当前位置:文档之家› 工程热力学 基 本 概 念

工程热力学 基 本 概 念

工程热力学 基 本 概 念
工程热力学 基 本 概 念

第一章基本概念

1.基本概念

热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相

对压力。

比容:单位质量工质所具有的容积,称为工质的比容。

密度:单位容积的工质所具有的质量,称为工质的密度。

强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。

广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。

准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的

平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。

膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。

热量:通过热力系边界所传递的除功之外的能量。热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。

2.常用公式

状态参数:1

2

1

2

x

x

dx-

=

?

?=0

dx

状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达

终点,其参数的变化值,仅与初、终状态有关,而与状态变化的途径无关。 温 度 :

1.BT w m =2

2

式中

2

2

w

m —分子平移运动的动能,其中m 是一个分子的质量,w 是分子平移运动的均方根速度; B —比例常数;

T —气体的热力学温度。

2.t T +=273

压 力 :

1.nBT w m n

p 3

2

2322== 式中

P —单位面积上的绝对压力; n —分子浓度,即单位容积内含有气体的分子数V

N

n =

,其中N 为容积V 包含的气体分子总数。 2.f

F

p =

F —整个容器壁受到的力,单位

为牛(N );

f —容器壁的总面积(m 2)。

3.

g p B p +=

(P >B )

H B p -=

(P

式中 B —当地大气压力

P g —高于当地大气压力时的相对压力,称表

压力;

H —低于当地大气压力时的相对压力,称

为真空值。 比容: 1.m

V v = m 3

/kg

式中 V —工质的容积

m —工质的质量

2.1=v ρ 式中 ρ—工质的密度

kg/m

3

v —工质的比容

m 3

/kg

热力循环:

或∑=?0u ,?=0du

循环热效率:

1

2121101q q q q q q w t -=-==

η 式中 q 1—工质从热源吸热;

q 2—工质向冷源放热;

w 0—循环所作的净功。

制冷系数:

2

12

021q q q w q -=

=

ε 式中 q 1—工质向热源放出热量;

q 2—工质从冷源吸取热量;

w 0—循环所作的净功。

供热系数:

2

11

012q q q w q -=

=

ε 式中 q 1—工质向热源放出热量

q 2—工质从冷源吸取热量

w 0—循环所作的净功

第二章 气体的热力性质 1.基本概念

理想气体:气体分子是由一些弹性的、忽略分子之间相互作用力(引力和斥力)、不占有体积的质点所构成。

比热:单位物量的物体,温度升高或降低1K (1℃)所吸收或放出的热量,称为该物体的比热。 定容比热:在定容情况下,单位物量的物体,温度变化1K (1℃)所吸收或放出的热量,称为该物体的定容比热。

定压比热:在定压情况下,单位物量的物体,温度变化1K (1℃)所吸收或放出的热量,称为该物体的定压比热。

定压质量比热:在定压过程中,单位质量的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。

定压容积比热:在定压过程中,单位容积的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压容积比热。

定压摩尔比热:在定压过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热

量,称为该物体的定压摩尔比热。

定容质量比热:在定容过程中,单位质量的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容质量比热。

定容容积比热:在定容过程中,单位容积的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容容积比热。

定容摩尔比热:在定容过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容摩尔比热。

混合气体的分压力:维持混合气体的温度和容积不变时,各组成气体所具有的压力。

道尔顿分压定律:混合气体的总压力P 等于各组成气体分压力P i 之和。

混合气体的分容积:维持混合气体的温度和压力不变时,各组成气体所具有的容积。

阿密盖特分容积定律:混合气体的总容积V 等于各组成气体分容积V i 之和。

混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值称为混合气体的质量成分。

混合气体的容积成分:混合气体中某组元气体的容积与混合气体总容积的比值称为混合气体的容积成分。

混合气体的摩尔成分:混合气体中某组元气体的摩尔数与混合气体总摩尔数的比值称为混合气体的摩尔成分。

对比参数:各状态参数与临界状态的同名参数的比值。

对比态定律:对于满足同一对比态方程式的各种气体,对比参数

r p 、r T 和r v 中若有两个相等,则第三

个对比参数就一定相等,物质也就处于对应状态中。 2.常用公式 理想气体状态方程: 1.

RT pv =

式中 p —绝对压力 Pa v —比容

m 3

/kg

T —热力学温度 K 适用于1千克理想气体。

2.

mRT pV =

式中 V —质量为m kg 气体所占的容积 适用于m 千克理想气体。 3.

T R pV M 0=

式中 V M = M v —气体的摩尔容积,m 3

/kmol ;

R 0=MR —通用气体常数,

J/kmol ·K

适用于1千摩尔理想气体。 4.

T nR pV 0=

式中

V —nK mol 气体所占有的容积,m 3;

n —气体的摩尔数,

M

m

n =

,kmol

适用于n 千摩尔理想气体。

5.通用气体常数:R 0

83140=R

J/Kmol ·K

R 0与气体性质、状态均无关。

6.气体常数:R

M

M R R 8314

0=

=

J/kg ·K R 与状态无关,仅决定于气体性质。

7.1122

12

p v p v T T =

比热:

1.比热定义式:dT

q

c δ=

表明单位物量的物体升高或降低1K 所吸收或放出的热量。其值不仅取决于物质性质,还与气体热力的过程和所处状态有关。

2.质量比热、容积比热和摩尔比热的换算关系:

04

.22'ρc Mc

c ==

式中 c —质量比热,kJ/Kg ·k 'c —容积比热,kJ/m 3·k

M c —摩尔比热,kJ/Kmol ·k

3.定容比热:v

v v

v

T u dT du dT

q c ???

????==

=

δ 表明单位物量的气体在定容情况下升高或降低1K 所吸收或放出的热量。 4.定压比热:dT

dh dT

q c p

p

=

=

δ 表明单位物量的气体在定压情况下升高或降低1K 所吸收或放出的热量。 5.梅耶公式:

6.比热比: 道尔顿分压定律:

V

T n

i i n p p p p p p ,1321??????=++++=∑=ΛΛ

阿密盖特分容积定律:

P

T n

i i n V V V V V V ,1321??????=++++=∑=ΛΛ

质量成分:

i

i m g m

=

容积成分: i i V r V

=

摩尔成分: i i

n x n

=

容积成分与摩尔成分关系:

i

i i n r x n

=

= 质量成分与容积成分: 折合分子量:

1

1

1

n

i i

n n

i i i i i i i n M

m M x M r M n

n

=====

==∑∑∑ 折合气体常数:

010001n

n

i i n

i i i

i i i R m n R R nR M R g R M m m m ========∑∑∑

分压力的确定 i

i i V p p r p V

=

=

混合气体的比热容:

