当前位置:文档之家› 土壤——总灰分的测定

土壤——总灰分的测定

土壤——总灰分的测定
土壤——总灰分的测定

土壤——总灰分的测定

1.原理概要:

试样烘干、碳化,然后在550±25℃下焚烧,冷却后测定残渣质量。

2.主要仪器和试剂:

2.1.仪器

常规实验室仪器。主要有:灰盘(平底,铂、石英或金属或其他不受试验条件影响的材料制成,直径至少60mm,高至少25mm),马弗炉(温度可控制在550±25℃),干燥器,分析天平,烘箱(可控温103±2℃),电热板或气体火焰(如果马弗炉没有时间-温度控制器)。

2.2.主要试剂

除非另作说明,所有试剂均应为分析纯。主要有:水(至少满足ISO 3696中3类要求),30%双氧水。

3.过程简述:

3.1.样品制备

过60目筛的均化土壤。

称样前,先把灰盘放在马弗炉中,于550℃加热20min。取出灰盘,在干燥器中冷却至室温,在分析天平上称重(m0),精确至0.1mg。

移取1.5g至2.0样到灰盘中,称重(m1),精确至0.1mg。

3.2.测试

3.2.1.用带时间-温度控制器的马弗炉进行测定

将盛试样的灰盘放入凉的马弗炉中,缓慢升温,经5h~6h升温至550℃±25℃,持续于550± 25℃进行灰化,直到灰分呈灰白色。

从马弗炉中取出灰盘,在干燥器中冷却至室温。观察灰分,如果灰分仍为黑色,可加入几滴双氧水或水进行处理,再进行程序升温灰化。如果灰分呈灰白色,用分析天平称重(m2),精确至0.1mg。

3.2.2.用不带时间-温度控制器的马弗炉进行测定

将盛试样的灰盘放入烘箱中,于103℃放置1h。

从烘箱中移出灰盘,放在电热板或通过气体火焰加热,使试样碳化,至冒烟,小心加热碳化,试样既不能焚烧也不能燃烧。

把试样移入凉的马弗炉中,升温至550℃±25℃。4h后,从马弗炉中取出灰盘,在干燥器中冷却至室温。观察灰分,如果灰分仍为黑色,可加入几滴双氧水或水进行处理,再进行程序升温灰化。如果灰分呈灰白色,用分析天平称重(m2),精确至0.1mg。

4.精确度:

重复性:相同试验者使用相同设备在短时间间隔内,采用相同试验方法对相同的试验材料进行分析,得到的两个独立的实验结果的绝对偏差超过下面方程给出的重复性限r的概率不超过5%。

R=0.0990%+0.00933?

R:重复性;百分数

?:两次结果平均值,百分数。

再现性:不同试验者使用不同设备,采用相同试验方法对相同的试验材料进行分析,得到的两个独立的实验结果的绝对偏差大于超过下面议程给出的再现性限R的概率不超过5%(m/m)。

R=0.138%+0.0046?

R:再现性限,百分数;

?:两次平均值,百分数

粗灰分的测定

饲料中粗灰分的测定采用GB/T 6438-2007 1 适用范围 本方法适用于配合饲料及单一饲料中粗灰分含量的测定。 2 测定原理 试样经高温灼烧分解后,测量其所得残渣质量,用质量分数表示。 3 仪器设备 3.1 实验室用粉碎机。 3.2 分样筛:40目(孔径0.45 mm)。 3.3 分析天平:感量0.000 1 g。 3.4 马弗炉:电加热,空调控温度,带高温计。 3.5 坩埚:陶瓷。 3.6 干燥器:具有变色硅胶干燥剂。 3.7 盘式电炉:可调温。 4 试样的选取和制备 按《中慧农牧股份有限公司近红外仪作业指导书》中“样品制备”项制备样品,密封保存,防止试样中组分变化或变质。 5 分析步骤 5.1 坩埚恒重 将坩埚连同盖子一起放入马弗炉中,于550 ℃下灼烧30 min。待炉温降至200 ℃后,将坩埚移入干燥器中,冷却至室温后称量。再次将坩埚放入550 ℃马弗炉中灼烧30 min后冷却称量,直至二次称量之差小于0.000 5 g时为坩埚恒重,取称量最小量为坩埚重。 5.2 样品称取及测定 称取约5 g试样于已恒重坩埚中,准确至0.000 1 g,并摊匀,半掩盖子。将盛有试样的坩埚放在垫有石棉网的电炉上灰化至无烟,再移入预先加热到550 ℃的马弗炉中灼烧3 h,直至试样完全灰化,无黑色炭粒。 待炉温降至200 ℃时,将坩埚移入干燥器内冷却,称量,准确至0.000 1 g。再次将坩埚放入550 ℃马弗炉中灼烧1 h后冷却称量,直至二次称量之差小于0.001 g时为恒重,取称量最小量为灼烧后坩埚及试样重。 6 计算 试样中粗灰分W,以质量分数表示,数值以%计,按式(1)进行计算: (1)式中:M0——灼烧前试样及坩埚(包括盖)的质量,g; M1——灼烧后灰分及坩埚(包括盖)的质量,g; M2——已恒重的坩埚(包括盖)的质量,g。 7 重复性 每个试样取两个平行样测定,取算术平均值为测定结果。 灰分含量在5 %以上,允许相对偏差为1 %;含量在5 %以下,允许相对偏差为5 %。 8 注意事项 8.1 试样必须放置在垫有石棉网的电炉上进行炭化,半掩坩埚盖,调节电炉缓慢升温,防止因电炉升温过快而使部分样品颗粒被逸出气流带走或使样品快速膨胀逸出坩埚。某些含糖较高的单一饲料(如乳清粉),炭化时易逸出坩埚,应预先加数滴纯度较高的植物油再炭化,同时注意缓慢升温。含糖和脂肪高的样品炭化过程中不能出现明火。 8.2 马弗炉温度在200℃时,放入样品进行灰化,应控制马弗炉的温度不能超过600℃。8.3 灰化后如果还能观察到炭粒,可将坩埚冷却后加适量水润湿,烘干,继续灼烧1小时。

试题 第二讲 食品中灰分、维生素的检验

姓名成绩 食品分析测试题(三) 一、填空题(每空1分,共27分) 1.牛奶中的总灰分在牛奶中的含量是恒定的,一般在 0.68%~0.74%之间,平均值非常接近0.70%。若掺水, 灰分降低。 2.食品安全国家标准(GB 5009.4—2010)规定了食品中 灰分的测定方法,该方法适用于除淀粉及其衍生物之外的食品中灰分含量的测定。 3.食品中灰分的测定,一般选择灰化温度在 500~550 ℃之间,在马弗炉中灼烧2~5小时。之后,等温度降到_200_℃左右,方可取出,放入干燥器中。冷却30分钟后,称量。 4.维生素可以根据它们的溶解性分为两大类。维生素A、 D、E属于_脂_溶性维生素,均__不溶__(易溶/不溶)于 水,___易溶___(易溶/不溶)于有机溶剂。维生素C和B族维生素属于_水_溶性维生素,均___易溶___(易溶/不溶)于水,不溶(易溶/不溶)于有机溶剂。 5.脂溶性维生素中,维生素A和维生素D对酸不稳定, 维生素 E 对酸稳定。 6.酒精中如果含有醛类,通常用__银镜__反应来检查。 7.维生素B1又叫硫胺素或抗神经炎素;维生素B2

