当前位置:文档之家› 第六节 珠光体钢与马氏体钢的焊接

第六节 珠光体钢与马氏体钢的焊接

第六节   珠光体钢与马氏体钢的焊接
第六节   珠光体钢与马氏体钢的焊接

第六节珠光体钢与马氏体钢的焊接

马氏体钢是介于珠光体钢与奥氏体钢之间的钢种,它包括WCr为5% --9%和WCr为12%的高铬钢。由于含铬量较高,所以抗氧化性能好,在高温580℃以上,高温持久强度比一般常用的珠光体耐热钢高,并且还有较好的抗蠕变性能。

一、焊接性

这类异种焊接接头的焊接性较差,主要表现在如下两方面。

1.淬硬倾向马氏体钢具有明显的空气淬硬倾向,焊后易得到硬度很高的马氏体组织,使焊缝金属脆性增加。在焊接热循环作用下,经高温过热,焊缝及熔合线附近晶粒急剧长大,加上焊接残余应力的作用,极易形成冷裂纹。此外,这两类钢种的碳当量值均较高,如珠光体钢12CrlMoV的碳当量为0.626%,马氏体钢Fll (X20CrMoWV121)的碳当量为2.99%,均超过产生冷裂纹的碳当量极限值0.4%,所以冷裂倾向均很大。

2.形成增碳层和脱碳层为了提高马氏体钢的高温强度,常在这类钢中加入Mo、V、W等易形成碳化物的元素,从而在焊接接头中导致珠光体钢焊缝熔合线附近的碳扩散形成脱碳层,而马氏体钢一侧,由于碳的迁入,形成增碳层。如Fll钢与12CrlMoV钢焊接时,选用

E2-11MoVNiW-15焊条,焊缝金属中含铬量高,由于碳和铬的亲和力很强,于是在12CrlMoV 钢焊缝熔合区中的碳向着焊缝金属迁移,在焊接热循环的作用下,较短的时间内,扩散距离可在0.05~0.20mm。如果焊后在760℃、保温4--5h进行回火热处理,则为碳扩散创造了更充分的条件,在靠近12CrlMoV钢一侧焊缝的熔合区形成了一个1.0~1.5mm宽的脱碳区。

二、焊接工艺

这类异种钢焊接时,由于焊接性较差,所以必须采取严格的工艺措施。

1.预热与层间温度焊前预热和控制层闾温度的目的是预防冷裂纹和残余应力。例如,珠光体钢ZG15CrlMoV和马氏体钢F12(X20CrMoV121)进行焊接时,预热温度按F12钢要求进行选择,温度控制在300~450℃,并保持此层间温度。

2.焊后层间温度的控制及回火热处理马氏体钢的焊接接头(如2Cr13、F12),焊后必须缓慢冷却到Mf点以下,大约在150~100℃时,保温0.5~10h,使其焊接接头完全转变成马氏体组织,然后再升温,进行热处理。

马氏体钢的焊接接头,焊后不宜在较高温度下立即升温回火,是因为在焊接过程中奥氏体组织还未完全转变,立即升温进行回火热处理时,碳化物会从奥氏体晶界析出,得到粗大的铁素体加碳化物组织,它的性质很脆,易造成焊接接头脆断。如果将焊接接头焊后冷却到室温后进行回火热处理,此时2Cr13、F12钢将出现空气淬硬倾向,造成常温塑性降低,并且在常温下残余奥氏体将继续转变为马氏体组织,使焊接接头变得又硬又脆,组织应力也随之增加,如果再加上扩散氢的聚集,焊接接头中就有可能产生冷裂纹。所以,2Cr13、F12钢的焊接接头,焊后一定要缓冷到150~100℃,保温0.5~1 .Oh,才能进行回火热处理。

对于F12钢与ZG15CrlMoV钢的异种钢焊接接头的回火热处理参数,均按焊接性较差的钢种即F12钢进行选择,常用回火热处理温度为720~780℃,保温时间根据焊件壁厚,控制在2~5h范围内。

F12与ZG15CrlMoV异种钢焊接接头焊接热过程的工艺参数,

见图3-6-1。

时间(h)

图3-6-1 F12钢与ZG15Crl MoV钢焊接热过程的工艺参数

3.焊接材料珠光体钢与马氏体钢焊接时,可以选择三种不同的焊接材料:一种与珠光体钢相似;另一种与马氏体钢相似;再一种是与这两类钢完全不同的焊接材料,即奥氏体钢焊条或焊丝。

采用奥氏体钢焊条或焊丝焊接这类异种钢时,可以使焊缝金属得到奥氏体组织,抗裂性能较好。缺点是焊后回火热处理过程中,容易发生碳的迁移,另外奥氏体钢热膨胀系数比马氏体钢约大50%,使焊缝组织产生较大的内应力,这两点是极为不利的。所以,一般都避免使用奥氏体钢焊条来焊接这类异种钢,特别对于受压元件的焊接接头,更不能用它作为焊接材料。

采用与珠光体钢相似的E5515-B2-VNb焊条焊接F12与ZG15CrlMoV异种钢时,在接头处未发现脱碳层和增碳层现象。经过力学性能试验,冲击韧度值大于lOOJ/cm2,硬度值大于250HBS,其高温强度与马氏体耐热钢相等。常用珠光体钢与高铬马氏体钢焊接时焊条的选用见表3-6-1。

表3-6-1常用珠光体钢与商铬马氏体钢焊接时焊条的选用

常用耐热钢的焊接工艺

常用耐热钢的焊接工艺 耐热钢是指钢再高温条件下既具有热稳定性,又具有热强性的 钢材。热稳定性是指钢材在高温条件下能保持化学稳定性(耐腐蚀、 不氧化)。热强性是指钢材在高温条件下具有足够的强度。其中耐热 性能主要通过铬、钼、钒、钛、铌等合金元素来保证,因此在焊接材 料的选择上应根据母材的合金元素含量来确定。耐热钢在石油石化工业装置施工中应用较为广泛,我们能够经常接触到的多为合金含量较 低的珠光体耐热钢,如15CrMo,1Cr5Mo等。 1铬钼耐热钢的焊接性 铬和钼是珠光体耐热钢的主要合金元素,显著提高金属的高温强度和高温抗氧化性,但它们使金属的焊接性能变差,在焊缝和热影响区具有淬应倾向,焊后在空气中冷却易产生硬而脆的马氏体组织,不仅影响焊接接头的机械性能,而且产生很大的内应力,从而产生冷裂倾向。 因此耐热钢焊接时的主要问题是裂纹,而形成裂纹的三要素是: 组织、应力和焊缝中的含氢量,因此制定合理的焊接工艺尤为重 要。 2珠光体耐热钢焊接工艺 2.1坡口 坡口的加工通常用火焰或者等离子切割工艺,必要时切割也要预热,打磨干净后做PT检验,去除坡口上的裂纹。通常选用V型坡口, 坡口角度为60°,从防止裂纹的角度考虑,坡口角度大些有利,但