121

n

n n i i

i c g g c g c ==+=∑L L 12c +g c + 混合气体的容积比热容:

121

'''n

n n i i i c r r c rc ==+=∑L L 12c'+r c'+

混合气体的摩尔比热容:

1

1

n n

i i i i i i i Mc M g c x M c ====∑∑

混合气体的热力学能、焓和熵 1

n

i i U

U ==∑

或 1n

i i i U

m u ==∑

1

n

i i H H ==∑ 或 1

n

i i i H m h ==∑

1

n i i S S ==∑ 或 1

n

i i i S m s ==∑

范德瓦尔(Van der Waals)方程

对于1kmol 实际气体

压缩因子:

对比参数: r

c

T T T =

r c

p p p =

, r

c

v v v =

第三章 热力学第一定律

1.基本概念

热力学第一定律:能量既不能被创造,也不能被消

灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定,这一自然界普遍规律称为能量守恒与转换定律。把这

一定律应用于伴有热现象的能量和转移过程,即为热力学第一定律。 第一类永动机:不消耗任何能量而能连续不断作

功的循环发动机,称为第一类永动机。 热力学能:热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和。

外储存能:也是系统储存能的一部分,取决于系

统工质与外力场的相互作用(如重力位能)及以外

界为参考坐标的系统宏观运动所具有的能量(宏观动能)。这两种能量统称为外储存能。

轴功:系统通过机械轴与外界传递的机械功称为轴功。

流动功(或推动功):当工质在流进和流出控制体界面时,后面的流体推开前面的流体而前进,这样后面的流体对前面的流体必须作推动功。因此,流动功是为维持流体通过控制体界面而传递的机械功,它是维持流体正常流动所必须传递的能量。

焓:流动工质向流动前方传递的总能量中取决于热力状态的那部分能量。对于流动工质,焓=内能+流动功,即焓具有能量意义;对于不流动工质,焓只是一个复合状态参数。

稳态稳流工况:工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化,称稳态稳流工况。

技术功:在热力过程中可被直接利用来作功的能量,称为技术功。

动力机:动力机是利用工质在机器中膨胀获得机械功的设备。

压气机:消耗轴功使气体压缩以升高其压力的设备称为压气机。

节流:流体在管道内流动,遇到突然变窄的断面,由于存在阻力使流体压力降低的现象。 2.常用公式 外储存能: 宏观动能: 重力位能: 式中

g —重力加速度。

系统总储存能: 1.p k E E U E ++=

或mgz mc U E ++

=2

2

1

2.gz c u e ++=2

21

3.U E = 或u e =(没有宏观运动,并且高度

为零)

热力学能变化: 1.dT c du

v =,?=?2

1

dT c u v

适用于理想气体一切过程或者实际气体定容过程 2.)(12

T T c u v -=?

适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.

10

20

12

1

221

t c t c dt c dt c dt c u t vm

t vm

t v t v t t v ?-?=-==????

适用于理想气体一切过程或者实际气体定容过程(用平均比热计算) 4.把()T f c v =的经验公式代入?=?2

1

dT

c u v 积分。

适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n

i i i n i i n u m U U U U U

1

1

21Λ

由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2

1

pdv q u

适用于任何工质,可逆过程。 7.q u =?

适用于任何工质,可逆定容过程

8.?=?2

1

pdv u

适用于任何工质,可逆绝热过程。

9.0=?U

适用于闭口系统任何工质绝热、对外不作功的

热力过程等热力学能或理想气体定温过程。 10.W Q U

-=?

适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=?

适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -

适用于微元,任何工质可逆过程 13.pv h u ?-?=?

热力学能的变化等于焓的变化与流动功

的差值。 焓的变化: 1.pV U H

+=

适用于m 千克工质

2.pv u h +

=

适用于1千克工质 3.()T f RT u h =+

=

适用于理想气体

4.dT c dh p =,dT c h p ?=?2

1

适用于理想气体的一切热力过程或者实际气体的定压过程

5.)(12

T T c h p -=?

适用于理想气体的一切热力过程或者实际气体的定压过程,用定值比热计算 6

2

2

1

211

201

t t t t t p p p pm

pm t h c dt c dt c dt c t c t ?==-=?-????

适用于理想气体的一切热力过程或者实际气体的定压过程用平均比热计算

7.把()T f c p =的经验公式代入?=?2

1dT

c h p 积分。

适用于理想气体的一切热力过程或者实际气体的定压过程,用真实比热公式计算 8.∑∑====+++=n

i i i n

i i n h m H H H H H

1

1

21Λ

由理想气体组成的混合气体的焓等于各组成气体焓之和,各组成气体焓又可表示为单位质量焓与其质量的乘积。

9.热力学第一定律能量方程

适用于任何工质,任何热力过程。

10.s w gdz dc q dh δδ---=2

2

1

适用于任何工质,稳态稳流热力过程 11.s w q dh δδ-=

适用于任何工质稳态稳流过程,忽略工质动能和

位能的变化。

12.?-=?2

1

vdp q h

适用于任何工质可逆、稳态稳流过程,忽略工质动能和位能的变化。 13.?-=?2

1vdp h

适用于任何工质可逆、稳态稳流绝热过程,忽略工质动能和位能的变化。 14.q h =?

适用于任何工质可逆、稳态稳流定压过程,忽略工质动能和位能的变化。 15.0=?h

适用于任何工质等焓或理想气体等温过程。 熵的变化:

1.?

=?2

1

T

q

s δ

适用于任何气体,可逆过程。 2.g f

s s s ?+?=?

f s ?为熵流,其值可正、可负或为零;

g s ?为熵产,其值恒大于或等于零。 3.1

2

ln

T T c s v

=?(理想气体、可逆定容过程) 4.1

2

ln

T T c s p

=?(理想气体、可逆定压过程) 5.2

112ln ln

p p

R v v R s ==?(理想气体、可逆定温过程)

6.0=?s (定熵过程) 适用于理想气体、任何过程 功量:

膨胀功(容积功): 1.pdv w =

δ 或?=2

1

pdv w

适用于任何工质、可逆过程 2.0=w

适用于任何工质、可逆定容过程 3.()21w p v v =

-

适用于任何工质、可逆定压过程 4.1

2

ln

v v RT w =

适用于理想气体、可逆定温过程 5.u q w ?-=

适用于任何系统,任何工质,任何过程。 6.q w =

适用于理想气体定温过程。 7.u w ?-=

适用于任何气体绝热过程。 8.dT C w v ?-=2

1

适用于理想气体、绝热过程 9.

适用于理想气体、可逆绝热过程 10.