又叫核黄素。这两种维生素均属于水溶性维生素。 8.维生素C又叫做抗坏血酸。自然界中存在两种形式 的维生素C,分别是:还原型抗坏血酸和脱氢型抗坏血酸。 9.紫外分光光度法测定维生素A,只适用于透明鱼油、 维生素A浓缩产物等纯度较高的试样。 10.三氯化锑腐蚀性强,不能沾在手上,三氯化锑遇水生 成白色沉淀.因此用过的仪器要先用稀盐酸浸泡后再清洗。 二、不定项选择题(每题2分,共20分) 1.测定食品中的灰分时,一般控制灼烧后灰分为____。 (C) A. 0~10mg B. 5~100mg C. 10~100mg D. 100mg以上 2.在人体内,脂溶性维生素主要储存于____中。( B ) A. 肌肉 B. 肝脏 C. 血液 D. 肠胃 3.水溶性维生素在____介质中稳定。( A ) A. 酸性 B. 碱性 C. 中性和偏碱性 D. 中性和偏酸性 4.维生素A在氯仿溶液中与三氯化锑试剂作用,产生不 稳定的蓝色物质,比色法测定时,必须在____秒内完成测定。(B) A. 2 B. 6 C. 10 D. 20

实验五 食品中总灰分含量的测定

实验五食品中总灰分含量的测定 1.实验目的 (1)学习食品中总灰分测定的意义和原理; (2)掌握称重法测定灰分的基本操作技术及测定条件的选择; (3)学会用减重法称取试样。 2.实验原理 将样品炭化后置于500~600 ℃高温炉内灼烧,样品中的水分及挥发物质以气体放出,有机物质中的碳、氢、氮等元素与有机物质本身的氧及空气中的氧生成二氧化碳、氮氧化物及水分而散失,无机物以硫酸盐、磷酸盐、碳酸盐、氧化物等无机盐和金属氧化物的形式残留下来,这些残留物即为灰分,称重残留物的质量即可计算出样品中总灰分的含量。 3.仪器及材料 3.1仪器 高温电炉(马福炉);坩埚钳;瓷坩埚;分析天平;干燥器 3.2材料 面包(高筋面粉制作)、饼干(低筋面粉制作) 3.3试剂 1:1盐酸 4.实验步骤 4.1瓷坩埚的准备 将坩埚用体积分数为20﹪的盐煮1~2h,洗净晾干后,用铅笔在坩埚外壁及盖上写上编号。置于马福炉中,在(550±25)℃下灼烧0.5 h,冷至200℃一下后,取出。放入干燥器中冷却至室温,准确称量,并反复灼烧至恒重(两次称重之差不超过0.5mg)。 4.2样品的处理 用分析天平准确称取5.00g面包两份,以及相同质量的两份饼干,放入之前标好号码的瓷坩埚中,以小火加热使试样充分炭化至无烟。 4.3样品的灰化 炭化后的试样置马福炉中,在(550±25)℃下灼烧4h。冷至200℃以下后取出,放入干燥器中冷却30min。在称量前如灼烧残渣有碳粒时,应向试样中滴入少许水湿润,使结块松散,蒸出水分再次灼烧至无碳粒即灰化完全,冷至200℃以下,取出放入干燥器中冷却30min后,准确称量。反复灼烧至前后两次称量相差不超过0.5mg即为恒重。 5.实验结果及分析

灰分检测操作规程

11.灰分的检测 11.1 仪器和设备 11.1.1 天平:感量为 0.1 mg。 11.1.2 马弗炉:温度≥600 ℃。 11.1.3 干燥器(内附有有效硅胶为干燥剂)。 11.1.4 石英坩锅或瓷坩埚。 11.1.5 电热板。 11.1.6 水浴锅。 11.2 分析步骤 11.2.1 坩埚的灼烧:取大小适宜的石英坩埚或瓷坩埚置马弗炉中,在 550℃±25℃下灼烧 0.5 h,冷却至200 ℃左右,取出,放入干燥器中冷却 30 min,准确称量。重复灼烧至前后两次称量相差不超过 0.5 mg为恒重。 11.2.2 称样:灰分大于 10 g/100 g 的试样称取 2 g~3 g(精确至 0.0001 g);灰分小于 10 g/100 g 的试样称取 3 g~10 g(精确至 0.0001 g)。 11.2.3 测定 液体和半固体试样应先在沸水浴上蒸干。固体或蒸干后的试样,先在电热板上以小火加热使试样充分炭化至无烟,然后置于马弗炉中,在 550 ℃±25℃灼烧 4 h。冷却至 200 ℃左右,取出,放入干燥器中冷却 30 min,称量前如发现灼烧残渣有炭粒时,应向试样中滴入少许水湿润,使结块松散,蒸干水分再次灼烧至无炭粒即表示灰化完全,方可称量。重复灼烧至前后两次称量相差不超过 0.5 mg 为恒重。按式(1)计算。 11.3 分析结果的表述 试样中灰分按式(1)计算: 式中:X1——试样中灰分的含量,单位为克每百克(g/100 g); m1 ——试样灼烧后坩埚和灰分的质量,单位为克(g); m2 ——坩埚的质量,单位为克(g); m3 ——试样灼烧前坩埚和试样的质量,单位为克(g)。 试样中灰分含量≥10 g/100 g 时,保留三位有效数字;试样中灰分含量<10 g/100 g 时,保留二位有效数字。 11.4精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的 5 %。