是增加了焊接量,同时将坡口及内处两侧打磨干净,去除油污、铁锈及水份等污物(去氢、防止气孔)。 2.2组对 要求不能强制组对,防止产生内应力,由于铬钼耐热钢裂纹倾 向较大,故在焊接时焊缝的拘束度不能过大,以免造成过大的刚度,特别在厚板焊接时,妨碍焊缝自由收缩的拉筋、夹具和卡具等应尽量避免使用。 2.3焊接方法的选用 目前,我们石油石化安装单位管线焊接常用的焊接方法是钨极氩弧焊打底,焊条电弧焊填充盖面,其它焊接方法还有熔化极惰性气体保护焊(MIG焊)、CO2气体保护焊、电渣焊和埋弧自动焊等。 2.4焊接材料的选择 选配焊接材料的原则,焊缝金属的合金成分与强度性能基本上要与母材相应指标一致或者应达到产品技术条件提出的最低性能指标。而且为了降低氢含量应先用低氢型碱性焊条,焊条或者焊剂应按规定工艺烘干,随用随取,要装在焊条保温桶中随用随取,焊条再保温桶内不得超过4个小时,否则应重新烘干,烘干次数不得超过三次,这在具体施工过程中都有详细的规定。铬钼耐热钢手弧焊时,也可选用奥氏体不锈钢焊条,如A307焊条,但焊前仍需要预热,这种方法适用于焊件焊后不能热处理的情况。 耐热钢焊材选用表如下所示:

5-1 钢结构手工电弧焊焊接工艺标准(501-1996)

5-1 钢结构手工电弧焊焊接工艺标准(501-1996) 1 范围 本工艺标准适用于一般工业与民用建筑工程中钢结构制作与安装手工电弧焊焊接工程。22施工准备 2.1 材料及主要机具 2.1.1 电焊条:其型号按设计要求选用,必须有质量证明书。按要求施焊前经过烘焙。严禁使用药皮脱落、焊芯生锈的焊条。设计无规定时,焊接Q235钢时宜选用E43系列碳钢结构焊条;焊接16Mn钢时宜选用E50系列低合金结构钢焊条;焊接重要结构时宜采用低氢型焊条(碱性焊条)。按说明书的要求烘焙后,放入保温桶内,随用随取。酸性焊条与碱性焊条不准混杂使用。 2.1.2 引弧板:用坡口连接时需用弧板,弧板材质和坡口型式应与焊件相同。 2.1.3 主要机具:电焊机(交、直流)、焊把线、焊钳、面罩、小锤、焊条烘箱、焊条保温桶、钢丝刷、石棉条、测温计等。 2.2 作业条件 2.2.1 熟悉图纸,做焊接工艺技术交底。 2.2.2 施焊前应检查焊工合格证有效期限,应证明焊工所能承担的焊接工作。 2.2.3 现场供电应符合焊接用电要求。 2.2.4 环境温度低于0℃,对预热,后热温度应根据工艺试验确定。 3 操作工艺 3.1 工艺流程: 作业准备→电弧焊接(平焊、立焊、横焊、仰焊) →焊缝检查 3.2 钢结构电弧焊接: 3.2.1 平焊 3.2.1.1 选择合格的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺试验验证。 3.2.1.2 清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。 3.2.1.3 烘焙焊条应符合规定的温度与时间,从烘箱中取出的焊条,放在焊条保温桶内,随用随取。 3.2.1.4 焊接电流:根据焊件厚度、焊接层次、焊条型号、直径、焊工熟练程度等因素,选择适宜的焊接电流。 3.2.1.5 引弧:角焊缝起落弧点应在焊缝端部,宜大于10mm,不应随便打弧,打火引弧后应立即将焊条从焊缝区拉开,使焊条与构件间保持2~4mm间隙产生电弧。对接焊缝及时接和角接组合焊缝,在焊缝两端设引弧板和引出板,必须在引弧板上引弧后再焊到焊缝区,中途接头则应在焊缝接头前方15~20mm处打火引弧,将焊件预热后再将焊条退回到焊缝起始处,把熔池填满到要求的厚度后,方可向前施焊。 3.2.1.6 焊接速度:要求等速焊接,保证焊缝厚度、宽度均匀一致,从面罩内看熔池中铁水与熔渣保持等距离(2~3mm)为宜。 3.2.1.7 焊接电弧长度:根据焊条型号不同而确定,一般要求电弧长度稳定不变,酸性焊条一般为3~4mm,碱性焊条一般为2~3mm为宜。 3.2.1.8 焊接角度:根据两焊件的厚度确定,焊接角度有两个方面,一是焊条与焊接前进方向的夹角为60~75°;二是焊条与焊接左右夹角有两种情况,当焊件厚度相等时,焊条与焊件夹角均为45°;当焊件厚度不等时,焊条与较厚焊件一侧夹角应大于焊条与较薄焊件一侧夹角。 3.2.1.9 收弧:每条焊缝焊到末尾,应将弧坑填满后,往焊接方向相反的方向带弧,使弧坑甩在焊道里边,以防弧坑咬肉。焊接完毕,应采用气割切除弧板,并修磨平整,不许用锤击落。 3.2.1.10 清渣:整条焊缝焊完后清除熔渣,经焊工自检(包括外观及焊缝尺寸等)确无问题后,方可转移地点继续焊接。