适用于理想气体、可逆多变过程 流动功:

推动1kg 工质进、出控制体所必须的功。 技术功: 1.s t

w z g c w +?+?=

2

2

1 热力过程中可被直接利用来作功的能量,统称为技术功。 2.s t

w gdz dc w δδ++=

2

2

1 适用于稳态稳流、微元热力过程 3.2211v p v p w w t

-+=

技术功等于膨胀功与流动功的代数和。 4.vdp w t

-=δ 适用于稳态稳流、微元可逆热力过程 5.?-=2

1

vdp w t

适用于稳态稳流、可逆过程 热量:

1.TdS q =δ

适用于任何工质、微元可逆过程。 2.?=2

1

Tds q

适用于任何工质、可逆过程 3.W U

Q +?=

适用于mkg 质量任何工质,开口、闭口,可逆、不可逆过程

4.w u q +?=

适用于1kg 质量任何工质,开口、闭口,可逆、不可逆过程 5.pdv du q +

适用于微元,任何工质可逆过程。 6.?+?=2

1

pdv u

q

适用于任何工质可逆过程。 7.

适用于任何工质,任何系统,任何过程。

8.

s w gdz dc dh q δδ+++=22

1

适用于微元稳态稳流过程 9.t w h q +?= 适用于稳态稳流过程 10.u q ?=

适用于任何工质定容过程

11.()12T T c q v

-=

适用于理想气体定容过程。 12.h q ?=

适用于任何工质定压过程 13.()12T T c q p

-=

适用于理想气体、定压过程 14.

0=q

适用于任何工质、绝热过程 15.

()()11

12≠---=

n T T c n k

n q v 适用于理想气体、多变过程

第四章 理想气体的热力过程及气体压缩 1.基本概念

分析热力过程的一般步骤:1.依据热力过程特性建立过程方程式,p=f(v);

2.确定初、终状态的基本状态参数;

3.将过程线表示在p-v 图及T —s 图上,使过程直观,便于分析讨论。

4.计算过程中传递的热量和功量。

绝热过程:系统与外界没有热量交换情况下所进行的状态变化过程,即0=q δ或0=q 称为绝热过程。

定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。 多变过程:凡过程方程为=n pv 常数的过程,称

为多变过程。

定容过程:定量工质容积保持不变时的热力过程称为定容过程。

定压过程:定量工质压力保持不变时的热力过程称为定压过程。

定温过程:定量工质温度保持不变时的热力过程称为定温过程。

单级活塞式压气机工作原理:吸气过程、压缩过程、排气过程,活塞每往返一次,完成以上三个过程。

活塞式压气机的容积效率:活塞式压气机的有效容积和活塞排量之比,称为容积效率。

活塞式压气机的余隙:为了安置进、排气阀以及避免活塞与汽缸端盖间的碰撞,在汽缸端盖与活塞行程终点间留有一定的余隙,称为余隙容积,简称余隙。最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比称为最佳增压比。

压气机的效率:在相同的初态及增压比条件下,可逆压缩过程中压气机所消耗的功与实际不可逆压缩过程中压气机所消耗的功之比,称为压气机的效率。

热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为热机循环。

气体主要热力过程的基本公式

多变指数n:

z级压气机,最佳级间升压比:

第五章热力学第二定律

1.基本概念

热力学第二定律:

开尔文说法:只冷却一个热源而连续不断作功的循环发动机是造不成功的。

克劳修斯说法:热不可能自发地、不付代价地从低温物体传到高温物体。

第二类永动机:从单一热源取得热量,并使之完全转变为机械能而不引起其他变化的循环发动机,称为第二类永动机。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

孤立系统熵增原理:任何实际过程都是不可逆过程,只能沿着使孤立系统熵增加的方向进行。

定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。

热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为热机循环。

制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温称为制冷。

制冷机:从低温冷藏室吸取热量排向大气所用的机械称为制冷机。

热泵:将从低温热源吸取的热量传送至高温暖室所用的机械装置称为热泵。

理想热机:热机内发生的一切热力过程都是可逆过程,则该热机称为理想热机。

卡诺循环:在两个恒温热源间,由两个可逆定温过程和两个可逆绝热过程组成的循环,称为卡诺循环。

卡诺定理:

1.所有工作于同温热源与同温冷源之间的一切可逆循环,其热效率都相等,与采用哪种工质无关。 2.在同温热源与同温冷源之间的一切不可逆循环,其热效率必小于可逆循环。

自由膨胀:气体向没有阻力空间的膨胀过程,称为自由膨胀过程。

2.常用公式

熵的定义式:

?

=

?

2

1T

q

s

δ

J/kg K

工质熵变计算:

1

2

s

s

s-

=

?,?=0

ds

工质熵变是指工质从某一平衡状态变化到另一平衡状态熵的差值。因为熵是状态参数,两状态间的熵差对于任何过程,可逆还是不可逆都相等。

1.

1

2

1

2ln

ln

v

v

R

T

T

c

s

v

+

=

?

理想气体、已知初、终态T、v值求ΔS。

2.

1

2

1

2ln

ln

P

P

R

T

T

c

s

P

-

=

?

理想气体已知初、终态T、P值求ΔS。

3.

1

2

1

2ln

ln

P

P

c

v

v

c

s

v

P

+

=

?

理想气体、已知初、终态P、v值求ΔS。4.固体及液体的熵变计算:

5.热源熵变:

克劳修斯不等式:0

?

r

T

Q

δ

任何循环的克劳修斯积分永远小于零,可逆过程时等于零。

闭口系统熵方程:

=

?

=

?

?

+

?

=

?n

i

i

iso

sur

sys

iso

s

s

s

s

s

1

式中:ΔS sys——系统熵变;

ΔS sur——环境熵变;

ΔS I——某子系统熵变。

开口系统熵方程:

式中:m2s2——工质流出系统的熵;

m1s1——工质流入系统的熵。

不可逆作功能力损失:

式中:T0——环境温度;