食品中灰分的测定

实验2 食品中灰分的测定 一、实验原理 对于食品行业来说,灰分是一项重要的质量指标。例如,在面粉加工中,常以总灰分含量来评定面粉等级,因为小麦麸皮的灰分含量比胚乳高20倍左右,因此,面粉的加工精度越高,灰分含量越低。在生产果胶、明胶等胶质产品时,总灰分可说明这些制品的胶冻性能;水溶性灰分则在很大程度上表明果酱、果冻等水果制品中的水果含量;而酸不溶性灰分的增加则预示着污染和掺杂。这对保证食品质量是十分重要的。 总灰分采取简便、快速的干灰化法测定。即先将样品中的水分去掉,然后再尽可能低的温度下将样品小心地加热炭化和灼烧,除尽有机质,称取残留的无机物,即可求出总灰分的含量。本方法适用于各类食品中灰分含量的测定。 二、试剂和器材 高温电炉(马弗炉) 坩埚:测定食品中的灰分含量时,通常采用瓷坩埚(30mL ),可耐1200℃高温,理化性质稳定且价格低廉,但它的抗碱能力较差。 三、实验步骤 1、总灰分的测定 (1)样品预处理 1)样品称量 以灰分量10-100mg 来决定试样的采取量。通常奶粉、大豆粉、调味料、鱼类及海产品等取1-2g ;谷类食品、肉及肉制品、糕点、牛乳取3-5g ;蔬菜及其制品、糖及糖制品、淀粉及其制品、奶油、蜂蜜等取5-10g ;水果及其制品取20g ;油脂取50g 。 2)样品处理 谷物、豆类等含水量较少的固体试样,粉碎均匀备用;液体样品需先在沸水浴上蒸干;果蔬等含水分较多的样品则采用先低温(66-70℃)后高温(95-105℃)的方法烘干,或采用测定水分后的残留物作样先提取脂肪后再进行分析。 3)瓷坩埚处理 将坩埚用体积分数为20%的盐酸煮1-2h ,洗净晒干后,用氯化铁与蓝墨水的混合液或铅笔在坩埚外壁、底部及盖上写上编号。置于马弗炉中,在600℃灼烧。取出,冷却至200℃以下时,移入干燥器内冷却至室温后称重。重复灼烧至恒重。 (2)称取适量样品于坩埚中;在电炉上小心加热,使样品充分炭化至无烟。然后将坩埚移至高温电炉中,在500-600℃灼烧至无炭粒(即灰化完全)。冷却到200℃以下时,移入干燥器中冷却至室温后称量,重复灼烧至前后两次称量相差不超过为恒重。 (3)结果计算 100*0 2011m m m m x 式中 x 1——样品中灰分的质量分数,% m 0——坩埚的质量,g m 1——坩埚和总灰分的质量,g m 2——坩埚和样品的质量,g 2、水溶性灰分与水不溶性灰分的测定 在总灰分中加水约25mL ,盖上表面皿,加热至近沸,用无灰滤纸过滤,以25mL 热水洗涤,将滤纸和残渣置于原坩埚中,按总灰分测定方法再行干燥、炭化、灼烧、冷却、称量。以下式计算水溶性灰分与水不溶性灰分的含量: 100*0 2032m m m m x --= 式中 x 2——样品中水不溶性灰分的质量分数,% m 0——坩埚的质量,g

食品中水分和灰分含量的测定

实验一食品中水分和灰分含量的测定 水分含量的测 一、目的及意义 通过测定食品中的水分含量,可以研究食品的最佳保存条件,食品的成熟程度,以及食品所含有的营养素浓度等一系列有关食品的问题。 二、试剂与药品 奶粉 三、实验原理 利用食品中水分的性质,在101.3Kpa (一个大气压),温度在101℃~105℃下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件能挥发的物质,再通过干燥前后的称量数值计算出水分的含量。 四、仪器及设备 铝盒、电热恒温干燥箱、干燥器(内附有效干燥剂)、电子天平 五、分析步骤 1. 取洁净铝盒,置于101℃~105℃干燥箱中,铝盒盖斜支于铝盒边,加热1.0h ,取出盖好,置于干燥器内冷却0.5h ,称量,并重复干燥前后两次质量不超过2mg ,取为恒重 2. 称取奶粉2g 左右放入铝盒中,置于101℃~105℃干燥箱中,盒盖斜支于盒边,干燥2h~4h 后,盖好取出放入干燥器内冷却0.5h 后称量。然后再放入101℃~105℃干燥箱中干燥1h 左右,取出,放入干燥器内冷却0.5h 后再称量。并重复以上操作至前后两次质量差不超过2mg ,即为恒重。 六、结果分析与讨论 食品中(水分%+干物质%=100%) 水分%= %100%100103?--m m m 3m --------干物质与铝盒的总重 3m =18.2208g 0m --------铝盒恒重的重量 实验数据 0m =16.2665g 1m --------奶粉的称量重量 1m =2.0084g

计算可得 水分%=2.694% 由此可知奶粉中水分的百分比为2.694% 灰分含量的测定 一、 目的及意义 检测食品中矿物质的含量,是食品有机物破坏的方法之一。 二、 试剂与药品 奶粉 三、 实验原理 食品经灼烧后,所残留的无机物称灰分,灰分数值系用灼烧、称重后计算得出。 四、 仪器及设备 马弗炉、电子天平、坩埚、干燥器(内附有效干燥剂)。 五、 分析步骤 1. 取大小适宜的石英坩埚或瓷坩埚置于马弗炉中,在550℃下灼烧0.5h ,冷却至200℃左 右,取出,放入干燥器中冷却0.5h ,准确称量。重复灼烧至前后两次称量相差不超过0.5mg 为恒重。 2. 称取2g 左右奶粉,放入瓷坩埚,然后先在电热板上以小火加热使试样充分碳化至无烟, 然后置于马弗炉中,在550℃灼烧4h ,冷却至200℃左右,取出,放入干燥器中冷却30min 。重复灼烧至前后两次称量相差不超过0.5mg 为恒重。 3. 注意事项; 把坩埚放入高温炉或从炉中取出时,要在炉口停留片刻,使坩埚预热或冷却。 防止因温度剧变而使坩埚破裂. 六、 结果分析与讨论 计算 灰分%=%1001 02?-m m m 2m --------灰分与瓷坩埚的总重 2m =51.4785g 0m --------瓷坩埚恒重的重量 实验数据 0m =51.3679g 1m --------奶粉的称量重量 1m =2.0004g 计算可得 灰分%=5.528%