低温焊接要求

低温焊接的工艺要求 工艺管线焊材选用及工艺要求(网上收集的虽然帖子有点乱但是有参考价值) 钢种材质焊丝焊条焊条烘干温度保温温度预热温度层间温度焊后热处理 碳钢20#、A3 TGS-50、TGS-51T J426(E4316)J422(E4303)LB-52U用于打底承接焊300℃x1h、(120-150)℃、(300-350)℃x1h 100-150℃环境温度低于0℃时预热50℃,否则不预热≤300℃不要求 碳钢A-516-70、A216WCB、API5LB、A106、A105、A53B、A234WPB、A106B TGS-50(ER70S-G)TGS-51T(ER70S-6)LB-52(E7106)LB-300(E7106)J426 LB52U用于打底承接焊(300-350)℃x1h 100-150℃壁厚≥25.4mm预热≥80℃(80-300)℃T≤19mm不处理. 19<T≤25.4(600-650)℃x1h. 25.4<T≤50.8(600-650)℃x(T/25)h. 低温钢09Mn2V、A333GR6、A617GRCC60 TGS-1N LB-52NS(E7106-G)(350-400)℃x1h 100-150℃≥80℃(80-250)℃T≤19mm不处理. 19< T≤25.4(600-650)℃x1h. 25.4<T≤50.8(600-650)℃x(T/25)h. 低温钢A333GR3、A350-LF3、A671GRCF71 TGS-3N NB-3N(E7106-G)(350-400)℃x1h 100-150℃≥100℃(100-250)℃T≤25.4(585-635)℃x1h. 25.4<T(585-635)℃x1h. 耐热钢15CrMo、A217WC6、A335P11、SA335P11、A234WP11、A619GR1、25Cr、1.25Cr-0.5Mo TGS-1CM(ER80S-G)CMA-96(E8016-B2)(325-375)℃x1h 100-150℃≥150℃(150-300)℃焊后立即(300-350)℃x15mmmin后热,T≤25.4(700-750)℃x1h. T>25.4(700-750)℃x(2+T-25.4/25.4)h. 合金钢A691 Gr 1-1/4Cr TGS-1CM(ER80S-G)R80S-B2(E8018-B2)(325-375)℃x1h 100-150℃≥150℃(150-300)℃焊后立即(300-350)℃x15mmmin后热,T≤25.4(700-750)℃x1h. T>25.4(700-750)℃x (2+T-25.4/25.4)h. 不锈钢18-8、A312TP304、A182F304、A403WP304 TG308(ER308)RNY308(NC-38.E308-16)(150-200)℃x1h 100-150℃环境温度低于0℃时预热50℃,否则不预热≤150℃不要求 不锈钢A312TP304H、A128F304H、A403WP304H TG308F(ER308H)RNY308HT(E308H-16)(150-200)℃x1h 100-150℃环境温度低于0℃时预热50℃,否则不预热≤150℃不要求 不锈钢A312TP316L、A182F316、A403WP316L TG316L(ER316-16)RNY316(E316-16)(150-200)℃x1h 100-150℃环境温度低于0℃时预热50℃,否则不预热≤150℃不要求 不锈钢A312TP316L、A182E316、A403WP316L TG316L(ER316L-16)RNY316(E316L-16)(150-200)℃x1h 100-150℃环境温度低于0℃时预热50℃,否则不预热≤150℃不要求 不锈钢A312 Gr TP 321-S6 TGS-347+A132/137 ER347 (150-200)℃x1h 100-150℃环境温度低于0℃时预热50℃,否则不预热≤150℃不要求

常用焊接方法—焊接工艺

常用焊接方法——焊接工艺 我公司是生产自动焊接设备的大型厂家。作为公司员工,就更应该了解常用焊接方法及焊接工艺。结合设备调试,这里将常用的埋弧焊、气体保护焊、钨极氩弧焊作为简要的讲述,以供有关人员参考。 一、埋弧焊 电弧在焊剂层下燃烧进行焊接的方法称为埋弧焊。主要优点:劳动条件好,节省焊接材料和电能,焊缝质量好,生产效率高等。但不适合薄板焊接。(当焊接电流小于100A时,电弧稳定性差,目前板厚小于1mm的薄板还无法采用埋弧焊)只限于水平或倾斜度不大的位置施焊。 埋弧焊是高效焊接常用方法之一。主要用于:焊接各种钢板结构。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢和复合材料以及堆焊耐磨、耐蚀合金等。 焊接工艺参数对焊接质量影响较大的有:焊接电流、电弧电压、焊接速度、焊丝直径与伸出长度、焊丝倾角、装配间隙与坡口大小等。此外焊剂层厚度及粒度对焊接质量也有影响。下面分别讲述它们对焊接质量的影响: 1.焊接电流: 焊接电流是决定熔深的主要因素。在一定范围内,焊接电流增加,焊缝的熔深和余高都增加。而焊缝的宽度增加不大。增大焊接电流能提高生产率,但在一定的焊接速度下,焊接电流过大会使热影响区过大,并产生焊瘤及焊件被烧穿等缺陷。若焊接电流过小,测熔深不足,

熔合不好、未焊透和夹渣,并使焊缝成形变坏。 2.电弧电压: 电弧电压是决定熔宽的主要因素。电弧电压增加时,弧长增加,熔深减小,焊缝宽度变宽,余高减小,电弧电压过大,溶剂熔化量增加,电弧不稳,严重时会产生咬边和气孔等。 3.焊接速度: 焊接速度增加,母材熔合比较小。焊接速度过高时,会产生咬边,未焊透,电弧偏吹和气孔等缺陷,焊缝余高大而窄成形不好。 4.焊丝直径与伸出长度: 当焊接电流不变时,减小焊丝直径,电流密度增加,熔深增大,成形系数减小。焊丝伸出长度增加时,熔深速度和余高都增加。 5.焊丝倾角: 焊丝前倾,焊缝成形系数增加,熔深变浅,焊缝宽度增加。焊丝后倾,熔深与余高增,。熔宽明显减小,焊缝成形不变。 6.装配间隙与坡口: 在其他工艺参数不变的条件下,装配间隙与坡口角度增大时,熔合比与余高减小,熔深增大,焊缝厚度基本保持不变。 7、焊机层厚度与粒度: 焊剂层太薄时,容易露弧,电弧保护不好,容易产生气孔或裂纹。焊剂层太厚,焊缝变窄,成形不好。 一般情况下,焊剂粒度对焊缝成形影响不大,但采用小直径焊丝焊薄板时,焊剂粒度对焊缝成形就有影响。若焊剂颗粒太大,电弧不