ΔS ISO——孤立系统熵增。

第八章湿空气

1.基本概念

湿空气:干空气和水蒸气所组成的混合气体。

饱和空气:干空气和饱和水蒸气所组成的混合气体。未饱和空气:干空气和过热水蒸气所组成的混合气体。

绝对湿度:每立方米湿空气中所含有的水蒸气质量。饱和绝对湿度:在一定温度下饱和空气的绝对湿度达到最大值,称为饱和绝对湿度

相对湿度:湿空气的绝对湿度

v

ρ与同温度下饱和空

气的饱和绝对湿度

s

ρ的比值

含湿量(比湿度):在含有1kg干空气的湿空气中,所混有的水蒸气质量

饱和度:湿空气的含湿量d与同温下饱和空气的含湿量d s的比值

湿空气的比体积:在一定温度T和总压力p下,1kg 干空气和0.001d水蒸气所占有的体积湿空气的焓:1kg干空气的焓和0.001d kg水蒸气的焓的总和。

第十一章制冷循环

1.基本概念

制冷:对物体进行冷却,使其温度低于周围环境的温度,并维持这个低温称为。

空气压缩式制冷:将常温下较高压力的空气进行绝热膨胀,获得低温低压的空气。

蒸汽喷射制冷循环:用引射器代替压缩机来压缩制冷剂,以消耗蒸汽的热能作为补偿来实现制冷的目的。蒸汽喷射制冷装置:由锅炉、引射器(或喷射器)、冷凝器、节流阀、蒸发器和水泵等组成。吸收式制冷:利用制冷剂液体气化吸热实现制冷,它是直接利用热能驱动,以消耗热能为补偿将热量从低温物体转移到环境中去。吸收式制冷采用的工质是两种沸点相差较大的物质组成的二元溶液,其中沸点低的物质为制冷剂,沸点高的物质为吸收剂。

热泵:是一种能源提升装置,以消耗一部分高位

能(机械能、电能或高温热能等)为补偿,通过热力

循环,把环境介质(水、空气、土壤)中贮存的不能

直接利用的低位能量转换为可以利用的高位能。

影响制冷系数的主要因素:降低制冷剂的冷凝温

度(即热源温度)和提高蒸发温度(冷源温度),都

可使制冷系数增高。

2.常用公式

制冷系数:

2

1

q

w

ε==

收获

消耗

空气压缩式制冷系数

11

2

2

1

1

11

1

1

T

p

T

p

κ

κ

ε

-

==

-??

-

?

??

1

1

21

T

T T

ε=

-

卡诺循环的制冷系数:

习题答案

2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压

降低到99.3kPa,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少?

解:同上题

2130099.3101.325

12()()1000

21287300273

v p p

m m m

R T T

=-=-=-?

=41.97kg

2-14 如果忽略空气中的稀有气体,则可以认为其质量成分为%

2.

23

2

=

go,%

8.

76

2

=

N

g。试求空气的折合分子量、气体常数、容积成分及在

标准状态下的比容和密度。

解:折合分子量

28

768

.0

32

232

.0

1

1

+

=

=

i

i

M

g

M=28.86

气体常数

86

.

28

8314

0=

=

M

R

R=288)

/(K

kg

J?

容积成分

2/22Mo M g r o o ==20.9% =2N r

1-20.9%=79.1%

标准状态下的比容和密度

4

.2286

.284.22=

=

M ρ=1.288 kg /m 3

ρ

1

=

v =0.776 m 3

/kg

2—18(1)天然气在标准状态下的密度;(2)各组成气体在标准状态下的分压力。 解:(1)密度 =16.48

(2)各组成气体在标准状态下分压力 因为:

p r p i i =

==325.101*%974CH p 98.285kPa

3-8 容积由隔板分成两部分,左边盛有压力为600kPa ,温度为27℃的空气,右边为真空,容积为左边5倍。将隔板抽出后,空气迅速膨胀充满整个容器。试求容器内最终压力和温度。设膨胀是在绝热下进行的。

解:热力系:左边的空气 系统:整个容器为闭口系统 过程特征:绝热,自由膨胀 根据闭口系统能量方程 绝热0=Q

自由膨胀W =0 因此ΔU=0

对空气可以看作理想气体,其内能是温度的单值函数,得

根据理想气体状态方程

16

1211222p V V p V RT p ====100kPa

3-9 一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,为500 kPa ,25℃。充气开始时,罐内空气参数为100 kPa ,25℃。求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。 解:开口系统 特征:绝热充气过程

工质:空气(理想气体)

根据开口系统能量方程,忽略动能和未能,同时没有轴功,没有热量传递。 没有流出工质m2=0 dE=dU=(mu)cv2-(mu)cv1

终态工质为流入的工质和原有工质和m0= m cv2-m cv1

m cv2 u cv2- m cv1u cv1=m0h0 (1)

h0=c p T0 u cv2=c v T2 u cv1=c v T1 m cv1=11RT V

p m cv2

=2

2RT V p 代入上式(1)整理得

2

1

)

10(1212p p T kT T T kT T -+=

=398.3K

3-10 供暖用风机连同加热器,把温度为

01=t ℃的冷空气加热到温度为2502=t ℃,然后送入建筑物的风道内,送风量为0.56kg/s ,风机轴上的输入功率为1kW ,设整个装置与外界绝热。试计算:(1)风机出口处空气温度;(2)空气在加热器中的吸热量;(3)若加热器中有阻力,空气通过它时产生不可逆的摩擦扰动并带来压力降,以上计算结果是否正确? 解:开口稳态稳流系统 (1)风机入口为0℃则出口为

3

1000

0.56 1.00610Q mCp

T Q T mCp ?=??===??&&1.78℃

78.112=?+=t t t ℃

空气在加热器中的吸热量

)

78.1250(006.156.0-??=?=T Cp m Q &=138.84kW

(3)若加热有阻力,结果1仍正确;但在加热器中的吸热量减少。加热器中

)111(22212v P u v P u h h Q +-+=-=,

p2减小故吸热减小。 3-17

解:等容过程

=-=

R

c c k p p 1.4

1

12112--=

--=?=k v

p v p k RT RT m

T c m Q v =37.5kJ 3-18

解:定压过程

T1=

287

103

.0104.206813???=mR V p =216.2K T2=432.4K

内能变化:

2.216)287.001.1(1?-?=?=?t mc U v =

156.3kJ

焓变化:

=?=?=?3.1564.1U k H 218.8 kJ

功量交换:

03.04.2068)12(?=-==?V V p pdV W =

62.05kJ

热量交换:

05.623.156+=+?=W U Q =218.35 kJ

4-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力降低为

8/12p p =,设比热

为定值,求过程中内能的变化、膨胀功、轴功以及焓和熵的变化。

解:热力系是1kg 空气 过程特征:多变过程

)

10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9

因为 内能变化为

R c v 25

=

=717.5)/(K kg J ? v p c R c 5

7

27===1004.5)/(K kg J ?

=n c ==--v v c n k

n c 51=

3587.5)/(K kg J

?

n v v c qc T c u /=?=?=8×103

J

膨胀功:u q w ?-==32 ×103J

轴功:==nw w s 28.8 ×103

J

焓变:u k T c h p ?=?=?=1.4×8=11.2 ×

103

J 熵变:1

2

ln 12ln

p p c v v c s

v p +=?=0.82×10

3

)/(K kg J ?