灰分和矿物质复习题

灰分和主要矿物元素的分析测定 一、填空题: 1.灰分的主要成分是矿物盐和无机盐,灰分按其溶解性可分为水溶性灰分、水不溶性灰分和酸不溶性灰分;灰分测定的主要设备是马福炉;灰分测定的温度是:550~600℃;灰分测定中,盛装样品的器皿叫坩埚,使用的钳叫坩埚钳。 2.灰分含量测定步骤:瓷坩埚的准备→样品预处理→炭化→灰化。 3.干法灰化中加速灰化的方法有改变操作条件、加入灰化助剂、加入惰性不溶物。 4.灰分测定样品应碳化时,应采用先低温后高温的方法进行炭化,样品应碳化至无黑烟;样品经高温灼烧后,正常灰分的颜色是纯白色;灰化时对特别容易膨胀的试样可先于试样上加数滴辛醇或纯植物油,再进行炭化。 5.面粉的加工精度,在面粉加工中,常以总灰分含量评定面粉等级。 6.高锰酸钾滴定法测食品中钙的原理为:样品经灰化后,用.盐酸溶解,钙与草酸生成草酸钙沉淀;沉淀经洗涤后,加入硫酸溶解,把草酸游离出来,再用高锰酸钾标准溶液滴定。 7.吸光光度法测定溶液浓度的方法有__标准溶液比较法__和__标准曲线法__。 8.原子吸收分光光度计,应用最广泛的光源是空心阴极灯;分光系统的作用是获得待测元素的特征谱线;原子吸收分光光度法测定溶液浓度的方法有标准曲线、__标准加入法。 二、判断 1.(×)陶瓷容器盛装碱性食品时尤其容易引起重食品金属含量过多。 2.(√)测定灰分可判断食品受污染的程度。 3.(×)测定食品总灰分时,为了加速灰化,可将去离子水直接洒在残灰上后继续灰化。 4.样品经消化后,在碱性溶液中铜离子与铜试剂作用,生成红色的络合物,溶于四氯化碳,与标准系列分光光度比色定量。加柠檬酸铵及EDTA掩蔽干扰离子。( × ) 5.(×)恒重是指烘烤或灼烧后,前后两次质量之差不超过2g。 6.原子吸收分光光度法与吸光光度法在本质上都属于吸收光谱分析的范畴。不同者在于前者利用原子的吸收光谱特性,是一带状光谱,后者则利用分子的吸收光谱特性,是一线状光谱。( × ) 三、选择题: 1.(C )测定食品总灰分含量进行恒重操作时质量差不超过。 A. 0.02g B. 2mg C. 0.5mg D. 0.005g 2.(B )测定食品中酸不溶性灰分时所用的酸为一定浓度的。 A. 硫酸 B. 盐酸 C. 硝酸 D. 冰醋酸 3.(A )测定下列物质时,不能采用比色法的是。 A. 铜 B. 汞 C. 锌 D. 铅

灰分的测定及灰化方法

第四章灰分的测定及灰化方法 ●食品中除含有大量有机物质外,还含有较丰富的无机成分。这 些无机成分在维持人体的正常生理功能,构成人体组织方面有着十分重要的作用。灰分主要为食品中的矿物盐或无机盐类。 ●1、灰分测定方法: ●灰分:高温灼烧后的残留物叫灰分。严格的说叫粗灰分 ●湿法消化:就是通过加入强氧化剂消化食品的方法,叫湿法消 化 ●干法灰化:通过灼烧手段分解食品的方法叫干法灰化。灼烧装 置有灰化炉(马福炉) ●2、食品在500℃—600℃灼烧灰化时,发生一系列变化: ●A、水分及挥发性物质以气态放出 ●B、有机物中的C.H.N与O2生成CO2.NO2.H2O等而散失. ●C、有机酸的金属盐转变为碳酸盐或金属氧化物; ●D、有些组分转变为氧化物、磷酸盐、硫酸盐或卤化物 ●E、有的金属直接挥发散失或生成容易挥发的金属化合物 ●3、灰分测定内容: ●总灰分、水溶性灰分、水不溶性灰分、酸不溶性灰分等。 ●4、食品灰分含量大致如下:牛乳0.6—0.7% 乳粉5—5.7% 鲜 果0.2—1.2% 蔬菜 0.2—1.2% 小麦胚乳0.5% 鲜肉0.5—1.2% 纯油脂无 第一节总灰分的测定

●一、原理:将食品经炭化后置于高温炉内灼烧后的残留物即为 灰分。 ●二、操作条件选择 ●1、灰化温度: ●灰化温度因样品而异:素烧瓷坩埚,耐高温,内壁光滑,它的 物理性质,化学性质与石英坩埚相同。 ●水果及其制品,肉及肉制品、糖及糖制品、蔬菜制品<525 谷 类食品、乳制品<550 奶油<500 鱼海产品酒<550 ●实践证明,灰化温度大于500时,无机物将有所损失。如 表5—1P92说明增加灰化温度就增加了KCL、NaCL挥发损失,CaCO3变成CaO,磷酸盐熔融。 ●2、灰化时间: ●对于一般样品,并不规定时间,要求灼烧至灰分呈全白 色或浅灰色并到达恒重为止。也有例外。如谷类饲料和茎杆饲料规定灰化时间,即在600灰化灼烧2小时。 ●3、加速灰化的方法(对于难于灰化的样品,可用下述方法处理)●(1)、改变操作方法:就是样品初步灼烧后,取出坩埚,冷却, 加入少量的水,用玻璃棒研碎,使水溶性盐类溶解,此时被融熔的磷酸盐所包住信的碳粒,重新游离而出,小心蒸去水分,干燥后继续灼烧。必要时重复上述操作。 ●(2)、添加硝酸、乙醇、碳酸铵、过氧化氢可加速灰化这类物 质灼烧后完全消失,不致增加残留灰分的重量。如,样品初步

总灰分测定的原理方法条件,加速方法

总灰分的测定(1)原理 把一定量的样品经炭化后放入高温炉内灼烧,使有机物质被氧化分解,以二氧化碳、氮的氧化物及水等形式逸出,而无机物质以硫酸盐、磷酸盐、碳酸盐、氯化物等无机盐和金属氧化物的形式残留下来,这些残留物即为灰分,称量残留物的重量即可计算出样品中总灰分的含量 2)仪器 ①高温炉;②坩埚;③坩埚钳; ④干燥器;⑤分析天平。 (3)试剂 ①1:4盐酸溶液; ②0.5%三氯化铁溶液和等量蓝墨水的混合液; ③6mol/L硝酸; ④36%过氧化氢; ⑤辛醇或纯植物油. (4)测定条件的选择①灰化容器 测定灰分通常以坩埚作为灰化容器,个别情况下也可使用蒸发皿。坩埚分素烧瓷坩埚、铂坩埚、石英坩埚等多种。其中最常用的是素烧瓷坩埚。 素瓷坩埚 优点: 耐高温可达1200 ℃,内壁光滑,耐酸,价格低廉。 缺点: ⑴耐碱性差,灰化成碱性食品,坩埚内壁的釉质会部分溶解,反复多次使用后,往往难以得到恒重。 ⑵温度骤变时,易炸裂破碎。 铂坩埚 优点: 耐高温达1773℃,导热良好,耐碱,耐HF,吸湿性小。 缺点: 价格昂贵,约为黄金的9倍,要有专人保管,免丢失。 使用不当会腐蚀或发脆。 液态、加热易膨胀及灰分含量低的样品,选用稍大坩埚;或选用蒸发皿. 但过大会使称量误差增大 ②取样量 以灼烧后得到的灰分量为10-100mg来决定取样量。 ③灰化温度 灰化温度也应有所不同,一般为525 - 600℃,谷类的饲料达600℃以上。 温度太高,将引起K、Na、Cl等元素的挥发损失,磷酸盐、硅酸盐也会熔融,将碳粒包藏起来,使元素无法氧化。 温度太低,则灰化速度慢,时间长,不宜灰化完全,也不利于除去过剩的碱性食物吸收的CO2。所以要在保证灰化完全的前提下,尽可能减少无机成分的挥发损失和缩短灰化时间。加热速度不可太快,防急剧干馏时灼热物的局部产生大量气体,而使微粒飞失、易燃。 ④灰化时间 一般不规定灰化时间,而是观察残留物(灰分)为全白色或浅灰色,内部无残留的

