%,对于各种钢,相差0.5~2%,并且总是奥氏体的晶面间距较大些,为了使两个相的晶面能够一一对应地联接起来,Frank 提出,这两个面并不严格地平行,而是有一个很小的交角ψ,ψ角的大小和G-T 关系中的测量结果相符,即接近1°,这样两个面便有可能一一对应的联接起来。但是仅仅(111)γ和(110)αˊ面对接后,还不等于两相界面完全共格,因为按K-S 关系,在惯习面(225)γ上的γ]011[方向应和相邻接马氏体点阵的

α']111[方向一一对应连接,而这个方向上两个点阵的原子间距

也为完全相同,相差1~2%,所以,为使这两个原子列上的原子能够一一对应,Frank 设想在相变时,还要进行适当的弹性变形和塑性变形来调整,这样共格界面便完全建立起来了。这样,在界面上每隔六列原子便会形成一个螺型位错,在马氏体片的另一边界面上,点阵结构相同,不过螺型位错的符号相反,上下两端由正或负的刃型位错连接起来,构成位错圈,马氏体核胚便被包围在圈内。

K-D 模型

Knapp (克耐谱)和Dehlinger(德林杰)根据Frank 界面结构模型设想,马氏体核胚为薄扁圆片状,其周围由一系列大小不等的位错圈所环绕,如图所示。该模型的界面即为惯习面(225)γ(即{734}αˊ),界面两侧保持K-S 关系。在(225)γ界面上每隔六个{111}γ或{110}αˊ面有一个平行于γ]011[方向的螺型位错。在一侧界面为左螺旋位错,另一侧界面则为右螺旋位错,在顶端则为正负刃型位错与螺型位错组成位错圈。位错圈的扩张使马氏体核胚在γ]011[及[225]γ方向长在,在γ]455[方向上长大则需形成新的位错圈。当母相与马氏体体

积自由能之差足以补偿位错圈扩张及形成新位错圈所增加的界面能、弹性能以及使点阵切变所需的能量时,位错圈就急剧扩张长大马氏体。

使用K-D 模型的前提条件是,在T 0温度以上已经有马氏体核胚存在于奥氏体中,淬火时核胚被冻结下来,尺寸有大有小,不需克服形核势垒。

(二)马氏体转变的切变模型

自1924年Bain 开始,人们便根据马氏体相变的特征设想了各种相变的切变机制,下面按照发展的先后顺序,介绍几个有代表性的切变模型。

1、Bain 模型

早在1924年Bain 就注意到,可以把面心立方点阵看成

是轴比为c/a=1.41(即1:2)的体心正方点阵,同样,也可以把稳定的体心立方点阵的铁素体看成是体心正方点阵的,其轴比等于1。因此,只要把面心立方点阵的C 轴压缩,而把垂直于C 轴的其它两个轴拉长,使轴比为1,就可以把面心立方点阵变成体心立方点阵。马氏体即为这两个极端状态之间的中间状态,因为马氏体中有间隙溶解的碳,所以其轴比不能等于1,一般随碳含量的变化,马氏体的c/a (正方度)在1.08~1.00之间变化。因此,在无碳的情况下,期望c/a 从1.41变成1.00。按Bain 模型,在转变过程中,原子的相对位移很小,面心立方点阵改建为体心立方点阵时,奥氏体与马氏体的基面重合,也大体上符合K-S 关系。

Bain 模型只能说明点阵的改组,不能说明转变时出现的表面浮凸和惯习面,也不能说明在马氏体中所出现的亚结构。

2、K-S 切变模型

库尔久莫夫和萨克斯测出含碳为1.4%的碳钢中,马氏体与奥氏体存在的位向关系,即K-S 关系,为了满足这一取向关系,必须有点阵的切变。他们于1930年提出了轴比相当于1.06的眯阵变换模型(即K-S 模型)。首先考虑没有碳存在的情况,设想奥氏体分以下几个步骤转变成马氏体。 在γ)111(面上沿γ]112[方向产生第一次切变,第二层原子(B 层原子)移动]112[121γ,而更高各层原子则按比例增加移动

的距离,但是,相邻两层原子的相对移动均为]112[121γ,第一次切变角为19°28ˊ,第二次切变是在γ)211(面上(垂直于

γ)111(面),沿γ]011[产生10°30ˊ的切变。第二次切变后,使

顶角由120°变为109°30ˊ或60°角增至70°30ˊ。由于没有碳原子存在,得到的是体心立方点阵的马氏体。在有碳原子存在的情况下,对于面心立方点阵改建为体心立方点阵时,两次切变量略小一些,第一次切变角为15°15ˊ,第二次切变角为9°,然后再作一些小的调整,使晶机面间距和实测的相符合就得到了马氏体。

K-S 模型的成功之处在于它导出了所测得的点阵结构和位向关系,给出了面心立方奥氏体点阵改建为体心正方马氏体点阵的清晰模型,但与所测的表面浮凸不符,也不能解释观察到的惯习面,故也是不完善的。

3、G-T 模型

格伦宁格和特赖雅诺于1949年提出的另一个两次切变模型,称为G-T 模型。

G-T 模型也将切变分成两次进行。第一次切变是沿惯习的均匀切变,产生整体的宏观变形,造成磨光的样品表面出现浮凸,并且确定了马氏体的惯习面,切变时不仅点阵发生改组,且晶体外形也发生了变化。这个阶段的转变产物是复杂的三棱结构,还不是马氏体,不过它有一组晶面的晶面间距及原子排列和马氏体的α')112(面相同。第二次切变在面的