4-2

有1kg 空气、初始状态为

MPa p 5.01=,1501=t ℃,进行下列过程:

(1)可逆绝热膨胀到

MPa p 1.02=; (2)不可逆绝热膨胀到

MPa p 1.02=,

K T 3002=;

(3)可逆等温膨胀到MPa p 1.02=; (4)可逆多变膨胀到MPa p 1.02=,多变指

数2=n

试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张v p -图和s T -图

解:热力系1kg 空气 膨胀功:

])

1

2(1[111

k

k p p k RT w ---==111.9×103

J

熵变为0 (2))21(T T c u w

v -=?-==88.3×103

J

1

2

ln 12ln p p R T T c s p -=?=

116.8)/(K kg J

? (3)2

1

ln

1p p RT w

==195.4×103

)/(K kg J ? 2

1

ln

p p R s =?=0.462×103

)/(K kg J ? (4)])

12

(1[111n

n p p n RT w ---==67.1×103

J

n

n p p T T 1)

1

2

(12-==189.2K

1

2ln 12ln

p p R T T c s p -=?=-346.4)/(K kg J ?

4-14

某工厂生产上需要每小时供应压力为

0.6MPa 的压缩空气600kg ;设空气所初始温度为20℃,压力为0.1MPa 。求压气机需要的最小理论功率和最大理论功率。若按n =1.22的多变过程压缩,需要的理论功率为多少?

解:最小功率是定温过程 m=600/3600=1/6 kg/s

==2

1

ln

1p p mRT W s =-25.1 KW 最大功率是定熵过程

=--=-])

1

2

(1[1111

k

k s p p k kRT m W -32.8 KW

多变过程的功率

=--=-])

1

2

(1[1111

n

n s p p n nRT m W -29.6 KW

4-15

实验室需要压力为6MPa 的压缩空气,应

采用一级压缩还是二级压缩?若采用二级压缩,最佳中间压力应等于多少?设大气压力为0.1,大气温度为20,压缩过程多变指数n=1.25,采用中间冷却器能将压缩气体冷却到初温。试计算压缩终了空气的温度。

解:压缩比为60,故应采用二级压缩。 中间压力:

==312p p p 0.775MPa

n

n p p T T 1)

2

3

(23-==441K

4-16 有一离心式压气机,每分钟吸入p1=

0.1MPa ,t1=16℃的空气400 m3,排出时p2=0.5MPa ,t2=75℃。设过程可逆,试求: (1)此压气机所需功率为多少千瓦? (2)该压气机每分钟放出的热量为多少千焦? 解:(1)

南京师范大学《工程热力学》考试重点笔记.doc

南京师范大学《工程热力学》考试重点笔记专业课复习资料(最新版)封面 南京师范大学工程热力学第第 1 章基本概念本章基本要求:深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。本章重点:取热力系统,对工质状态的描述,状态与状态参数的关系,状态参数,平衡状态,状态方程,可逆过程。1. 1 热力系统一、热力系统热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。外界:与系统相互作用的环境。界面:假想的、实际的、固定的、运动的、变形的。依据:系统与外界的关系,系统与外界的作用:热交换、功交换、质交换。二、闭口系统和开口系统(按系统与外界有无物质交换)闭口系统:系统内外无物质交换,称控制质量。开口系统:系统内外有物质交换,称控制体积。三、绝热系统与孤立系统绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界 四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。非均匀系统:由两个或两个以上的相所组成的系统。单元系统:一种均匀的和化学成分不变的物质组成的系统。多元系统:由两种或两种以上物质组成的系统。单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。注意:系统的选取方法仅影响解决问题的繁复程度,与研究问题的结果无关。思考题:孤立系统一定是闭口系统吗。反之怎样。孤立系统一定不是开口的吗。孤立系统是否一定绝热。1 .2 工质的热力状态与状态参数一、状态与状态参数状态:工质的热力状态与状态参数一、状态与状态参数状态:热力系统中某瞬间表现的工质热力性质的总状况。状态参数:描述工质状态特性的各种状态的宏观物理量。如:温度(T)、压力(P)、比容()或密度()、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。状态参数的数学特性:1.1212x x dx 有关,而与状态变化的途径无关。2. dx =0 表明:状态参数的循环积分为零基本状态参数:可直接或间接地用仪表测量出来的状态参数。如:温度、压力、比容或密度1 .温度:宏观上,是描述系统热力平衡状况时冷热程度的物理量。微观上,是大量分子热运动强烈程度的量度BTw m22式中22w m分子平移运动的动能,其中 m 是一...

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

工程热力学概念.doc

绪论 工程热力学与传热学分两部分,热力学与传热学,这两部分都是与热有关的学科。 我们先讲热力学,第二部分再讲传热学。 热力学中热指的是热能,力在我们工程热力学中主要指的是用它来做功,也就是机械能,简单地理解工程热力学主要研究的是热能和机械能之间的相互转 化。也就是说由热产生力,进而对物体做功的过程,所以热力学主要研究的是热能和机械能之间的相互转化。 举个例子:比如汽车的发动机(内燃机),它是利用燃料(汽油)在汽缸中燃烧,燃烧后得到高温高压的烟气,烟气此时温度高,压力高,具有热能,那么 高压的燃气会推动气缸的活塞做水平往复运动,活塞又通过曲柄连杆机构把水平往复运动转化成圆周运动,进而带动汽车运动,这就是一个热力学的例子。 工程热力学的研究重点是热能与机械能之间的转化规律,那么下面我们来详细的看一下工程热力学的研究内容: ①研究热力学中的一些基本概念和基本定律。基本概念像热力学系统、热力学状态、平衡过程、可逆过程等。基本定律有热力学第一定律和热力学第二定律,第一定律和第二定律是工程热力学的理论基础,其中热力学第一定律主要研究热能与机械能之间转化时的数量关系,热力学第二定律主要研究热能和机械能转换 时的方向、条件、限度问题。 ②研究工质的性质。我们热能和机械能之间的转化需要依靠一定的工作物质 才能实现,因此,我们要研究热能和机械能之间的相互转化,我们首先要研实现这一工作的工质的性质。 ③研究工质参与下,遵循热力学第一定律和第二定律在热力设备中进行的实 际热力过程。 第一章基本概念 在我们研究工程热力学的过程中会用到许多术语,如工质、热力学系统、热力学状态、平衡状态、状态参数等。因此,要学好工程热力学我们首先要知道这 些术语指的是什么。