灰分的测定

灰分的测定概述 灰分是代表食品中的矿物盐或无机盐类,在测试食品的灰分时,如果含量很高则说明该食品生产工艺粗糙或混入了泥沙,或者加入了不合乎卫生标准要求的食品添加剂。比如:含泥沙较多的红糖,食盐其灰分含量必然增高,因此测定食品灰分是评价食品质量的指标之一。在必要时,还可以分析灰分中含的各种元素(如Ca、P、Fe、I、K、Na等),这也是评价营养的参考指标。所以,对食品要规定一定的 灰分含量。 通常我们测定的灰分为总灰分。在总灰分中包括有水溶性灰分和水不溶性灰分,以及酸溶性灰分和酸不溶性灰分。 在讲测定意义之前,我们首先搞清何谓灰分。 灰分:有机物经高温灼烧以后的残留物称为灰分(粗灰分,总灰分)测定灰分的意义 1.食品的总灰分含量是控制食品成品或半成品质量的重要依据。比如:牛奶中的总灰分在牛奶中的含量是恒定的。一般在0.68%--0.74%, 平均值非常接近0.70%,因此可以用测定牛奶中总灰分的方法测定牛奶是否掺假,若掺水,灰分降低。另外还可以判断浓缩比,如果测出牛奶灰分在1.4%左右,说明牛奶浓缩一倍。又如富强粉,麦子中麸

皮灰分含量高,而胚乳中蛋白质含量高,麸皮的灰分比胚乳的含量高20倍,就是说面粉中的精度高,则灰分就低 2.评定食品是否卫生,有没有污染。 如果灰分含量超过了正常范围,说明食品生产中使用了不合理的卫生标准。 如果原料中有杂质或加工过程中混入了一些泥沙,则测定灰分时可检出。 3.判断食品是否掺假 4.评价营养的参考指标(可通过测各种元素) 总灰分的测定 通常所说灰分就是指总灰分,在总灰分中有包括:水溶性灰分;水不溶性灰分;酸溶性灰分;酸不溶性灰分。 一. 准备坩埚(灰化容器) 目前常有的坩埚:石英坩埚;素瓷坩埚;白金坩埚;不锈钢坩埚素瓷坩埚在实验室常用,它的物理性质和化学性质和石英相同,耐高温,内壁光滑可以用热酸洗涤,价格低,对碱性敏感。下面我们谈到的坩埚都是素瓷坩埚。

灰分及几种重要矿物元素含量的测定灰分的测定

第六章灰分及几种重要矿物元素含量的测定 第一节灰分的测定 一、概述 食品的组成十分复杂,除含有大量有机物质外,还含有丰富的无机成分,这些无机成分包括人体必须的无机盐(或称矿物质),其中含量较多的有Ca、Mg、K、Na、S、P、C1等元素。此外还含有少量的微量元素,如Fe、Cu、Zn、Mn、I、F、Ca、Se等。当这些组分经高温灼烧时,将发生一系列物理和化学变化,最后有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。灰分是标示食品中无机成分总量的一项指标。 食品组成不同,灼烧条件不同,残留物亦各不同。食品的灰分与食品中原来存在的无机成分在数量和组成上并不完全相同,因此严格说应该把灼烧后的残留物称为粗灰分。这是因为食品在灰化时,某些易挥发的元素,如氯、碘、铅等,会挥发散失,磷、硫等也能以含氧酸的形式挥发散失,这部分无机物减少了。另一方面,某些金属氧化物会吸收有机物分解产生的二氧化碳而形成碳酸盐,又使无机成分增多了。 食品的灰分常称为总灰分(粗灰分)。在总灰分中,按其溶解性还可分为水溶性灰分,水不溶性灰分和酸不溶性灰分。其中水溶性灰分反映的是可溶性的钾、钠、钙、镁等氧化物和盐类含量。水不溶性灰分反映的是污染的泥沙和铁铝等氧化物及碱土金属的碱式磷酸盐含量。酸不溶性灰分反映的是环境污染混入产品中的泥沙及样品组织中的微量氧化硅含量。测定灰分具有十分重要意义:1、不同食品,因所用原料,加工方法和测定条件不同,各种灰分的组成和含量也不相同。当这些条件确定后,某种食品的灰分常在一定范围内,如果灰分含量超过了正常范围,说明食品生产过程中,使用了不合乎卫生标准的原料,或食品添加剂,或食品在生产、加工、贮藏过程中受到了污染。因此测定灰分可以判断食品受污染的程度。2、灰分可以作为评价食品的质量指标。例如在面粉加工中,常以总灰分含量评定面粉等级,富强粉为0.3~0.5%;标准粉为0.6~0.9%;加工精度越细,总灰分含量越小,这是由于小麦麸皮中灰分的含量比胚乳的高20倍左右。生产果胶、明胶之类的的胶质品质时总灰分是这些胶的胶冻性能的标志。水溶性灰分可以反映果酱果冻等制品中的果汁含量。3、测定植物性原料的灰分可以反映植物生长的成熟度和自然条件对其的影响,测定动物性原料的灰分可以反映动物品种,饲料组分对其的影响。常见食品的灰分含量见表6-1。 表6-1食品的灰分含量 食品名称含量(%) 食品名称含量(%) 食品名称含量(%) 牛乳0.6-0.7 罐藏甜炼乳 1.9-2.1 鲜肉0.5-1.2乳粉5-5.7 鲜果0.2-1.2 鲜鱼(可食部分) 0.8-2.0脱脂乳粉7.8-8.2 蔬菜0.2-1.2 鸡蛋白0.6 罐藏淡炼乳 1.6-1.7 小麦胚乳0.5 鸡蛋黄 1.6 精制糖、糖果痕量-1.8 糖浆、峰蜜痕量-1.8 纯油脂无 二、总灰分的测定 1、原理:将食品经炭化后置于500-600℃高温炉内灼烧,食品中的水分及挥发物质以气态放出,有机物质中的碳、氢、氮等元素与有机物质本身的氧及空气中的氧生成二氧化碳、氮的氧化物及水分而散失;无机物质以硫酸盐、磷酸盐、碳酸盐、氯化物等无机盐和金属氧化