15CrMoG耐热钢管道焊接施工工法

15CrMoG耐热钢管道焊接施工工法 1 前言 耐热钢中以珠光体铬钼耐热钢应用最广,因为这类钢一般适用于 350-550℃之间,同时,这类钢的合金元素含量相对较少,一般都属于低合金钢的范畴,因为合金钢是在碳钢中加入少量的合金元素,钢的性能就发生了变化,就得到了碳钢所没有的性能,即耐高温、抗氧化、抗蠕化和良好的持久强度,由于合金元素小于3.5%,所以称作低合金,简称合金钢。它的耐热性和强度均超过不锈钢,但是价格比不锈钢便宜得多,适用于在各种高温高压条件下工作的介质管道。例如在攀钢煤化工厂外线工艺管道施工项目中,该工程管道φ273×11共1200米,其设计温度为480℃,设计压力为5.5Mpa,并且管道材质为15CrMoG耐热合金钢,这类高温高压的特殊材质管道以前我公司未施工过,所以还没有完善和成熟的施工工艺 及经验可以借鉴。由于合金钢的化学成分和性能与碳素钢、不锈钢存在较大的区别,所以施工15CrMoG耐热合金钢的焊接工艺及步骤都比碳素钢、不锈钢要求更高,也更严格和复杂。因此掌握此项新技术、新工艺中所有技术参数是具有较大的技术难题。 为了保证焊接质量,公司成立了专题攻关技术小组,开展科技创新,取得了“15CrMoG耐热钢管道焊接技术”这一新成果,并且该技术于2006年通过攀钢冶金技术有限公司(原攀冶建公司)科技质量部组织的科技成果鉴定,获公司科技进步一等奖;在2007年4月全国冶金施工系统QC成果发布会上获得二等奖。该技术填补了我公司在15CrMoG耐热合金钢焊接

技术方面的空白,优化了生产工艺,提高了劳动生产率,保证了焊接质量,为公司创造了良好的社会效益和经济效益。 2 工法特点 2.1由于15CrMoG钢中含有较高含量的Cr、C和其它合金元素,钢材的淬硬倾向较明显,焊接接头淬硬倾向大,可能出现冷裂纹,因此15CrMoG 钢焊接时,焊接材料的选择和严格的工艺措施,对于防止焊缝产生裂纹,保证管道使用性能至关重要。所以15CrMoG耐热合金钢与碳素钢、不锈钢等管道相比不管从施工工艺还是施工时所使用的工机具要求都更高,也更复杂。因此通过本工法的实施,使我公司的管道施工综合能力得到很大的提高,填补了我公司在15CrMoG耐热合金钢安装技术方面的空白,优化了生产工艺,提高了劳动生产率,保证了焊接质量,为公司创造良好的社会效益。更为今后公司施工同类管道奠定了坚实的基础,提高了 1 市场竞争能力。 2.2本工法贯彻实施后,使我公司得以熟练掌握15CrMoG材质高温高压蒸汽管道的打磨、预热、焊接、层间温度、焊后缓冷、焊缝及管道的热处理等所有工序及每个工序的具体要求及相关参数。为今后公司施工同类合金管道将起到较大的指导作用。 3 适用范围 适用于管道介质在10MPa、550℃以下的15CrMoG材质或同类型材质的高温、高压蒸汽管道或其它介质管道的焊接。 4工艺原理 为了保证耐热钢具有较好的高温强度和高温抗氧化性能,要加入一定

12Cr1MoV珠光体耐热钢管焊接工艺(printed)

12Cr1MoV珠光体耐热钢管焊接工艺 叶剑文谢美琼 (广州市锅炉压力容器监察检验所广东510050)(广州市番禺区职业技术培训中心) 12Cr1MoV是我国使用广泛的珠光体耐热钢之一,主要用于制造管壁温度小于580℃的锅炉过热管、联箱和主汽管道。在12t/h双汽包横置式沸腾炉制造过程中,锅炉的蒸汽出口温度为450℃,最高工作压力为3.8MPa,按设计图纸要求采用12Cr1MoV珠光体耐热钢管(φ159mm×10mm)作为过热器联箱管,以满足产品的使用要求。 1 焊接性分析 12Cr1MoV珠光体耐热钢为低合金耐热钢,此类钢的Cr含量较高,在500-550℃时具有较高的热强性和持久强度。12Cr1MoV钢的化学成分及力学性能见表1。 表1 12Cr1MoV珠光体耐热钢化学成分和力学性能 注:表中数据为焊接试件母材复验结果 由表1可见,12Cr1MoV钢的碳及合金元素含量较多,淬硬敏感性较大,易在焊缝及热影响区出现淬硬组织。在接头刚性及应力较大时,易产生冷裂纹。由于过热联箱是在较高温度下工作的受压元件,焊接时应采取必要的工艺措施,使焊接接头有足够的热强性能,保证过热联箱安全运行。 2焊接工艺 2.1焊接方法 在蒸汽管道的管子对接时,对打底焊缝的质量要求较高,不仅要求焊缝熔透、背面齐平,还要求焊缝背面无渣或少渣,否则会影响设备的安全运行。因此,采用手工钨极氩弧焊(TIG)打底,手工电弧焊(SMAW)填充和盖面的焊接工艺方法。 2.2坡口尺寸 选用单面V形坡口,坡口尺寸见图1。用机械方法加工,应严格控制根部间隙和坡口钝边尺寸,以确保打底焊缝彻底熔透。 图1 坡口形式和尺寸

低温钢管道的焊接工艺规程汇总

浙江华业电力工程股份有限公司企业标准 E n t er p ri s e S ta nd a rd f or zh e ji an g H u ay e Po w er En gi n ee r in g Co.,l t d HYDBP403-2004 低温钢管道焊接工艺规程 2004—04—01 发布 2004—04—01实施 浙江华业电力工程股份有限公司发布

前言 本标准主要起草人:仲春生 本标准审核人:朱文杰、周丰平、王新宇、刘浩 本标准批准人:沈银根 本标准自2004年04月01日发布,04月01日起在全公司范围内试行。本标准由公司工程部负责解释。

低温钢管道焊接工艺规程 1 范围 本标准适用于工业管道和公用管道工程中无镍低温钢类钢材的焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 DL/T 869-2004 《火力发电厂焊接技术规程》 HG 20225—95 《化工金属管道工程施工及验收规范》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP013-2004《压力管道安装工程材料设备储存管理程序》 HYDBP012-2004《压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3 先决条件 3.1 环境 3.1.1 施工环境应符合下列要求: 3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S。 3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%,环境温度大于0℃。