工程热力学基本概念

第一章 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。

工程热力学(1)考试复习重点总结

第一章 基本概念及定义 一、填空题 1、热量与膨胀功都是 量,热量通过 差而传递热能,膨胀功通过 差传递机械能。 2、使系统实现可逆过程的条件是:(1) ,(2) 。 3、工质的基本状态参数有 、 、 。 4、热力过程中工质比热力学能的变化量只取决于过程的___________而与过程的路经无关。 5、热力过程中热力系与外界交换的热量,不但与过程的初终状态有关,而且与_______有关。 6、温度计测温的基本原理是 。 二、判断题 1、容器中气体的压力不变则压力表的读数也绝对不会改变。( ) 2、无论过程是否可逆,闭口绝热系统的膨胀功总是等于初、终态的内能差。( ) 3、膨胀功的计算式?= 2 1 pdv w ,只能适用于可逆过程。 ( ) 4、系统的平衡状态是指系统在无外界影响的条件下(不考虑外力场作用),宏观热力性质不随时间而变化的状态。( ) 5、循环功越大,热效率越高。( ) 6、可逆过程必是准静态过程,准静态过程不一定是可逆过程。( ) 7、系统内质量保持不变,则一定是闭口系统。( ) 8、系统的状态参数保持不变,则系统一定处于平衡状态。( ) 9、孤立系统的热力状态不能发生变化。( ) 10、经历一个不可逆过程后,系统和外界的整个系统都能恢复原来状态。( ) 三、选择题 1、闭口系统功的计算式21u u w -=( )。 (A )适用于可逆与不可逆的绝热过程 (B )只适用于绝热自由膨胀过程 (C )只适用于理想气体绝热过程 (D )只适用于可逆的绝热过程 2、孤立系统是指系统与外界( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有任何能量传递与质交换 3、绝热系统与外界没有( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有功量交换

工程热力学概念公式

第一部分(第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热 能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空 间作为热力学研究对象。这种空间的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统包含的物质质量为一不变的常 量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间, 故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态, 简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同, 与质量多少无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统所含物质的数量有关的状态参数称为广延 性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变 化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统部 被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统部的 状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状 态所组成,并称之为准静态过程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不 留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全 部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环 中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。

工程热力学复习重点及简答题

工程热力学复习重点2012. 3 绪论 [1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2]理解热能利用的两种主要方式及其特点 [3]了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 [1]热能:能量的一种形式 [2]来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3]利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 [1]过程的方向性:如:由高温传向低温 [2]能量属性:数量属性、,质量属性(即做功能力) [3]数量守衡、质量不守衡 [4]提高热能利用率:能源消耗量与国民生产总值成正比。 第1章基本概念及定义 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。 依据:系统与外界的关系 系统与外界的作用:热交换、功交换、质交换。 二、闭口系统和开口系统 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统 绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换

《工程热力学》第五版复习提纲

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统。 开口系统:有物质流穿过边界的系统称为开口系统。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数 接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 注:热力学温标和摄氏温标,T=273+t。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。

注:课本中如无特殊说明,则所说压力即为绝对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常 并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。 热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 2.常用公式 温度:t T +=273 压 力 : 1.f F p = 式中 F —整个容器壁受到的力,单位为牛(N ); f —容器壁的总面积(m 2)。 2.g p B p += (P >B )

工程热力学第二章整理知识点第三版

工程热力学第三版 沈维道蒋智敏童钧耕合编 第二章热力学第一定律 热力学第一定律(能量守恒与转换定律):自然界中的一切物质都具有能量, 能量不可能被创造, 也不可能被消灭;但能量可以从一种形态转变为另一种形态,且在能量的转化过程中能量的总量保持不变。它确定了热力 过程中热力系与外界进行能量交换时,各种形态能量数量上的守恒关系。 能量是物质运动的度量。分子运动学说阐明了热能是组成物质的分子、原子等微粒的杂乱运动———热运动的能量。 根据气体分子运动学说,热力学能是热力状态的单值函数。在一定的热 力状态下, 分子有一定的均方根速度和平均距离, 就有一定的热力学能, 而与达到这一热力状态的路径无关,因而热力学能是状态参数。由于气体的热力状态可由两个独立状态参数决定, 所以热力学能一定是两个独立状态参数的函数,如: u = f( T, v) 或 u = f( T, p) ; u = f( p, v)

能量传递方式:作功和传热。作功来传递能量总是和物体的宏观位移有关。 功的形式除了膨胀功或压缩功这类与系统的界面移动有关的功外, 还有因工质在开口系统中流动而传递的功, 这种功叫做推动功。对开口系统进行功的计算时需要考虑这种功。 开口系统和外界之间功的交换。 取燃气轮机为一开口系统,当1 kg工质从截面 1 - 1 流入该热力系时, 工质带入系统的 推动功为 p 1 v 1 , 工质在系统中进行膨胀, 由状态 1 膨胀到状态 2, 作膨胀功 w, 然后从截面 2 - 2 流出, 带出系统的推动功为 p 2 v 2 。推动功差 Δ( pv) = p 2 v 2 - p 1 v 1 是系统为维持工质流动所需的功,称为流动功(系统为维持工质流动所需的功)。在不考虑工质的动能及位能变化时,开口系与外界交换的功量是膨胀功与流动功之差w - ( p 2 v 2