实验三 食品中总灰分含量的测定

实验三食品中总灰分含量的测定 一、目的与要求 1.掌握食品中总灰分测定的意义和原理。 2.掌握称量法测定灰分的基本操作及测定条件的选择。 3.掌握用减重法称取试样。 二、实验原理 把一定量的样品经炭化后放入高温炉内灼烧,使有机物质被氧化分解,以二氧化碳、氮的氧化物及水等形式逸出,而无机物质以硫酸盐、磷酸盐、碳酸盐、氯化物等无机盐和金属氧化物的形式残留下来,这些残留物即为灰分,称量残留物的重量即可计算出样品中总灰分的含量。 三、仪器与设备 高温电炉;坩埚钳;带盖坩埚;电子分析天平;干燥器。 四、测定步骤 瓷坩埚的准备→样品预处理→炭化→灰化 ①瓷坩埚的准备:将坩埚用盐酸(1:4)煮1~2小时,洗净晾干;用三氯化铁与蓝墨水的混合液在坩埚外壁及盖上写上编号;置于规定温度(500~550℃)的高温炉中灼烧1小时;移至炉口冷却到200℃左右后,再移入干燥器中,冷却至室温后,准确称重;再放入高温炉内灼烧30分钟,取出冷却称重,直至恒重(两次称量之差不超过0.5mg)。 使用坩埚的注意事项: 由于温度骤升或骤降,常使坩埚破裂,最好将坩埚放入冷的(未加热)的炉膛中逐渐升高温度。 灰化完毕后,应使炉温度降到200℃以下,才打开炉门。 坩埚钳在钳热坩埚时,要在电炉上预热。 ②样品预处理 固体:含水分较少的样品,谷物、豆类。粉碎→过筛→称量 水分较多的试样:果蔬、动物组织等含。制成均匀的试样称量→烘干 ③炭化 (1)防止在灼烧时,因温度高试样中的水分急剧蒸发使试样飞扬; (2)防止糖、蛋白质、淀粉等易发泡膨胀的物质在高温下发泡膨胀而溢出坩埚; (3)不经炭化而直接灰化,碳粒易被包住,灰化不完全。 如何防止炭化过程中发泡膨胀而溢出坩埚? 对特别容易膨胀的试样可先于试样上加数滴辛醇或纯植物油,再进行炭化。 炭化至什么程度可进入一步灰化? 炭化操作一般在电炉或煤气灯上进行,把坩埚置于电炉或煤气灯上,半盖坩埚盖,小心加热使试样在通气情况下逐渐炭化,直至无黑烟产生。

灰分的测定

习题三 一.填空题: 1.测定食品灰分含量要求将样品放入高温炉中灼烧,因此必须将样品样品灼烧至灰分显白色或浅灰色并达到恒重为止。 2.测定灰分含量使用的灰化容器,主要有瓷坩埚铂坩埚,石英坩埚。 3.测定灰分含量的一般操作步骤分为瓷坩埚的准备;样品预处理(如粉碎或浓缩);炭化;灰化。 4.水溶性灰分是指可容性的钾钙钠等的含量、水不溶性灰分是指泥沙、铁、铝;酸不溶性灰分是指污染泥沙,食品组织中存在的微量硅的含量。 二、选择题: 1.对食品灰分叙述正确的是( 4 ) (1)灰分中无机物含量与原样品无机物含量相同。 (2)灰分是指样品经高温灼烧后的残留物。 (3)灰分是指食品中含有的无机成分。 (4)灰分是指样品经高温灼烧完全后的残留物。 2.耐碱性好的灰化容器是( 4 ) (1)瓷坩埚(2)蒸发皿(3)石英坩埚(4)铂坩埚 3.正确判断灰化完全的方法是( 3 ) (1)一定要灰化至白色或浅灰色。 (2)一定要高温炉温度达到500-600℃时计算时间5小时。 (3)应根据样品的组成、性状观察残灰的颜色。 (4)加入助灰剂使其达到白灰色为止。 4.富含脂肪的食品在测定灰分前应先除去脂肪的目的是( 1 ) (1)防止炭化时发生燃烧(2)防止炭化不完全 (3)防止脂肪包裹碳粒(4)防止脂肪挥发 5.固体食品应粉碎后再进行炭化的目的是( 1 )。 (1)使炭化过程更易进行、更完全。(2)使炭化过程中易于搅拌。 (3)使炭化时燃烧完全。(4)使炭化时容易观察。

6.对水分含量较多的食品测定其灰分含量应进行的预处理是( 4 )。 (1)稀释 (2)加助化剂 (3)干燥 (4)浓缩 7.干燥器内常放入的干燥是( 1 )。 (1)硅胶 (2)助化剂 (3)碱石灰 (4)无水Na 2SO 4 8.炭化高糖食品时,加入的消泡剂是( 1 )。 (1)辛醇 (2)双氧化 (3)硝酸镁 (4)硫酸 三.实验操作题: 1.怀疑大豆干制品中掺有大量滑石粉时,可采用灰分测定方法时行确定,试写出测定的原理、操作及判断方法。 答:原理:食品中的灰分是指食品经高温灼烧后所留下的无机物质,主要为氧化物或盐类,若灰分与含量过高时,往往表示食品受到污染,影响质量。 2.在食品灰分测定操作中应注意哪些问题。 答:1防止样品溢出坩埚,炭化时应注意控制温度,也可加入少量的消泡剂; 2坩埚铗应预热,防止温度骤变而使坩埚破裂; 3灼烧后要冷却200℃以下才能放进干燥器中; 4取坩埚的时候应小心,防止灰分的损失; 四、综合题 现要测定某种奶粉的灰分含量,称取样品 3.9760g ,置于干燥恒重为45.3585g 的瓷坩埚中,小心炭化完毕,再于600℃的高温炉中灰化5小时后,置于干燥器内冷却称重为45.3841g;重新置于600℃高温炉中灰化1小时,完毕后取出置于干燥器冷却后称重为45.3826g ;再置于600℃高温炉中灰化1小时,完毕后取出置于干燥器冷却后称重为45.3825g 。问被测定的奶粉灰分含量为多少? %100%?=样品重 灰重灰分 %60.0%1009760 .33585.453825.45%=?-=灰分