α']111[方向发生,切变角为12°~13°,这次切变限制在三棱

点阵范围内,并且是宏观不均匀的(切变范围只有18个原子层),对第一次切变所形成的表面浮凸也没有可见的影响。经第二次切变后,点阵转变成体心正方点阵,取向和马氏体一样,晶面间距也差不多。最后作一些微小的调整,使晶面间距与实测的相符合。第二次切变可以为滑移方式,也可以是孪生方式。不同的切变方式,将在马氏体内产生不同的结构。

G-T 模型能很好地解释马氏体转变的点阵改组、宏观变形、位向关系及亚结构的变化。但不能解释惯习面不应变不转动,也不能解释碳钢(<1.40%C )的位向关系。

奥氏体

奥氏体(Austenite)是钢铁的一种层片状的显微组织,[1]通常是?-Fe中固溶少量碳的无磁性固溶体,也称为沃斯田铁或?-Fe。奥氏体的名称是来自英国的冶金学家罗伯茨·奥斯汀(William Chandler Roberts-Austen)。 奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性。奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。[2] 组成成分 编辑 奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni、Mn等,则可使奥氏体稳定在室温,如奥氏体钢。[2] 晶体结构 编辑 奥氏体为面心立方结构,碳氮等间隙原子均位于奥氏体晶胞八面体间隙中心,及面心立方晶胞的中心和棱边的中点。假如每一个八面体的中心各容纳一个碳原子,则碳的最大溶解度应为50%(摩尔分数),相当于质量分数约20%。实际上碳在奥氏体中的最大溶解度为 2.11%(质量分数),这是由于?-Fe的八面体间隙的半径仅为0.052nm,比碳原子的半径 0.086nm小。碳原子溶入将使八面体发生较大的膨胀,产生畸变,溶入越多,畸变越大, 晶格将不稳定,因此不是所有的八面体间隙中心都能溶入一个碳原子,溶解度是有限的。碳原子溶入奥氏体中,使奥氏体晶格点阵发生均匀对等的膨胀,点阵常数随着碳含量的增加而增大。大多数合金元素如Mn.Cr.Ni.Co.Si等,在?-Fe中取代Fe原子的位置而形成置换固溶体。替换原子在奥氏体中的溶解度各不相同,有的可无限溶解,有的溶解度甚微。少数元素,如硼仅存在于浸提缺陷处,如晶界、位错等。[3] 主要性能

马氏体转变的主要特征

马氏体转变的主要特征 马氏体转变是在低温下进行的一种转变。对于钢来说,此时不仅铁原子已不能扩散,就是碳原子也难以扩散。故马氏体转变具有一系列不同于加热转变以及珠光体转变的特征。这里只提出几个最重要的转变特征,其它特征将在以后各有关的章节内讨论。 (一)马氏体转变的非恒温性 必须将奥氏体以大于临界冷却速度的冷却速度过冷到某一温度才能发生马氏体转变。也就是说马氏体转变有一上限温度。这一温度称为马氏体转变的开始温度,也称为马氏 体点,用M S 表示。不同材料的M S 是不同的。当奥氏体被过冷到M S 点以下任一温度,不需经过孕育,转变立即开始,且以极大的速度进行,但转变很快停止,不能进行到终了如下图1所示。为了使转变能继续进行,必须降低温度,即马氏体转变是温度的函数,如图2所示,而与等温时间与无关,或者说,马氏体量只取决于冷却所达到的温度。当温度降到某一温度以下时,虽然马氏体转变未达到100%,但转变已图1 马氏体等温转变曲线 图2 马氏体转变与温度的关系

不能进行。该温度称为马氏体转变终了点,用M f 表示(图 2)。如某钢的M S 高于室温而M f 低于室温,则冷却至室温时还将保留一定数量的奥氏体,称为残余奥氏体。如果继续冷至室温以下,未转变的奥氏体将继续转变为马氏体直到M f 点。深冷至室温以下在生产上称为冷处理。马氏体的这一特征称为非恒温性。 对于某些M S 点低于0℃ 的Fe-Ni-C 等合金来说,当 过冷至M S 点以下时,马氏体 可能爆发形成,即最初形成 的马氏体有可能促发一定数 量的奥氏体转变为马氏体, 未转变的奥氏体样必须在继续冷却的情况下才能转变,且有可能再次爆发形成。在此情况下,马氏体转变量与温度的关系如图3所示。 也还有少数M S 点低于0℃的合金,如Fe-Ni-Mn ,Fe-Ni-Cr 以及高碳高锰钢等可以发生马氏体等温度转变。其动力学特征与珠光体等温转变很相似,也有“C ”型曲线(图4),不同点是等温转变量不多,转变不能进行到底。 (二)马氏体转变的切变共格与表 面浮凸现象 图3 爆发式转变时的马氏体转变量与温度的关系 图4 Fe-23%Ni-3.7%Mn 合金 马氏体等温转变动力学