工业管道碳钢焊接工艺标准

工业管道碳钢焊接工艺标准 1、使用范围: 本工艺标准适用于承建工程中的碳钢16Mn等非低温钢管材类采用氩弧焊和焊条电弧焊的焊接。 2、施工准备 2.1材料要求: 2.1.1 施工现场应配有符合要求的固定焊条库或流动焊条库。 2.1.2焊材必须具有质量证明书或材质合格证,焊材的保管、烘干、发放、回收严格按《压力管道质保手册》中有关规定执行,焊条的烘干工艺按生产厂家说明书提供的参数进行,如无则按以下参数进行烘干: 序号焊条型号烘干温度烘干时间保温温度备注 1 E4315 350℃1h 80-100℃J427 2 E5015 400℃2h 80-100℃J507 2.1.3焊丝使用前,应去除表面的油脂、锈等杂物。 2.1.4保温材料性能应符合预热及其热处理要求。 2.2 机具要求: 2.2.1 焊机为直流焊机,焊机完好、性能可靠、双表指示灵敏。 2.2.2 预热及热处理的设备完好,性能可靠,检测仪表在校准周期内。 2.2.3 焊工所用的焊条保温筒,刨锤、钢丝刷齐全。 2.2 作业条件 2.2.1 人员资格:焊工必须持有相应施焊对象的合格证。 2.3.2环境条件:

施焊前应确认环境符合下列要求: a)风速:焊条电弧焊小于8m/S;氩弧焊小于2m/S b)相对湿度:相对湿度小于90% c)坏境温度:当环境温度小于0℃时,对不预热的管道焊接前应在始焊处预热15℃以上,当环境温度低于-10℃时,必须采取保暖措施。 当坏境条件不符合上述要求时,必须采取挡风、防雨等有效保护措施。 3、焊接 3.1焊接坡口形式及对口要求见:QDICC/QB126-2002。 3.2组对时质量要求: 内壁整齐,其错口量不超过下列规定: SHA级管道小于O.5mm; SHB级管道不超过1mm; 其它管道小于 1.5mm。 组对前应打磨坡口及两侧各20mm范围内油污、铁锈等,直至露出金属光泽。 3.3焊接方法: 1)管径小于等于DN50的采用氩弧焊进行焊接; 2)管径大于DN50的管道采用氩弧焊打底,焊条电弧焊盖面。 3)承插或角焊缝采用焊条电弧焊进行焊接。 4)对有熔透性要求的接管焊缝采用氩弧焊打底、焊条电弧焊盖面,对非熔透性接管焊缝采用焊条电弧焊进行焊接。 3.4焊接工艺。 3.4.1 碳钢焊接工艺参数

耐热钢A335-P22材质在施工现场的焊接

耐热钢A335-P22材质在施工现场的焊接摘要 A335-P22(化学成分为-1Mo)是ASME规范的表示方法,在国内表示为12Cr2Mo,属于高温铁素体合金耐热钢。特点是工艺性能良好,对热处理的加热温度不太敏感,焊接性能也较好,具有良好的塑性,具有抗高温、难腐蚀。最大的缺点在焊接工艺中具有淬硬性和再热裂纹倾向。目前,广泛应用于电力、石化行业的超高压蒸汽管道生产工艺中。以天津石化100万吨/年乙烯装置超高压管道为例,对A335-P22材质的合金耐热钢焊接工艺进行分析,以指导现场焊接施工。 关键词耐热钢管道焊接性能焊接工艺 1工程概况 天津石化100万吨/年乙烯工程100万吨/年乙烯装置,为全国首套大乙烯工程,具有工程量大、施工工期短、施工难度大、技术,质量要求严格等特点。其超高压蒸汽管道采用A335-P22无缝钢管,设计温度538℃,操作温度520℃,设计压力1 ,操作压力11MPa。超高压蒸汽管道主管线贯穿街区主管廊,分散于热区、压缩区、急冷区、冷区,裂解炉区,共计管道延长米公里,共计焊口3300多道。管道规格:Φ*~Φ610*。焊接工作主要为A335-P22同材质焊接。耐热钢焊接作业时间、热处理周期长。高压管道坡口加工、焊接和安装是整个乙烯装置的重点和难点。 2焊接准备工作 材料检验 A335-P22无缝钢管在注明标示外,外观与普通的碳钢无缝钢管是一样的,所以在材料的验收、入库、保管、发放,必须严格执行国家的、行业的相关标准、规范及公司的相关规定,认真核对材料的质量证明文件。材料验收、核对材料证明文件需参照表1和表2数值。必须做到材料实物与材料证明相符合,并做上合格标记。根据SH3501的要

珠光体耐热钢焊接再热裂纹的防治

珠光体耐热钢焊接再热裂纹的防治 王珏 摘要为了解决珠光体耐热钢焊后热处理过程中易产生再热裂纹的问题,分析了再热裂纹的特征和产生机理,针对影响再热裂纹的因素,提出预防措施。 主题词不锈钢焊接热处理裂纹分析防治措施 To Prevent the Reformation of Thermal Cracks on Pearlitic High-temperature Steel Wang Jue To solve the problem of thermal cracks reformation on pearlitic high-temperature during post weld heat treatment, the properties and formation mechanisms are analyzed in this paper. Preventive measures are proposed in light of the factors causing such reformation. Key words: Stainless steel, Welding, Heat treatment, Crack, Analysis, Preventive treatment, Measure 1概况 随着国内石油化工、电力工业的迅速发展,以Cr-Mo为基础的低、中合金珠光体耐热钢成为高温条件下使用的重要材料之一。珠光体耐热钢在小于600℃温度下不仅有很好的抗氧化热强度,还有较好的抗氢腐蚀和抗硫腐蚀性能。同时由于珠光体耐热钢中合金元素较少,其工艺性能和物理性能优良,为其它的耐热钢材料所不及。因此,珠光体耐热钢得到了广泛应用。 珠光体耐热钢的焊接工艺通常有两种,一种为选用与母材相匹配的耐热钢焊条,另一种采用奥氏体钢焊条。采用奥氏体焊条由于焊缝金属与母材的膨胀系数不同,长期高温工作还可能发生碳的扩散迁移现象,容易导致在熔合区发生破坏,因此,该焊接工艺较多应用于局部补焊或焊后不易进行热处理的部位,焊接珠光体耐热钢较普遍采用耐热钢焊条。 生产实践证明,采用珠光体耐热钢焊条,主要存在冷裂纹、近缝区硬化、热影响区软化等问题。此外,焊接残余应力是造成应力脆性破坏、结构变形失稳以及应力腐蚀裂纹的主要原因之一。因此珠光体耐热钢焊后进行热处理是不可缺少的重要工序,多数珠光体耐热钢在焊后并未出现裂纹,而是在焊后热处理过程中产生了裂纹,这就是珠光体耐热钢焊接的又一问题,即焊接再热裂纹。 从60年代开始,国外相继报道了因再热裂纹而发生的多起事故,促使各国对再热裂纹开展了大量的试验研究。70年代初,国内也报道了因再热裂纹而导致产品失效的事故。随着珠光体耐热钢应用于压力容器和高温高压管道,关于再热裂纹的报道也时有所闻。 再热裂纹(Reheat cracking)又称为消除应力处理裂纹(Stress-Relief cracking),这种裂纹不仅发生在消除应力的热处理中,也发生于焊后再次高温加热过程中。 2再热裂纹的特征 (1)产生的部位均在焊接热影响区的过热粗晶区,焊缝、热影响区的细晶区及母材均不产生再热裂纹。裂纹沿熔合线方向在奥氏体粗晶晶界发展,不少裂纹是断续的,再热裂纹具有沿晶间开裂的特征。 (2)再热裂纹的产生与再热过程的加热或冷却速度无关。 (3)焊后不会发生,只是在焊后进行消除应力处理及焊后高温使用中发生,它有一个敏感的温度区,一般在500~700℃,600℃左右最为敏感。 (4)再热裂纹总是出现在拘束应力或应力集中的部位,焊接应力越大越易产生,如焊缝向母材过渡不圆滑、焊缝余高过高、咬肉、焊瘤、未焊透、边缘未熔合等部位都容易产生再热裂纹。