灰分和矿物质复习题精品版20分钟

灰分和主要矿物元素的分析测定精品版 总分100分,限时20分钟 一、填空题: 1.灰分的主要成分是矿物盐和无机盐,灰分按其溶解性可分为水溶性灰分、水不溶性灰分和酸不溶性灰分;灰分测定的主要设备是马福炉;灰分测定的温度是:550~600℃;灰分测定中,盛装样品的器皿叫坩埚,使用的钳叫坩埚钳。 2.灰分含量测定步骤:瓷坩埚的准备→样品预处理→炭化→灰化。 3.干法灰化中加速灰化的方法有改变操作条件、加入灰化助剂、加入惰性不溶物。 4.灰分测定样品应碳化时,应采用先低温后高温的方法进行炭化,样品应碳化至无黑烟;样品经高温灼烧后,正常灰分的颜色是纯白色;灰化时对特别容易膨胀的试样可先于试样上加数滴辛醇或纯植物油,再进行炭化。 5.面粉的加工精度,在面粉加工中,常以总灰分含量评定面粉等级。 6.高锰酸钾滴定法测食品中钙的原理为:样品经灰化后,用.盐酸溶解,钙与草酸生成草酸钙沉淀;沉淀经洗涤后,加入硫酸溶解,把草酸游离出来,再用高锰酸钾标准溶液滴定。 7.吸光光度法测定溶液浓度的方法有__标准溶液比较法__和__标准曲线法__。 8.原子吸收分光光度计,应用最广泛的光源是空心阴极灯;分光系统的作用是获得待测元素的特征谱线;原子吸收分光光度法测定溶液浓度的方法有标准曲线、__标准加入法。 二、判断 1.(×)陶瓷容器盛装碱性食品时尤其容易引起重食品金属含量过多。 2.(√)测定灰分可判断食品受污染的程度。 3.(×)测定食品总灰分时,为了加速灰化,可将去离子水直接洒在残灰上后继续灰化。 4.样品经消化后,在碱性溶液中铜离子与铜试剂作用,生成红色的络合物,溶于四氯化碳,与标准系列分光光度比色定量。加柠檬酸铵及EDTA掩蔽干扰离子。( × ) 5.(×)恒重是指烘烤或灼烧后,前后两次质量之差不超过2g。 6.原子吸收分光光度法与吸光光度法在本质上都属于吸收光谱分析的范畴。不同者在于前者利用原子的吸收光谱特性,是一带状光谱,后者则利用分子的吸收光谱特性,是一线状光谱。( × ) 三、选择题: 1.(C )测定食品总灰分含量进行恒重操作时质量差不超过。 A. 0.02g B. 2mg C. 0.5mg D. 0.005g 2.(B )测定食品中酸不溶性灰分时所用的酸为一定浓度的。 A. 硫酸 B. 盐酸 C. 硝酸 D. 冰醋酸 3.(A )测定下列物质时,不能采用比色法的是。 A. 铜 B. 汞

灰分及矿物质元素的测定

第七章灰分及矿物质元素的测定 本章主要内容为灰分的测定及矿质元素的测定,灰分测定是食品全分析的必测定项目,因此第一节灰分测定很重要,也是国家强制标准检测项;矿物元素一般建立在总灰分的测定基础上,本章介绍几种重要矿物元素的测定,涉及矿质元素常用到的方法,重点掌握钙和铁的测定。 第一节灰分的测定 一、概述 食品的组成十分复杂,由大量有机物质和丰富的无机成分组成。在高温灼烧时,食品发生一系列物理和化学变化,最后有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。它标示食品中无机成分总量的一项指标。但是灰分含量≠无机成分的含量,因为灰分测定过程中,无机成分的含量可能增加也可能减少,例如某些金属氧化物会吸收有机物分解产生的CO2形成碳酸盐,使无机成分增多,有的又可挥发(如Cl、I、Pb为易挥发元素。P、S等也能以含氧酸的形式挥发散失)。 1. 粗灰分的概念: 常把食品经高温灼烧后的残留物称为——粗灰分(总灰分)。总灰分可分为水溶性灰分格水不溶性灰分,水不溶性灰分又可分为酸溶性灰分和酸不溶性灰分。 水溶性灰分——反映可溶性K、Na、Ca、Mg等的氧化物和盐类的含量。 酸溶性灰分——反映Fe、Al等氧化物、碱土金属的碱式磷酸盐的含量。 酸不溶性灰分——反映污染的泥沙及机械物和食品中原来存在的微量SiO2的含量。 2. 灰分测定的意义: (1)考察食品的原料及添加剂的使用情况。如生产过程中加入的酸、碱、盐等,都会增加成品的灰分含量。 (2)灰分指标是质量分级控制指标。例如:面粉生产,往往在分等级时要用灰分指标,因小麦麸皮的灰分含量比胚乳高20倍。富强粉为0.3 ~ 0.5 %,标准粉应为0.6 ~ 0.9 %, (3)反映动物、植物的生长条件。比如人类不同年龄段体内含钙量和需钙量并不相同,茶叶幼牙中的铅含量最低,随着生长,铅含量逐渐增加。 (4)生产工艺控制的需要:明胶、果胶类胶制品,灰分是其胶冻性能的标志。果胶的灰分和酸溶性灰分是其重要指标。 (5)检验食品加工过程的污染情况,如生产过程控制中的二次污染。 综上所述,灰分是食品成分全分析的项目之一。 二、总灰分的测定(要求全部必须掌握) 该方法是GB 5009.4 — 2010 《食品中灰分的测定方法》 (一)原理: 采用重量法,把一定的样品经炭化后,放入高温炉内灼烧,转化,称量残留物的重量至恒重,计算出样品总灰分的含量。 (二)灰化条件的选择(包括容器、取样量、温度、时间) 1. 灰化容器——一般是坩埚(坩埚盖子与埚要配套),坩埚材质有多种:如素瓷、铂、石英、铁、镍等,个别情况也可使用蒸发皿。 ①素瓷坩埚:尺寸分5,10,20,30,50,100,200mL的, 灰化常用10mL。 优点:耐高温可达1200℃,内壁光滑,耐酸,价格低廉。 缺点:耐碱性差,灰化成碱性食品(如水果、蔬菜、豆类等),坩埚内壁的釉质会部

灰分测定方法

灰分测定方法 1、总灰分测定法测定用的供试品须粉碎,使能通过二号筛,混合均匀后,取供试品2~3g(如须测定酸不溶性灰分,可取供试品3~5g),置炽灼至恒重的坩埚中,称定重量(准确至0. 01g) ,缓缓炽热,注意避免燃烧,至完全炭化时,逐渐升高温度至500~600℃,使完全灰化并至恒重。根据残渣重量,计算供试品中总灰分的含量(%)。 如供试品不易灰化,可将坩埚放冷,加热水或10%硝酸铵溶液2m1,使残渣湿润,然后置水浴上蒸干,残渣照前法炽灼,至坩埚内容物完全灰化。 2、酸不溶性灰分测定法取上项所得的灰分,在坩埚中小心加人稀盐酸约10 ml,用表面皿覆盖坩埚,置水浴上加热10分钟,表面皿用热水5ml冲洗,洗液并入坩埚中,用无灰滤纸滤过,坩埚内的残渣用水洗于滤纸上,并洗涤至洗液不显氯化物反应为止。滤渣连同滤纸移置同一坩埚中,干燥,炽灼至恒重.根据残渣重量,计算供试品中酸不溶性灰分的含量(%)。 稀盐酸取盐酸234m1,加水稀释至1000m1,即得。 马弗炉当马弗炉第一次使用或长期停用后再次使用时,必须进行烘炉。烘炉的时间应为室温200℃四小时。200℃至600℃四小时。使用时,炉温最高不得超过额定温度,以免烧毁电热元件。禁止向炉内灌注各种液体及易溶解的金属,马弗炉最好在低于最高温度50℃以下工作,此时炉丝有较长的寿命。

空坩埚恒重取洁净坩埚置高温炉内,将坩埚盖斜盖于坩埚上,经加热至700~800℃炽灼约30~60min,停止加热,待高温炉温度冷却至约300℃,取出坩埚,置适宜的干燥器内,盖好坩埚盖,放冷至室温(一般约需60分钟),精密称定坩埚重量(精确至0.1mg)。再以同样条件重复操作,直至恒重,备用