马氏体转变及其应用

马氏体转变及其应用 钢经奥氏体化后快速冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变为马氏体转变。马氏体转变是钢件热处理强化的主要手段。因此,马氏体转变的理论研究与热处理生产实践有着十分密切的关系。 1 马氏体转变的特点 1.1 马氏体相变是无扩散型相变 因为相变前后化学成分不变,新相(马氏体)和母相(奥氏体)碳的质量分数相同,只是晶格结构由面心立方晶格转变成了体心立方晶格而且马氏体相变可以在-196℃—-296℃低温下进行,这样低的温度原子扩散极困难,所以相变不可能以扩散方式进行,因此马氏体相变过程中,原子有规则移动,原来相邻的原子相变以后仍然相邻,原子不发生扩散就可以发生马氏体相变。 1.2 切变共格和表面浮凸现象 人们早就发现,在高碳钢样品中产生马氏体转变之后,在其磨光的表面上出现倾动,形成表面浮凸。这个现象说明转变和母相的宏观切变有着密切关系。马氏体形成是以切变的方式实现的,同时马氏体和奥氏体之间界面上的原子是共有的,既属于马氏体,又属于奥氏体,而且整个相界面是互相牵制的,这种界面称为“切变共格”界面。 1.3 马氏体转变是在一个温度范围内形成 就马氏体相变而言,不但在快冷的变温过程中有马氏体相变,而且在等温过程中,也有等温马氏体产生,如Fe - Ni26 - Cu3 合金所能发生等温马氏体相变,但钢的马氏体相变是在一个温度范围内形成的。 当奥氏体被冷却到Ms点以下任一温度时,不需经过孕育,转变立即开始,转变速度极快,但转变很快就停止了,不能进行到终了,为了使转变继续进行,必须降低温度,也就是说马氏体是在不断降温条件下才能形成。这是因为在高温下母相奥氏体中某些与晶体缺陷有关的有利位置,通过能量起伏和结构起伏,预先形成了具有马氏体结构的微区。这些微区随温度降低而被冻结到低温,在这些微区里存在一些粒子,这些粒子在没有成为可以长大成马氏体的晶核以前我们叫它核胚。从高温冻结下来的核胚有大有小,从经典的相变理论可知:冷却达到的

马氏体转变及其应用

马氏体转变概述 摘要:钢经奥氏体化后快速冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变为马氏体转变。马氏体转变是钢件热处理强化的主要手段。因此,马氏体转变的理论研究与热处理生产实践有着十分密切的关系。本文简略介绍了碳钢中的马氏体转变的定义、机理、研究过程、和技术运用情况[1]。 1 马氏体转变的特点及定义 1.1 马氏体相变是无扩散型相变 因为相变前后化学成分不变,新相(马氏体)和母相(奥氏体)碳的质量分数相同,只是晶格结构由面心立方晶格转变成了体心立方晶格而且马氏体相变可以在-196℃到-296℃低温下进行,这样低的温度原子扩散极困难,所以相变不可能以扩散方式进行,因此马氏体相变过程中,原子有规则移动,原来相邻的原子相变以后仍然相邻,原子不发生扩散就可以发生马氏体相变[2]。 1.2 切变共格和表面浮凸现象 人们早就发现,在高碳钢样品中产生马氏体转变之后,在其磨光的表面上出现倾动,形成表面浮凸。这个现象说明转变和母相的宏观切变有着密切关系。马氏体形成是以切变的方式实现的,同时马氏体和奥氏体之间界面上的原子是共有的,既属于马氏体,又属于奥氏体,而且整个相界面是互相牵制的,这种界面称为“切变共格”界面[3]。 1.3 马氏体转变是在一个温度范围内形成 就马氏体相变而言,不但在快冷的变温过程中有马氏体相变,而且在等温过程中,也有等温马氏体产生,如Fe - Ni26 - Cu3 合金所能发生等温马氏体相变,但钢的马氏体相变是在一个温度范围内形成的[4]。 当奥氏体被冷却到Ms点以下任一温度时,不需经过孕育,转变立即开始,转变速度极快,但转变很快就停止了,不能进行到终了,为了使转变继续进行,必须降低温度,也就是说马氏体是在不断降温条件下才能形成。这是因为在高温下母相奥氏体中某些与晶体缺陷有关的有利位置,通过能量起伏和结构起伏,预先形成了具有马氏体结构的微区。这些微区随温度降低而被冻结到低温,在这些微区里存在一些粒子,这些粒子在没有成为可以长大成马氏体的晶核以前我们叫它核胚。从高温冻结下来的核胚有大有小,从经典的相变理论可知:冷却达到的

马氏体转变

马氏体转变 马氏体转变的发展过程 早在战国时代人们已经知道用淬火(即将钢加热到 高温后淬入水或油中急冷) 的方法可以提高钢的硬度, 经过淬火的钢制宝剑可以“削铁如泥”。 十九世纪末期,人们才知道钢在“加热和冷却”过 程中内部相组成发生了变化,从而引起了钢的性能的 变化。为了纪念在这一发展过程中做出杰出贡献的德 国冶金学家Adolph Martens 法国著名的冶金学家 Osmond 建议将钢经淬火所得高硬度相称为“马氏体” 并因此将得到马氏体相的转变过程称为马氏体转变。 Martensite M—马氏体

十九世纪末到二十世纪初主要局限于研究钢中的马氏 体转变及转变所得产物—马氏体。 二十世纪三十年代,人们用X 射线结构分析的方法测 得钢中马氏体是碳溶于α-Fe 而形成的过饱和固溶体,马 氏体中的固溶碳即原奥氏体中的固溶碳,因此,曾一度认 为“所谓马氏体即碳在α—Fe 中的过饱和固溶”。 曾经有人认为“马氏体转变与其它转变不同,是一个由 快冷造成的内应力场所引起的切变过程”。 四十年代前后,在Fe—Ni 、Fe—Mn 合金以及许多有 色金属及合金中也发现了马氏体转变。不仅观察到冷却过 程中发生的马氏体转变;同时也观察到了在加热过程中所 发生的马氏体转变。由于这一新的发现,人们不得不把马 氏体的定义修定为:“在冷却过程中所发生马氏体转变所 得产物统称为马氏体”。