工程热力学 名词解释

1. 第一章 基本概念及定义 2. 热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。 3. 工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。 4. 高温热源:工质从中吸取热能的物系叫热源,或称高温热源。 5. 低温热源:接受工质排出热能的物系叫冷源,或称低温热源。 6. 热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。 7. 闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。(系统质量不变) 8. 开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。(系统体积不变) 9. 绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。(无论开口、闭口系统,只要没有热量越过边界) 10. 孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。 11. 表压力:工质的绝对压力>大气压力时,压力计测得的差数。 12. 真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。 13. 平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。充要条件是同时到达热平衡和力平衡。 14. 稳定状态:系统参数不随时间改变。(稳定未必平衡) 15. 准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。它是无限接近于平衡状态的过程。 16. 可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。 17. 准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。 18. 功:功是热力系统通过边界而传递的能量,且其全部效果可表现为举起重物。 19. 热量:热力系统与外界之间仅仅由于温度不同而通过边界传递的能量。 20. 两者不同:功是有规则的宏观运动的能量传递,在做功的过程中往往伴随着能量形态的转化。热量则是大量微观粒子杂乱热运动的能量传递,传递过程中不出现能量形态的转化。功转变成热量是无条件的而热量转变成功是有条件的。 21. 正向循环(热动力循环):热能转化成机械能的循环叫做正循环,它使外界得到功Wnet 。 22. 逆向循环:工质在循环中消耗机械能(或其他能量)把热量从低温热源传给高温热源的过程称为逆循环,消耗外功。 23. 第二章 热力学第一定律 24. 热力学第一定律:自然界中的一切物质都具有能量,能量不可能被创造,也不可能被消灭,但可以从一种形态转变为另一种形态,在能量的转换过程中能量的总量保持不变。(热力学第一定律就是能量守恒和转换定律在热现象中的体现)。内能的改变方式有两个:做功和热传递 ΔU = W + Q 。 25. 第一类永动机:不消耗能量便可以永远对外做功的动力机械。 26. 热力学能(内能):分子间的不规则运动的内动能,分子间的相互作用的内位能,维持分子结构的化学能,原子核内部的原子能,电磁场作用下的电磁能等一起构成热力学能。 27. 总能(总存储能):内能(热力学能),外能(宏观运动动能及位能)的总和称总能。 28. 推动功:工质在开口系统中流动而传递的功称为推动功mpv 。 29. 流动功:系统为维持工质流动所需的功称为流动功(推动功差p2V2-p1V1)。 30. 技术功:机械能可以全部转变为技术上可以利用的功,称为技术功(技术上可资利用的功)。 31. 体积功:工质因体积的变化与外界交换的功。 32. 焓:在热力设备中,工质总是不断的从一处流到另一处,随着工质的移动而转移的能量,即热力学能和推动功之和u+pv 。 33. 稳定流动过程:流动过程中,开口系统内部及其边界上各点工质的热力参数及运动参数都不随时间而变,则这种流动过程称为稳定流动过程。反之,则为不稳定流动过程或瞬变流动过程。 34. 节流:工质流过阀门等设备时,流动界面突然收缩,压力下降,这种现象称为节流。 35. 第三章 气体和蒸汽的性质 36. 标准大气压:在纬度45°的海平面上,当温度为0℃时,760毫米高水银柱产生的压强叫做标准大气压。 37. 理想气体:1.分子间是弹性的、不具有体积的质点;2.分子间相互没有作用力。 38. 摩尔气体常数:R=MRg=8.314 5 J/(mol ·K),与气体种类状态都无关。Rg 与气体种类有关,状态无关。Rg 物理意义是1 kg 某种理想气体定压升高1 K 对外作的功。 39. 定压比热容Cp :压力不变的条件下,1kg 物质在温度升高1K 所需的热量称为定压比热容。 40. 定容比热容Cv :体积不变的条件下,1kg 物质在温度升高1K 所需的热量称为定容比热容。Cp- Cv=Rg 气体常数。Cp/Cv=γ比热容比。 41. 湿饱和蒸汽:水蒸气和水的混合物称为湿饱和蒸汽。 42. 干饱和蒸汽:即饱和蒸汽,水全部变成蒸汽,这个时候的蒸汽称为干饱和蒸汽 43. 过热蒸汽:对饱和蒸汽继续定压加热,蒸汽温度升高,比体积增大,此时的蒸汽称为过热蒸汽。 44. 饱和状态:当汽化速度=液化速度时,系统处于动态平衡,宏观上气、液两相保持一定的相对数量。 45. 饱和温度:处于饱和状态的汽、液的温度相同称为饱和温度。 46. 饱和压力:处于饱和状态的蒸汽的压力称为饱和压力。 47. 过冷水:水温低于饱和温度时称为过冷水或未饱和水。 48. 过热度:温度超过饱和温度之值称为过热度 49. 汽化潜热:1kg 质量的某种液相物质在汽化过程中所吸收的热量。简称汽化潜热(液体蒸发吸收的热量)。 50. 第四章 气体与蒸汽的基本热力 51. 第五章 热力学第二定律 52. 热力学第二定律(克劳修斯说法):热不可能自发的、不付代价的从低温物体传至高温物体。 53. 热力学第二定律(开尔文说法):不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。 54. 造成过程不可逆的两大因素:1、耗散效应。2、有限势差作用下的非准平衡变化。 55. 卡诺循环:工作于温度分别为1T 和2T 的两个热源之间的正向循环,由两个可逆定温过程和两个可逆绝热过程组成。 56. 概况性卡诺循环:双热源间的极限回热循环称为概括性卡诺循环。 57. 回热:用工质原本排出的热量加热工质本身的方法。 58. 熵产:由耗散热产生的熵增量叫做熵产。(闭口系内不可逆绝热过程中,存在不可逆因素引起耗散效应,使损失的机械能转化为热能被工质吸收,导致熵增大)。 59. 熵流:系统与外界换热量与热源温度的比值,称为熵流。 60. 孤立系统的熵增原理:孤立系统中的各种不可逆因素表现为系统的机械功损失,产生机械功不可逆地转化为热的效果,使孤立系统的熵增大。称为孤立系统的

工程热力学基本概念及重要公式

工程热力学基本概念及 重要公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一章基本概念1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

工程热力学概念

绪论 工程热力学与传热学分两部分,热力学与传热学,这两部分都就是与热有关得学科。 我们先讲热力学,第二部分再讲传热学。 热力学中热指得就是热能,力在我们工程热力学中主要指得就是用它来做功,也就就是机械能,简单地理解工程热力学主要研究得就是热能与机械能之间得相互转化。也就就是说由热产生力,进而对物体做功得过程,所以热力学主要研究得就是热能与机械能之间得相互转化。 举个例子:比如汽车得发动机(内燃机),它就是利用燃料(汽油)在汽缸中燃烧,燃烧后得到高温高压得烟气,烟气此时温度高,压力高,具有热能,那么高压得燃气会推动气缸得活塞做水平往复运动,活塞又通过曲柄连杆机构把水平往复运动转化成圆周运动,进而带动汽车运动,这就就是一个热力学得例子。 工程热力学得研究重点就是热能与机械能之间得转化规律,那么下面我们来详细得瞧一下工程热力学得研究内容: ①研究热力学中得一些基本概念与基本定律。基本概念像热力学系统、热力学状态、平衡过程、可逆过程等。基本定律有热力学第一定律与热力学第二定律,第一定律与第二定律就是工程热力学得理论基础,其中热力学第一定律主要研究热能与机械能之间转化时得数量关系,热力学第二定律主要研究热能与机械能转换时得方向、条件、限度问题。 ②研究工质得性质。我们热能与机械能之间得转化需要依靠一定得工作物质才能实现,因此,我们要研究热能与机械能之间得相互转化,我们首先要研实现这一工作得工质得性质。 ③研究工质参与下,遵循热力学第一定律与第二定律在热力设备中进行得实际热力过程。 第一章基本概念 在我们研究工程热力学得过程中会用到许多术语,如工质、热力学系统、热力学状态、平衡状态、状态参数等。因此,要学好工程热力学我们首先要知道这些术语指得就是什么。 我们先来瞧第一个概念:工质