食品分析实验报告

大学 食品分析 实验报告

食品中总灰分含量的测定 一、目的与要求 1.学习食品中总灰分含量测定的意义与原理 2.掌握灼烧重量法测定灰分的实验操作技术及不同样品前处理方法的选择 二、实验原理 将样品炭化后置于500~600℃高温炉内至有机物完全灼烧挥发后,无机物以无机盐和金属氧化物的形式残留下来,这些残留物即为灰分。称量残留物的质量即可计算出样品中的总灰分。 三、仪器与试剂 1.仪器 马弗炉;分析天平:感量0.0001g ;干燥器:内装有效的变色硅胶;坩埚钳;瓷坩埚。 2.试剂 三氯化铁溶液(5g/L ):称取0.5g 三氯化铁(分析纯)溶于100ml 蓝黑墨水中。 四、实验步骤 1.配制浓盐酸:蒸馏水=1:4的稀盐酸,将洗净后的坩埚放入浸泡15min 。 2.将浸泡过后的坩埚取出,放入马弗炉中灼烧30min 。 3.冷却200℃以下将坩埚取出移至干燥器内冷却至室温,称取坩埚的质量30.5337g 。 4.称取固体样品——奶粉1.0636g 放入坩埚内,置于电热炉上炭化30min 或至样品完全炭化不冒白烟。 5.把坩埚放入马弗炉内,错开坩埚盖,关闭炉门进行灼烧。 6.冷至200℃一下取出坩埚,并移至干燥器内冷却至室温,称量至恒重得30.5835g 。 五、结果计算 样品总灰分含量计算如下: 式中,X 为每100g 样品中灰分含量,g ;m 1为空坩埚质量,g ;m 2为样品和坩埚质量,g ;m 3为坩埚和灰分质量,g 。 m 3—m 1 X= × 100 m 2—m 1

X=(30.5835—30.5337)/1.0636×100 =4.68% 六、注意事项 1.样品炭化时要注意热源强度,防止产生大量泡沫溢出坩埚,造成实验误差。对于含糖分、淀粉、蛋白质较高的样品,为防止泡沫溢出,炭化前可加数滴纯净植物油 2.灼烧空坩埚与灼烧样品的条件应尽量一致,以消除系统误差。 3.把坩埚放入马弗炉或从马弗炉中取出时,要在炉口停留片刻,使坩埚预热或冷却,防止因温度骤然变化而使坩埚破裂。 4.灼烧后的坩埚应冷却到200℃以下再移入干燥器中,否则因强热冷空气的瞬间对流作用,易造成残灰飞散;而且多热的坩埚放入干燥器,冷却后干燥器内形成较大真空,盖子不易打开。 5.新坩埚使用前须在1:1盐酸溶液中煮沸1h,用水冲净烘干,经高温灼烧至恒重后使用。用过的旧坩埚经初步清洗后,可用废盐酸浸泡20min,再用水冲洗干净。 6.样品灼烧温度不能超过600℃,否则钾、钠、氯等易挥发造成误差。样品经灼烧后,若中间仍包裹炭粒,可滴加少许水,使结块松散,蒸出水分后再继续灼烧至灰化完全。 7.对较难灰化的样品,可添加硝酸、过氧化氢、碳酸铵等助灰剂,这类物质在灼烧后完全消失,不增加残灰的质量,仅起到加速灰化的作用。如,若灰分中夹杂炭粒,向冷却的样品滴加硝酸(1:1)使之湿润,蒸干后再灼烧。 8.反复灼烧至恒重是判断灰化是否完全最可靠地方法。因为有些样品即使灰化完全,残灰也不一定是白色或灰白色。例如铁含量高的食品,残灰呈褐色;锰、铜含量高的食品,残灰呈蓝绿色。反之,未灰化完全的样品,表面呈白色的灰,但内部仍夹杂有炭粒。 七、思考题 1.简述测定食品灰分的意义。 对于食品行业来说,灰分是一项重要的质量指标。例如,在面粉加工中,常以总灰分含量评定面粉等级,面粉的加工精度越高,灰分含量越低;在生产果胶、明

土壤——总灰分的测定

土壤——总灰分的测定 1.原理概要: 试样烘干、碳化,然后在550±25℃下焚烧,冷却后测定残渣质量。 2.主要仪器和试剂: 2.1.仪器 常规实验室仪器。主要有:灰盘(平底,铂、石英或金属或其他不受试验条件影响的材料制成,直径至少60mm,高至少25mm),马弗炉(温度可控制在550±25℃),干燥器,分析天平,烘箱(可控温103±2℃),电热板或气体火焰(如果马弗炉没有时间-温度控制器)。 2.2.主要试剂 除非另作说明,所有试剂均应为分析纯。主要有:水(至少满足ISO 3696中3类要求),30%双氧水。 3.过程简述: 3.1.样品制备 过60目筛的均化土壤。 称样前,先把灰盘放在马弗炉中,于550℃加热20min。取出灰盘,在干燥器中冷却至室温,在分析天平上称重(m0),精确至0.1mg。 移取1.5g至2.0样到灰盘中,称重(m1),精确至0.1mg。 3.2.测试 3.2.1.用带时间-温度控制器的马弗炉进行测定 将盛试样的灰盘放入凉的马弗炉中,缓慢升温,经5h~6h升温至550℃±25℃,持续于550± 25℃进行灰化,直到灰分呈灰白色。 从马弗炉中取出灰盘,在干燥器中冷却至室温。观察灰分,如果灰分仍为黑色,可加入几滴双氧水或水进行处理,再进行程序升温灰化。如果灰分呈灰白色,用分析天平称重(m2),精确至0.1mg。 3.2.2.用不带时间-温度控制器的马弗炉进行测定 将盛试样的灰盘放入烘箱中,于103℃放置1h。 从烘箱中移出灰盘,放在电热板或通过气体火焰加热,使试样碳化,至冒烟,小心加热碳化,试样既不能焚烧也不能燃烧。 把试样移入凉的马弗炉中,升温至550℃±25℃。4h后,从马弗炉中取出灰盘,在干燥器中冷却至室温。观察灰分,如果灰分仍为黑色,可加入几滴双氧水或水进行处理,再进行程序升温灰化。如果灰分呈灰白色,用分析天平称重(m2),精确至0.1mg。 4.精确度: 重复性:相同试验者使用相同设备在短时间间隔内,采用相同试验方法对相同的试验材料进行分析,得到的两个独立的实验结果的绝对偏差超过下面方程给出的重复性限r的概率不超过5%。 R=0.0990%+0.00933? R:重复性;百分数 ?:两次结果平均值,百分数。 再现性:不同试验者使用不同设备,采用相同试验方法对相同的试验材料进行分析,得到的两个独立的实验结果的绝对偏差大于超过下面议程给出的再现性限R的概率不超过5%(m/m)。 R=0.138%+0.0046? R:再现性限,百分数; ?:两次平均值,百分数

相关主题
文本预览
相关文档 最新文档