近年来,由于实验技 术的进一步发展,使人们 对马氏体的结构以及马转 变的特征又有了进一步的 了解,对许多现象的认识 也有了很大的进步,并因 此而推动了热处理新工艺 及新材料的发展,其中最 为脍炙人口的是在热弹性 马氏体基础上发展起来的 形状记忆合金。

影响奥氏体形成的因素

影响奥氏体形成因素 奥氏体的形成是通过形核与长大过程进行的,整个过程受原子扩散所控制。因此凡是影响扩散、影响形核与长大的一切因素,都会影响奥氏体的形成速度。链轮高频淬火就是形成奥氏体然后淬火马氏体,最后形成回火马氏体的一个过程,所以研究奥氏体的形成因素,对高频淬火及后续的检验分析淬火马氏体(出现铁素体的量的多少)的等级有本质的关系。 一加热温度和保温时间 上图描述了珠光体向奥氏体的转变过程,将共析钢试样迅速加热到Ac1以上各个不同温度保温,记录各个温度下珠光体向奥氏体转变开始、铁素体消失、渗碳体全部溶解和奥氏体成分均匀化所需要的时间,绘制转变温度和时间坐标如图。 分析图,在Ac1以上某一温度保温时,奥氏体并不立即出现,而是保温一段时间后才开始形成,这段时间称为孕育期。这是由于形成奥氏体晶核需要原子的扩散,而扩散需要一定

的时间。随着加热温度的提高,原子扩散速率急剧加快,相变驱动力ΔGv迅速增加以及奥氏体中碳的浓度梯度显著增大,使奥氏体的形核率和长大速度大大增加,故转变的孕育期和转变完成所需要时间也显著缩短,即奥氏体的形成速度越快。在影响奥氏体形成速度的诸多因素中,温度的作用最为显著。因此,控制奥氏体的形成温度至关重要。在较低的温度(在Ac1线上某一温度)长时间加热和较高温度下短时间加热都可以得到相同的奥氏体状态。 在生产中,连续加热过程中,奥氏体等温转变的基本规律不变。 如图,在不同的加热速度(v1、v2),可以观察出连续加热条件下奥氏体形成的基本规律。加热速度越快,孕育期越短,奥氏体开始转变的温度和转变的终了温度越高,转变终了所需要的时间越短。加热速度越慢,转变将在较低温度下进行。 二原始组织的影响 钢的原始组织为片状珠光体时,铁素体和渗碳体组织越细,相界面越多,奥氏体的形核越多,晶核长大越快,因此,加速奥氏体的形成。如共析钢的原始组织为淬火马氏体、正火索氏体等非平衡组织时,则等温奥氏体化曲线如下图: 不同原始组织共析钢等温奥氏体曲线。1淬火太 2正火态 3球化退火态 每组曲线的左边一条是转变开始线,右边一条是转变终了线,奥氏体化最快的是淬火状态的钢,其次是正火态的钢,最慢的是球化退火态的钢。原因分析:淬火态钢在A1点以上升温过程中已经分解为微细的片状珠光体,组织最为弥散,相界面最多,最利于奥氏体的形核和长大,所以转变最快。正火态的细片珠光体,相界面也多,所以转变也很快。球化退火态的粒状珠光体,相界面最少,因此,奥氏体化最慢。 三化学成分的影响 因为我们链轮用的是45钢,所以这条对我们链轮意义不大,不过可应用到其他领域。

马氏体转变

第四章马氏体转变 4-1 M转变的主要特征 1.M转变属于非扩散相变,具有无扩散性 实验依据 (1)M的化学成分与转变钱A的化学成分完全相同 (2)穆斯堡尔谱测定的结果表明,在发生M转变时原来A中碳原子所处的位置,直接遗传给M (3)M转变速度极快,即使在下,M长大速度为,每一片M形成约需 上述三点证明M转变过程未发生原子的扩散,非扩散机制 无扩散含义:(a)相变时原子的位移量小于一个原子间距 (b)在M转变前的原子的相对位置不变 (c)转变过程原子协同移动(军队式转变) 2.M转变的共格切变性 在发生M相变时,原来磨光的表面上会出现浮凸,原来划在表面上的直线变成折线,而且即不断开也不弯折,因而说明: (1)发生倾动的表面一直保持为一个平面,即发生了均匀的切变 均匀切变:晶胞的变形和晶体的宏观变形相似 (2)A/M界面为共格或半共格 (3)M转变时有一个惯习面,M与A之间有一定的位向关系、 惯习面:M总是在母相A的一定晶面上形成,这一定的晶面称之为惯习面。以母相的晶面指数表示。M的惯习面随钢中的含碳量不同而不同,例如 马氏体的惯习面尺寸不变,也不转动,所以称为不变平面,M转变时发生共格切变,总是保持惯习面为不变平面,因为M转变时的应变又称为不变平面应变。 位向关系:M与原A为共格或半共格,故存在位向关系,现以观测到的有 定义:M转变:在冷却过程中发生无扩散,共格切变方式的固态相变。称之为M转变。其转变产物为M。 马氏体:是无扩散,共格切变式的固态转变的产物,M是非平衡相变的产物,因而是非平衡组织是亚稳组织,有向稳定组织转变的自发趋势。 3 M相变属一级相变,有体积效应。(V=0);热效应(H 0),M转变形核长大过程。属于有核相变。 4 M转变动力学具有多样性,变温形成。等温形成,爆发形成等。 5 M转变具有不完全性。组织中总含有残余A,且钢的含碳量越高,Ar量也越多。 6 M的转变的可逆性,A M。As~~Af。As高于Ms,Au—ed,Ag—cu, As与Ms仅差20~50.C,Fe—Ni大400。C。Fe—C合金未发现逆变。 7 M转变具有普遍性,黑色,有色,陶瓷都有M转变。 4—2M的晶体结构 1M点阵常数。 早在20年代人们用X射线的方法测定室温下,常用碳钢点阵常数a和c,计算c/a(正方度)发生它们和M的含碳量呈线性关系,并可导出一组公式 A1=2.861A0 A-FD点阵常数c/a~正方度由此可见由于c原子强制溶入使c/a不等于1a-Fe