低温钢管道焊接施工方案

低温钢管道焊接施工方案

1.目的 为保证低温钢管道焊接在预制和现场安装中能得到有效的控制和顺利的实施,确保管道焊接的质量和施工进度,特编制低温钢管道焊接施工方案。 2.适用范围 此焊接施工方案适用于浙江LNG接收站项目接收站工程所有低温钢管道的手工电弧焊,手工氩弧焊等。 3.编制依据及引用标准 GB50235-97 《工业金属管道工程施工及验收规范》 GB50236-98 《现场设备工业管道焊接工程施工及验收规范》 GB/T20801.(1-6)-2006《压力管道规范工业管道》 SH3501-2002 《石油化工有毒、可燃介质管道工程施工及验收规范》 SH/T3525-2004 《石油化工低温钢焊接规程》 设计及业主相关要求 4.工程概况 4.1 本项目所包含的低温管道是指设计温度低于-10℃至-160℃的碳钢和不锈钢,其中 管径最大为DN900,包含DN900壁厚最厚为36.5mm(材质为API 5L-X70)和DN600壁厚壁最厚为30.96mm的不锈钢厚壁管道(材质为304) 4.2 低温钢材质包含304、316L、API 5L-X70和A106-B(低温用部分) 4.3 低温钢管采用GB50235-97的规定进行坡口加工 4.4 低温钢焊接工艺按照焊接工艺评定执行 5.人员要求 5.1 从事管道焊接的焊工,需持有相应的国内项目合格证,并经业主考试合格持有业主 的焊工上岗证。焊工必须按规定的焊接作业指导书及焊接技术措施进行施焊,当遇到工况条件与焊接作业指导书及焊接技术措施的要求不符合时,应拒绝施焊。 5.2 焊接技术人员应由中专及以上学历,有一年以上焊接生产实践的人员担任。焊接技 术人员应负责编制焊接工艺评定和焊接技术措施,指导焊接作业,参与焊接质量管理,处理焊接技术问题,整理焊接技术资料。 5.3 焊接质检人员应接受过专门的焊接技术培训,有一定的焊接实践经验和技术水平, 能严格遵守检查操作规程,并具有质检人员上岗资质证。焊接质检人员应对焊接作

耐热钢焊接焊条选用及说明

耐热钢焊接焊条选用及说明 在高温下工作的钢叫做耐热钢,耐热钢应具备高温化学稳定性和高温强度,耐热钢按显微组织可分为珠光体耐热钢、铁素体耐热钢、马氏体耐热钢和奥氏体耐热钢四类;珠光体耐热钢通常热强钢,另有专篇,不再叙述,这里只讲铁素体耐热钢、马氏体耐热钢和奥氏体耐热钢。 一般来说,钢中含Cr达到5%,在600℃下具备了抗氧化能力,当Cr达到12%时,抗氧化能力可达800℃,当Cr达到20%时,抗氧化能力可达950℃,当Cr达到25%时,在1050℃高温下耐热钢表面不起氧化皮,高温化学稳定性非常强;铬金属是耐热钢中最主要的合金元素,所以耐热钢含铬量大都在12%以上。 相对而言,铁素体耐热钢和马氏体耐热钢高温强度低且塑韧性不好,耐热性能不如奥氏体耐热钢,奥氏体耐热钢与奥氏体不锈钢相比,含碳量高一些,有些钢种既是不锈钢又是耐热钢。 本文依据GB/T 4238-2015《耐热钢钢板与钢带》和GB/T 983-2012《不锈钢焊条》标准,选出14种代表性耐热钢材料及其适用的12种焊条,基本涵盖适用温度范围,其余耐热钢焊接时焊条选择也可以参照使用。 一、焊条选用原则 1、耐热性对等 焊缝与母材都在同一个温度下服役,若焊缝耐热性差就会影响整体功能,若焊缝耐热性过剩则会造成浪费,只有两者对等才是最适宜的。 2、化学成分相近 为确保焊缝金属与母材具备相同的耐热性,焊条熔敷金属化学成份与母材应尽量相近;同时两者化学成份相近使得它们膨胀系数相近,避免了因膨胀系数不同在焊接接头处产生内应力。 3、保证抗裂性 对抗裂性差的耐热钢可以用化学成分差异化来选择焊条,防止冷裂纹,确保施工可焊性。如马氏体耐热钢、沉淀硬化耐热钢。