机械制造工艺学第三版王先逵第五章习题解答答案教学文稿

机械制造工艺学习题解答 第五章:机械加工表面质量及其控制(第3版P267) 5-1机械加工表面质量包括哪些具体内容? 答:(P229)机械加工表面质量,其含义包括两个方面的内容:A.加工表面层的几何形貌,主要由以下几部分组成:⑴表面粗糙度; ⑵波纹度;⑶纹理方向;⑷表面缺陷。 B.表面层材料的力学物理性能和化学性能,主要反映在以下三个方面:⑴表面层金属冷作硬化;⑵表面层金属的金相组织变化;⑶表面层金属的残余应力。 5-2为什么机器零件一般总是从表面层开始破坏的?加工表面质量对机器使用性能有哪些影响? 答:(P231)(1)由于表面是零件材料的边界,常常承受工作负荷所引起的最大应力和外界介质的侵蚀,表面上有着引起应力集中而导致破坏的微小缺陷,所以这些表面直接与机器零件的使用性能有关。(2)加工表面质量对机器的耐磨性、耐疲劳性、耐蚀性、零件配合质量都有影响。 5-3车削一铸铁零件的外圆表面,若进给量f=0.40mm/r,车刀刀尖圆弧半径re=3mm,试估算车削后的表面粗糙度。

5-6为什么提高砂轮速度能减小磨削表面的粗糙度数值,而提高工件速度却得到相反的结果? 答:(P224)砂轮速度越高,单位时间内通过被磨表面的磨粒数就越多,工件材料来不及变形,因而工件表面粗糙度值越小。而工件速度增大,单位时间内通过被磨表面的磨粒数减少,塑性变形增加,表面粗糙度值将增大。 5-7为什么在切削加工中一般都会产生冷作硬化现象? 答:(P240)机械加工过程中产生的塑性变形,使晶格扭曲、畸变,晶粒间产生滑移,晶粒被拉长,进一步变形受到阻碍,这些都会使表面层金属的硬度增加,统称为冷作硬化(或称为强化)。

奥氏体

奥氏体:奥氏体A或合金元素在γ-Fe中的固溶体。奥氏体晶粒一般为等轴状多边形,在奥氏体晶粒内有孪晶。奥氏体为面心立方结构,碳原子位于奥氏体晶胞八面体的中心,即面心立方晶胞的中心或棱边的中点。碳原子在奥氏体中的分布也是不均匀的,存在浓度起伏。奥氏体的晶格常数随着含碳量的增加而增加,这是碳原子溶入使晶格膨胀的缘故。当奥氏体中含有合金元素时,大多数合金元素如Mn,Cr,Ni,Co,Si等,在γ-Fe中取代铁原子的位置而形成置换固溶体。 奥氏体的特点:1,A是最密排的点阵结构,致密度高,故A的质量体积最小。转变成M形式时,体积膨胀2,点阵滑移系多,故A的塑性好,屈服强度低,易于加工变 形3,A是高温相,在室温下不稳定,但在钢中加入足够多的扩大γ-Fe相区 的化学元素,则可使A稳定在室温4。A具有顺磁性5,A的导热性差,线膨 胀系数最大,故可用来制造热膨胀灵敏的仪表元件。 奥氏体形成过程:奥氏体的形成是扩散性相变。分为四个阶段,即1,奥氏体形核,2,晶核向铁素体和渗碳体两个方向长大3,剩余碳化物溶解4,奥氏体成分 均匀化。奥氏体晶核是通过扩散机制形成的。 奥氏体的形成速度取决于形核率N和长大速度vg。温度越高,晶粒越细。 影响A形成速度的因素:一切影响A形核率和增大素的的因素都影响奥氏体的形成速度。 1.,加热温度:(1)奥氏体形成速度随着加热温度升高而迅速增大。转变孕 育期变短,相应的转变终了时间也变短。(2)随着奥氏体形成温度升高,形 核率增大速度高于长大速度的增长速率。因此奥氏体形成温度愈高,起始晶 粒度愈小(3)随着奥氏体形成温度升高,奥氏体相界面向铁素体的推移速度与 向渗碳体的推移速度之比增大。当奥氏体将铁素体全部溶解时,剩下的渗碳 体量增多。 2,钢中含碳量和原始组织的影响:(1)钢中含碳量愈高,奥氏体形成速度愈快 (2.)钢的原始组织愈细,奥氏体形成速度愈快。 3,合金元素的影响:(1)对扩散系数的影响。强碳化物形成元素,降低碳在奥 氏体中的扩散系数,因而减慢奥氏体的形成速度。非碳化物形成元素等增 加碳在奥氏体中的扩散系数,因而加速奥氏体的形成。(2)合金元素改变临 界点。(3)合金元素影响珠光体的片层间距,改变碳在奥氏体中的溶解度。 (4)合金元素在奥氏体中分布不均匀,扩散系数仅仅为碳的千分之一, 合金钢的奥氏体的均匀化需要更长的时间。 连续加热时奥氏体的形成特征:1相变是在一个温度范围内完成的。钢在连续加热时,奥氏体在一个温度范围内完成。加热速度愈大,各阶段转变温度范围均向高温推移, 扩大。2,奥氏体成分不均匀性随加热速度增大而增大。在快速加热情况下,碳 化物来不及充分溶解,碳和合金元素的原子来不及充分扩散,因而造成奥氏体 中碳,合金元素浓度分布很不均匀。3,奥氏体起始晶粒随着加热速度增大而细 化。快速加热时,相变过热度大,奥氏体形核率急剧增大,同时,加热时间又 短,因而奥氏体晶粒来不及长大,晶粒较细,甚至获得超细化的奥氏体晶粒。奥氏体晶粒长大:奥氏体终了化时,晶粒较细,随着加热温度进一步升高,时间继续延长,奥氏体晶粒将长大。每一个加热温度都有一个晶粒长大期,奥氏体晶粒 长大到一定大小后,长大趋势减缓直至停止长大。温度愈高,奥氏体晶 粒长大的愈大。无论加热温度,还是保温时间,奥氏体晶粒长大到一定 程度后则不再长大 钉扎作用:用铝脱氧的钢及含有Nb,V,Ti等元素的钢,钢中存在AIN,NbC,Vc,TiC等相微粒,这些相硬度很高,难以变形,存在于晶界上时,阻止奥氏体晶界移动,对晶界起

马氏体转变动力学

马氏体转变动力学 马氏体转变也是形核和长大过程,铁合金中马氏体形成动力学是多种多样的,大体上可以分为四种类型。 (一)马氏体的降温形成(变温瞬时形核、瞬时长大)是碳钢和低合金钢中最常见的一种马氏体转变。其动力学特点为:马氏体转变必须在连续不断的降温过程中才能进行,瞬时形核,瞬时长大,形核后以极大的速度长大到极限尺寸,相变时马氏体量的增加是由于降温过程中新的马氏体的形成,而不是已有马氏体的长大,等温停留转变立即停止。 按马氏体相变的热力学,钢及铁合金中马氏体相变的热滞很大,相变驱动力很大,同时,马氏体长大过程中,其共格界面上存在弹性应力,使界面移动的势垒降低,而且原子只需作不超过一个原子间距的近程迁移,因此,长大激活能很小。所以马氏体长大速度极快,以致于可以认为相变速度仅取决于形核率,而与长大速度无关。马氏体片一般在10-4~10-7秒内即长大到极限尺寸。 降温形成马氏体的量,主要取决于冷却所达到的温度,即M S以下的深冷程度,等温保持时转变一般不再进行,这一特点意味着,成核似乎是在不需要热激活的情况下发生的,所以也称其为非热学性转变。 奥氏体的化学成分虽然对M S有具有很大的影响,但其对马氏体转变动力学的影响,几乎完全是通过M S点起作用,

在M S以下的转变过程不随成分发生显著变化。 冷却速度对M S点以下的转变过程有明显的影响。只要是在马氏体转变之前,无论是缓慢冷却或冷却中断,都会引起马氏体转变发生迟滞,导致马氏体转变温度下降和马氏体转变量的减少。这种现象称为奥氏体稳定化。 影响M S点和马氏体转变动力学过程的一切因素都会影响到转变结束后残留奥氏体数量的多少。例如:化学成分对M S点有显著影响,结果导致室温下残余奥氏体量的巨大差异,如下表所示。 每增加1%合金元素时残余奥氏体量的变化元素 C Mn Cr Ni Mo W Si Co Al 50 20 11 10 9 8 6 -3 -4 Aˊ量变化 (%) 可以看出,碳含量对残余奥氏体量的影响十分显著,般认为淬火钢C%>0.4%后就应考虑残余奥氏体对性能的影响。 其次,奥氏体化温度、冷却速度和外加应力等对残余奥氏体量也都有影响,可定性归纳于下表之中。 影响残余奥氏体量的各种因素 影响因素残余奥氏体多残余奥氏体少 含碳量高碳低碳 奥氏体温度高温低温 淬火冷却油冷水冷