crmog耐热钢管道焊接施工工法

15C r M o G耐热钢管道焊接施工工法 1 前言 耐热钢中以珠光体铬钼耐热钢应用最广,因为这类钢一般适用于350-550℃之间,同时,这类钢的合金元素含量相对较少,一般都属于低合金钢的范畴,因为合金钢是在碳钢中加入少量的合金元素,钢的性能就发生了变化,就得到了碳钢所没有的性能,即耐高温、抗氧化、抗蠕化和良好的持久强度,由于合金元素小于%,所以称作低合金,简称合金钢。它的耐热性和强度均超过不锈钢,但是价格比不锈钢便宜得多,适用于在各种高温高压条件下工作的介质管道。例如在攀钢煤化工厂外线工艺管道施工项目中,该工程管道φ273×11共1200米,其设计温度为480℃,设计压力为,并且管道材质为15CrMoG耐热合金钢,这类高温高压的特殊材质管道以前我公司未施工过,所以还没有完善和成熟的施工工艺及经验可以借鉴。由于合金钢的化学成分和性能与碳素钢、不锈钢存在较大的区别,所以施工15CrMoG耐热合金钢的焊接工艺及步骤都比碳素钢、不锈钢要求更高,也更严格和复杂。因此掌握此项新技术、新工艺中所有技术参数是具有较大的技术难题。 为了保证焊接质量,公司成立了专题攻关技术小组,开展科技创新,取得了“15CrMoG耐热钢管道焊接技术”这一新成果,并且该技术于2006年通过攀钢冶金技术有限公司(原攀冶建公司)科技质量部组织的科技成果鉴定,获公司科技进步一等奖;在2007年4月全国冶金施工系统QC成果发布会上获得二等奖。该技术填补了我公司在15CrMoG耐热合金钢焊接技术方面的空白,优化了生产

工艺,提高了劳动生产率,保证了焊接质量,为公司创造了良好的社会效益和经济效益。 2 工法特点 由于15CrMoG钢中含有较高含量的Cr、C和其它合金元素,钢材的淬硬倾向较明显,焊接接头淬硬倾向大,可能出现冷裂纹,因此15CrMoG钢焊接时,焊接材料的选择和严格的工艺措施,对于防止焊缝产生裂纹,保证管道使用性能至关重要。所以15CrMoG耐热合金钢与碳素钢、不锈钢等管道相比不管从施工工艺还是施工时所使用的工机具要求都更高,也更复杂。因此通过本工法的实施,使我公司的管道施工综合能力得到很大的提高,填补了我公司在15CrMoG耐热合金钢安装技术方面的空白,优化了生产工艺,提高了劳动生产率,保证了焊接质量,为公司创造良好的社会效益。更为今后公司施工同类管道奠定了坚实的基础,提高了1 市场竞争能力。 本工法贯彻实施后,使我公司得以熟练掌握15CrMoG材质高温高压蒸汽管道的打磨、预热、焊接、层间温度、焊后缓冷、焊缝及管道的热处理等所有工序及每个工序的具体要求及相关参数。为今后公司施工同类合金管道将起到较大的指导作用。 3 适用范围 适用于管道介质在10MPa、550℃以下的15CrMoG材质或同类型材质的高温、高压蒸汽管道或其它介质管道的焊接。 4工艺原理

材料焊接性课后答案

分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。 分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求?答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火 Q345与Q390焊接性有何差异?Q345焊接工艺是否适用于Q390焊接,为什么?答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。 比较Q345、T-1钢、2.25Cr-Mo和30MnSiA的冷裂、热裂和消除应裂纹的倾向. 答:1、冷裂纹的倾向:Q345为热扎钢其碳含量与碳当量较底,淬硬倾向不大,因此冷裂纹敏感倾向较底。T-1钢为低碳调质钢,加入了多种提高淬透性的合金元素,保证强度、韧性好的低碳自回火M和部分下B的混合组织减缓冷裂倾向,2.25Cr-1Mo为珠光体耐热钢,其中Cr、Mo能显著提高淬硬性,控制Cr、Mo的含量能减缓冷裂倾向,2.25-1Mo冷裂倾向相对敏感。30CrMnSiA为中碳调质钢,其母材含量相对高,淬硬性大,由于M中C含量高,有很大的过饱和度,点阵畸变更严重,因而冷裂倾向更大。2、热裂倾向Q345含碳相对低,而Mn含量高,钢的Wmn/Ws能达到要求,具有较好的抗热裂性能,热裂倾向较小。T-1钢含C低但含Mn较高且S、P的控制严格因此热裂倾小。30CrMnSiA含碳量及合金元素含量高,焊缝凝固结晶时,固-液相温度区间大,结晶偏析严重,焊接时易产生洁净裂纹,热裂倾向较大。3、消除应力裂纹倾向:钢中Cr、Mo元素及含量对SR产生影响大,Q345钢中不含Cr、Mo,因此SR倾向小。T-1钢令Cr、Mo但含量都小于1%,对于SR 有一定的敏感性;SR倾向峡谷年队较大,2.25Cr-Mo其中Cr、Mo含量相对都较高,SR倾向较大。

珠光体耐热钢(知识资料)

1.2关于珠光体耐热钢的研究 珠光体耐热钢在化工、石油设备中主要用于炉管、热交换器和其它受热面管子、高压加氢设备中的各种管道和高温紧固件。 1.2.1珠光体耐热钢的特点 珠光体耐热钢除碳钢外,大多是含有铬、钼元素,少数的还含有钒元素,但含量都不大,所以当加热、冷却时都能发生a γ相的转变。经正火后,容易得到珠光体组织,因此,这类钢称为珠光体耐热钢。 作为石油化工热交换器和锅炉用钢,除了要求有较好的耐热性外,还要求有很好的焊接性能和冷加工性能,为此,这类钢应具有良好的塑性。因此,其化学成分中含碳量都很低,其中钢管的含碳量要求更低,一般在0.1~0.15%C之间;钢板为0.20~0.30%C之间,最多不能超过0.30%C。 这类钢作为耐热钢,其耐热性虽然比奥氏体钢低,但它有许多优点: 1) 这类钢合金元素少,价格比较便宜; 2) 冷、热加工性能和焊接性能较好,热膨胀系数低,导热性能强,从而可 避免焊接时引起局部过热和产生较大的应力; 3) 热处理工艺简单,一般为正火加回火,能改善机械性能,也能利用热处 理细化组织。 但这类钢耐热性较差,它的工作温度一般不超过550~580℃。 1.2.2珠光体耐热钢的组织稳定性 在高温、应力长期作用下,由于扩散过程加快,钢的组织将逐渐发生变化。由于组织的不稳定性将引起钢的性能的变化,特别是对钢的热强性、松弛稳定性等性能都会带来不利的影响。珠光体耐热钢在高温长期工作条件下常见的组织不稳定现象有: 1.2.2.1石墨化 钢在高温、应力长期作用下,由于珠光体内渗碳体分解为游离石墨的现象称为石墨化。低碳钢当温度于450℃以上,含0.5%Mo的钢在500℃左右长期工作时,都可能发生石墨化,此时,钢脆化,强度与塑性降低,可导致爆管等事故。对由于长期过热导致爆管的20钢分析发现,其石墨化已达三级。一般钢发生石墨化的时间约需几万小时。防止0.5%Mo钢石墨化的最有效方法是实行进一步的合金化。在钢中加入铬、钒、铌等强碳化物形成元素能有效地阻止石墨化。 1.2.2.2珠光体球化 低合金珠光体型耐热钢在高温和应力长期作用下,珠光体组织中片状渗碳体逐渐自发地趋向形成球状渗碳体,并慢慢聚集长大。该现象称为珠光体球化。文献[5]对碳化物的球化过程和机理进行了探讨。影响球化的主要因素是温度、时间和化学成分。 实践表明,低合金耐热钢中加入铬、钼、钨、钒、铌等合金元素能显著地减弱其球化过程。这些合金元素的单个加入或复合加入后都能起到良好的作用。其原因是,它们能减弱碳在α固溶体中的扩散,同时这些合金元素又能与碳形成稳定的碳化物。 1.2.2.4蠕变过程中析出相类型的转变 在高温和应力条件下长期作用下,由于珠光体中Fe3C的分解,固溶体内合金元素向碳化物过渡以及碳在α固溶体内扩散过程加速进行,会引起在蠕变过程中碳化物相析出类型发生变化,从而影响钢的热强性。