马氏体转变

非平衡条件下,金属和合金中发生的非扩散的晶型转变。是固态一级相变的一种基本类型。产物称为马氏体,通常具有板、片状的外形。 研究简史19世纪中叶,英国人索尔拜首次用显微镜观察了淬硬钢的金相组织,后对此种针状组织物命名为马氏体。图1示出高碳钢淬火态的金相组织,针状物(其空间形态为板片状)为马氏体,基底为残留奥氏体。20世纪20年代,美国人芬克和苏联人库尔久莫夫分别(独立地)用x射线衍射技术确定了钢中马氏体的本质:体心正方结构,碳在a-Fe中的过饱和固溶体,奥氏体在非平衡(大过冷)条件下转变成的一种介稳相。到50年代,不但积累了大量有关钢中马氏体转变的技术资料,而且还发现在一系列有色合金及某几种纯金属中也发生相似的转变。在此基础上,逐渐认识到,以钢中马氏体形成为代表的相变,是一种与历来了解的固态扩散型晶型转变具有本质区别的固态一级相变--非扩散的晶型转变,定名为马氏体转变。各种合金系中经马氏体转变形成的低温产物皆称为马氏体,如钛合金中马氏体、铜合金中马氏体等。马氏体转变是金属热处理时发生的相变的基本类型之一,对钢的强化热处理及形状记忆合金的应用技术具有重要意义。 (1)宏观形状效应。不但有体积变化,而且有形状变化。如图2所示,在母相的自由表(平)面上,转变成马氏体的那块面积发生一定角度的倾斜,并仍保持为平面。由此带动邻近的母相呈山峰状凸起(另一侧下凹),原始态表面的直线刻痕转入新相后仍为直线,在界面处不断开,保持连续。 (2)非扩散。生成相与母相成分相同,以共格或半共格界面为生长相界面,故不存在相界面迁移的热激活机制。形核率和长大速度皆与扩散型转变的热动力学处理结果显著不符。 (3)惯习现象。生成相的片、板的空间取向不是任意的,而是平行于母相的某个晶面(称为惯习面)。作为母相的一个原子面,惯习面在相变过程中既不畸变,也不转动,是不变平面。图3是对图2的局部作进一步标注,a'b'曲面发生转动,面积也有变化;但AB线段长度不变,方向也不变。作为母相的一个原子面,ABcD在相变过程中既无畸变,又不转动,连位置都没有变化(称中脊面)。a'b'c'd'和abcd两面仅有平移,无畸变及转动。惯习面是母相中与ABCD同族的晶面,马氏体片只能在这族晶面的空间方位产生。 (4)不变平面应变。根据上述诸特征,如平面在相变后仍为平面、非扩散、共格性,尤其具有不变平面(惯习面),判定马氏体转变是以不变平面应变的方式(而不是界面原子热激活跃迁的方式)进行晶格类型的改组。 (5)严格的晶体学关系。这是新相生长时迁移界面与母相共格的必然结果。铁碳合金的面心立方(7)一体心正方(a')马氏体转变,为著名的K-S马氏体转变时的不变平面,即(111)y∥(011)a,[101]y∥[111]a (6)伴生特定的晶体缺陷亚结构。马氏体中亚结构有位错、孪晶和层错三类。

马氏体转变机制

马氏体转变机制 (一)马氏体转变的形核理论 1、经典形核理论 自从发展了马氏体的等温转变以后,人们便提出马氏体转变也是一个形核及核长大过程,并用经典相变理论来分析马氏体转变过程。按这种处理,马氏体转变可以被看作为单元系的同素异构转变。 根据经典相变理论,计算出Fe-30%Ni(原子百分比)合金,在M S点(233K)时的临界晶核尺寸为,半径r c=490?,中心厚度C c=22?,临界形核功为G=5.4×108J/mol。按经典形核理论,形核功是由系统能量起伏提供的,但是在如此低的温度下要靠原子的热运动来获得这样大的激活能是很困难的。另外按经典相变理论提出的马氏体长大激活能为2510~4184J/mol,但实际上马氏体长大的激活能很小,几乎为零。因此,可以说用经典相变理论来处理马氏体相变是不合适的。 2、马氏体形核的位错理论 马氏体核胚在合金中是不均匀分布的,而是在其中一些有利的位置上优先形核。 试验:把小颗粒(100μm以下)的Fe-Ni-C合金,奥氏体化后,淬火到马氏体转变温度范围内,观察合金粒中马氏体转变的情况,结果如下图所示。由此可见,合金的成核是

很不均匀,在某些颗粒中有利于成核的位置很少,所以需要有更大的过冷度才能产生马氏体。合金中有利于成核的位置是那些结构上的不均匀区域,如晶体缺陷、内表面(由夹杂物造成)以及由于晶体成长或塑性变形所造成的形变区等。 这些“畸变胚芽”可以作为马氏体的非均匀核心,通常称之为马氏体核胚。目前一般认为在奥氏体中已预先存在具有马氏体结构的微区,这微区是在高温下母相奥氏体中的某些与各种晶体缺陷有关的有利位置,通过能量起伏及结构起伏形成的。这些微区随温度降低而被冻结到低温。从高温冻结下来的马氏体核胚有大有小,尺寸各不相同。在马氏体降温转变过程中,在不同的温度,就有不同尺寸的马氏体核胚可以达到临界晶核尺寸,这部分马氏体就会迅速长大,而尺寸较小的核胚达不到临界尺寸,就不能长大,若使马氏体转变得以进行,就必须继续降低温度,使尺寸更小的核胚达到临界尺寸。此即马氏体转变为什么只有在连续降温过程中才能进行的解释。至于马氏体转变的等温形成,可做如下解释,在等温保持时,尺寸接近临界晶核的马氏体核胚,可以通过热激活长大到临界尺寸,使马氏体在等温条件下也能形成。 关于钢中马氏体核胚的结构模型,学说较多,见解释也不统一,目前发展还不成熟。现在只介绍一些一般性的知识,以便对这个问题有个初步的了解。要说明马氏体核胚的结构,关键在于说明奥氏体和马氏体两相交界面的结构情况,

热处理—马氏体

什么是马氏体转变: 研究简史19世纪中叶,英国人索尔拜首次用显微镜观察了淬硬钢的金相组织,后对此种针状组织物命名为马氏体。图1示出高碳钢淬火态的金相组织,针状物(其空间形态为板片状)为马氏体,基底为残留奥氏体。20世纪20年代,美国人芬克和苏联人库尔久莫夫分别(独立地)用x射线衍射技术确定了钢中马氏体的本质:体心正方结构,碳在a-Fe中的过饱和固溶体,奥氏体在非平衡(大过冷)条件下转变成的一种介稳相。到50年代,不但积累了大量有关钢中马氏体转变的技术资料,而且还发现在一系列有色合金及某几种纯金属中也发生相似的转变。在此基础上,逐渐认识到,以钢中马氏体形成为代表的相变,是一种与历来了解的固态扩散型晶型转变具有本质区别的固态一级相变——非扩散的晶型转变,定名为马氏体转变。各种合金系中经马氏体转变形成的低温产物皆称为马氏体,如钛合金中马氏体、铜合金中马氏体等。马氏体转变是金属热处理时发生的相变的基本类型之一,对钢的强化热处理及形状记忆合金的应用技术具有重要意义。 非平衡条件下,金属和合金中发生的非扩散的晶型转变。是固态一级相变的一种基本类型。产物称为马氏体,通常具有板、片状的外形。 主要特征 (1)宏观形状效应。不但有体积变化,而且有形状变化。如图2所示,在母相的自由表(平)面上,转变成马氏体的那块面积发生一定角度的倾斜,并仍保持为平面。由此带动邻近的母相呈山峰状凸起(另一侧下凹),原始态表面的直线刻痕转入新相后仍为直线,在界面处不断开,保持连续。 (2)非扩散。生成相与母相成分相同,以共格或半共格界面为生长相界面,故不存在相界面迁移的热激活机制。形核率和长大速度皆与扩散型转变的热动力学处理结果显著不符。 (3)惯习现象。生成相的片、板的空间取向不是任意的,而是平行于母相的某个晶面(称为惯习面)。作为母相的一个原子面,惯习面在相变过程中既不畸变,也不转动,是不变平面。图3是对图2的局部作进一步标注,a’b’曲面发生转动,面积也有变化;但AB线段长度不变,方向也不变。作为母相的一个原子面,ABcD在相变过程中既无畸变,又不转动,连位置都没有变化(称中脊面)。a’b’c’d’和abcd两面仅有平移,无畸变及转动。惯习面是母相中与ABCD同族的晶面,马氏体片只能在这族晶面的空间方位产生。 (4)不变平面应变。根据上述诸特征,如平面在相变后仍为平面、非扩散、共格性,尤其具有不变平面(惯习面),判定马氏体转变是以不变平面应变的方式(而不是界面原子热激活跃迁的方式)进行晶格类型的改组。 (5)严格的晶体学关系。这是新相生长时迁移界面与母相共格的必然结果。铁碳合金的面心立方(7)一体心正方(a’)马氏体转变,为著名的K—S 马氏体转变时的不变平面,即(111)y ∥(011)a,[101]y∥[111]a (6)伴生特定的晶体缺陷亚结构。马氏体中亚结构有位错、孪晶和层错三类。 热力学条件马氏体转变与扩散型的晶型转变热力学条件的区别,在于要求大的过冷。图7为马氏体转变热力学条件的示意,Gy和Ga分别表示高温相(y)和马氏体(a)晶体的自由焓。为简化,设平衡点T。附近两相熵(s)值恒定,G一T成为直线关系(倾斜率为S)。马氏

第二章奥氏体相变

第二章 钢中奥氏体的形成 重点:1、掌握钢件在加热过程中的组织转变规律; 2、掌握奥氏体晶粒大小的影响因素及控制措施。 难点:奥氏体的形成机理。 内容提要:钢在加热时的组织转变是钢件热处理的基础-因为为使钢经热处理后获得所要求 的组织和性能,大多数热处理(如退火、正火和回火等)都需要将钢件加热至相变临界点以上,形成奥氏体组织,称为奥氏体化,然后再以一定的速度进行冷却。 意义:加热时形成的奥氏体的化学成分、均匀性、晶粒大小 以及加热后未溶入奥氏体中的碳化物、氮化物等过剩 相的数量、分布状况等都对钢的冷却转变过程及转变 产物的组织和性能产生重要的影响。因此,研究钢在 加热时奥氏体的形成过程具有重要的意义。 §2-1 奥氏体的组织结构和性能、奥氏体的形成机 理 一、奥氏体的组织结构 奥氏体的组织:通常是由等轴状的多边形晶粒所组成,晶内常可出现相变孪晶。 晶体结构:奥氏体是C 在γ-Fe 中的固溶体,C 原子在γ-Fe 点阵中处于由Fe 原子组成的八面体中心间隙位置,即面心立方晶胞的中心或棱边中点,如图2-2。 二、奥氏体的性能 奥氏体的存在形式:* 高温时存在:是钢中的高温稳定相; * 室温时存在:是在钢中加入足够量的能扩大γ相区的元素,可使奥氏 体在室温成为稳定相。 力学性能:1、硬度和屈服强度均不高,碳的固溶也不能有效地提高其硬度和强度; 2、因面心立方点阵滑移系统多,奥氏体的塑性很好,易于变形,所以钢的锻造加 工常要求在奥氏体稳定存在的高温区域进行; 物理性能:1、因面心立方点阵是一种最密排的点阵结构,致密度高,所以A 的比容最小; 2、A 的导热性差,故奥氏体钢加热时,不宜采用过大的加热速度,以免因热应力 过大而引起工件变形。 3、奥氏体的线膨胀系数大,因此奥氏体钢也可用来制作热膨胀灵敏的仪表元件; 4、奥氏体具有顺磁性,而奥氏体的转变产物均为铁磁性; 5、单相奥氏体具有耐腐蚀性; 6、奥氏体中铁原子的自扩散激活能大,扩散系数小,因此奥氏体钢的热强性好, 可以作为高温用钢。 三、奥氏体形成机理 (一)奥氏体形成的热力学条件

相关主题
文本预览
相关文档 最新文档