钢筋手工电弧焊工艺标准 (411-1996)

钢筋手工电弧焊工艺标准 (411-1996) 范围 本工艺标准适用于工业与民用建筑的钢筋及埋件手工电弧焊。 施工准备 2.1 材料及主要机具: 2.1.1 钢筋:钢筋的级别、直径必须符合设计要求,有出厂证明书及复试报告单。进口钢筋还应有化学复试单,其化学成分应满足焊接要求,并应有可焊性试验。预埋件的锚爪应用Ⅰ、Ⅱ级钢筋。钢筋应无老锈和油污。 2.1.2 钢材:预埋件的钢材不得有裂缝、锈蚀、斑痕、变形,其断面尺寸和机械性能应符合设计要求。 2.1.3 焊条:焊条的牌号应符合设计规定。如设计无规定时,应符合表4-14的要求,焊条质量应符合以下要求: 钢筋电弧焊使用的焊条牌号表4-14 项次钢筋级别搭接焊、帮条焊坡口焊 1 Ⅰ级 E4303 E4303 E4303 2 Ⅱ级 E430 3 E4303 E5003 3 Ⅲ级 E5003 E5003 E5503 4 Ⅰ、Ⅱ级与钢板焊接 E4303 注:不含25MnSi钢筋。 2.1. 3.1 药皮应无裂缝、气孔、凹凸不平等缺陷,并不得有肉眼看得出的偏心度。 2.1. 3.2 焊接过程中,电弧应燃烧稳定,药皮熔化均匀,无成块脱落现象。 2.1. 3.3 焊条必须根据焊条说明书的要求烘干后才能使用。 2.1. 3.4 焊条必须有出厂合格证。 2.1.4 弧焊机、焊接电缆、电焊钳、面罩、堑子、钢丝刷、锉刀、榔头、钢字码等。 2.2 作业条件: 2.2.1 焊工必须持有考试合格证。 2.2.2 帮条尺寸、坡口角度、钢筋端头间隙、接头位置以及钢筋轴线应符合规定。 2.2.3 电源应符合要求。 2.2.4 作业场地要有安全防护设施、防火和必要的通风措施,防止发生烧伤、触电、中毒及火灾等事故。

耐热钢焊条的选用

耐热钢焊条的选用

电焊条的选用 (二) (3)耐热钢焊条的选用 低合金耐热钢要在高温下长期工作,为了保证耐热钢的高温性能,须向钢中加入较多的合金元素(如Cr、M o、V、Nb等)。在选择焊接材料时,首先要保证焊缝性能与母材匹配,具有必要的热强性,因此要求焊缝金属的化学成分应尽量与母材一致。如果焊缝与母材化学成分相差太大,高温长期使用后,接头区域某些元素发生扩散现象(如碳元素在熔合线附近的扩散),使接头设法性能下降。 耐热钢焊条一般可按钢种和构件的工作温度来选用。选配耐热钢焊接材料的原则是焊缝金属的合金成分和性能与母材相应指标一致,或应达到产品技术条件提出的最低性能指标。为了提高焊缝金属的抗热裂能力,焊缝中的碳含量应略低于母材的碳含量,一般应控制在0.0 7%~0.15%之间。由于钢中碳和合金元素的共同作用,耐热钢焊接时极易形成淬硬组织,焊接性较差。为此耐热钢一般焊前预热,焊后进行回火处理。 近年来,在薄壁管焊接中普遍采用了氩弧焊打底,酸

性焊条手弧焊盖面的工艺,大大提高了焊接质量。但这类焊条抗裂性次于低氢型焊条,在单独使用或用于厚壁管焊接时,应选择低氢型耐热钢焊条。 常用低合金耐热钢焊条的成分、性能、特征和用途见表1。 (4)低温钢焊条的选用 低温钢是在-40~-196℃的低温范围工作的低合金专用钢材。按化学成分来划分,低温钢主要有含镍钢和无镍钢两类。国外一般使用含镍低温钢,如3.5Ni钢、5 Ni钢和9Ni钢等;我国多使用无镍低温钢。 选择低温钢焊接材料首先应考虑接头使用温度、韧性要求以及是否要进行焊后热处理等,尽量使焊缝金属的化学成分和力学性能(尤其是冲击韧性)与母材一致。经焊后热处理后,焊缝仍应具有较高的低温韧性。由于对焊缝金属的低温韧性提出了严格的要求,低温钢焊条药皮均采用低氢型。焊接时要求尽量采用小的焊接线能量,避免焊缝金属及近缝区形成粗晶组织而降低低温韧性。含镍低温钢除手弧焊外,主要采用氩弧焊进行焊接,采用与母材相同成分的焊丝,保护气体为Ar或在Ar中 加入2%的O 2或5%~10%的CO 2 ,以改善焊缝成形。 常用低温钢焊条的成分、性能、特征和用途见表2。 5.3 不锈钢焊条的选用

相关主题
文本预览
相关文档 最新文档