哈尔滨工程大学2018年硕士《工程热力学》考试大纲

哈尔滨工程大学2018年硕士《工程热力学》考试大纲考试科目代码:考试科目名称:工程热力学 考试内容范围: 基本概念 要求考生理解热力系统、平衡状态、状态参数及其数学特征; 要求考生掌握理想气体状态方程、准静态过程及可逆过程的概念; 要求考生能够熟练利用系统的状态参数之间的关系对可逆过程功和热量进行计算。 热力学第一定律 要求考生熟练掌握能量方程在不同条件下的表达形式,并对非稳定流动能量方程有初步认识; 要求考生理解系统储存能量、热力学能、焓的概念; 要求考生掌握容积变化功、流动功、技术功和轴功的概念; 要求考生能够正确应用热力学第一定律对能量转换过程进行分析、计算。 热力学第二定律 要求考生理解热力学第二定律的实质; 要求考生掌握卡诺循环和卡诺定理; 要求考生掌握熵的概念和孤立系统熵增原理,能够判别热力过程进行的方向及掌握能量耗散的计算方法; 要求考生了解可用能的概念及计算方法。 理想气体的性质及热力过程 要求考生熟练掌握理想气体状态方程; 要求考生理解理想气体比热容的概念并熟练掌握利用定值比热容计算过程中热量、热力学能、焓和熵变化; 要求考生熟练掌握四种基本热力过程及多变过程,能够将热力过程表示在p-v图和T-s图上,并判断过程的性质。 热力学一般关系式及实际气体的性质 要求考生了解热力学一般关系式及范德瓦尔方程(包括各项物理意义); 要求考生掌握对比态原理,能够计算对比参数并能利用通用压缩因子图进行实际气体的计算。 水蒸气的性质及热力过程 要求考生了解蒸气的各种术语及其意义; 要求考生了解水蒸气的定压发生过程及其在p-v图和T-s图上的一点、两线、三区、五态;了解水蒸气图表的结构并会应用; 要求考生掌握水蒸气热力过程的热量和功量的计算。 气体和蒸气的流动 要求考生理解一元定熵稳定流动基本方程组;

工程热力学基本概念

第一章 工质:实现热能和机械能之间转换的媒介物质。 系统:热设备中分离出来作为热力学研究对象的物体。 状态参数:描述系统宏观特性的物理量。 热力学平衡态:在无外界影响的条件下,如果系统的状态不随时间发生变化,则系统所处的状态称为热力学平衡态。 压力:系统表面单位面积上的垂直作用力。 温度:反映物体冷热程度的物理量。 温标:温度的数值表示法。 状态公理:对于一定组元的闭口系统,当其处于平衡状态时,可以用与该系统有关的准静态功 形式的数量n 加上一个象征传热方式的独立状态参数,即(n+1 )个独立状态参数来确定。 热力过程:系统从初始平衡态到终了平衡态所经历的全部状态。 准静态过程:如过程进行的足够缓慢,则封闭系统经历的每一中间状态足够接近平衡态,这样的过程称为准静态过程。 可逆过程:系统经历一个过程后如果系统和外界都能恢复到各自的初态,这样的过程称为可逆过程。无任何不可逆因素的准静态过程是可逆过程。 循环:工质从初态出发,经过一系列过程有回到初态,这种闭合的过程称为循环。 可逆循环:全由可逆过程粘组成的循环。 不可逆循环:含有不可逆过程的循环。 第二章 热力学能:物质分子运动具有的平均动能和分子间相互作用而具有的分子势能称为物质的热力学能体积功:工质体积改变所做的功热量:除功以外,通过系统边界和外界之间传递的能量。焓:引进或排出工质输入或

输出系统的总能量。 技术功:工程技术上将可以直接利用的动能差、位能差和轴功三项之和称为技术功。功:物质间通过宏观运动发生相互作用传递的能量。 轴功:外界通过旋转轴对流动工质所做的功。 流动功:外界对流入系统工质所做的功。 第三章 热力学第二定律: 克劳修斯说法:不可能使热量从低温物体传到高温物体而不引起其他变化。 开尔文说法:不可能从单一热源吸热使之完全转化为有用功而不引起其他变化。卡诺循环:两热源间的可逆循环,由定温吸热、绝热膨胀、定温放热、绝热压缩四个可逆过程组成。 卡诺定理:在温度为T1 的高温热源和温度为T2 的低温热源之间工作的一切可逆热机,其热效 率相等,与工质的性质无关;在温度为T1的高温热源和温度为T2的低温热源之间工作的热机 循环,以卡诺循环的热效率为最高。 熵:沿可逆过程的克劳修斯积分,与路径无关,由初、终状态决定。 熵流:沿任何过程(可逆或不可逆)的克劳修斯积分,称为“熵流” 。 熵产:系统熵的变化量与熵流之差。 熵增原理:在孤立系统和绝热系统中,如进行的过程是可逆过程,其系统总熵保持不变;如为不可逆过程,其熵增加;不论什么过程,其熵不可能减少。 第四章

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1. 基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2. 热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3. 热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文

表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。 理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4. 理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5. 实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6. 蒸汽动力循环

工程热力学A考研大纲

工程热力学考研大纲 一、参考书目: 工程热力学A《工程热力学》童钧耕主编,高等教育出版社,2007年 二、基本要求: 1.理解和掌握热力学的基本概念和热力学的宏观研究方法,能够运用基本概念,针对实际问题的特点选取热力系统,列出简化条件,并进行功和热量的计算; 2.掌握热力学第一定律、第二定律的实质,对闭口系和开口系统进行热力过程的分析和计算,并能用状态坐标图表示过程及能量转换的特点; 3.掌握运用理想气体、水蒸气、湿空气等常用工质的热力性质图表及公式进行热力过程的分析和计算; 4.掌握提高能量利用率的基本原则和主要途径。把实际热工设备的工作过程简化成理想热力循环或热力过程,应用第一、第二定律对循环或过程进行分析和计算。 三、主要知识点 第一章基本概念热力系统,状态及平衡状态,状态参数及其特性,参数坐标图,热力过程及准静态过程,热力循环 第二章热力学第一定律闭口系热力学第一定律解析式,热力学第一定律应用于开口系统,稳定流动能量方程式,焓,技术功,能量方程应用 第三章理想气体及其混合物理想气体状态方程及气体常数,理想气体的比热,理想气体的内能、焓和熵的计算,混合气体的概念,分压力和分容积,混合气体成分 表示方法及其核算,混合气体的比热、内能、焓和熵的计算 第四章气体的基本热力过程四个典型热力过程,多变过程及多变指数 第五章热力学第二定律过程的方向性,卡诺循环和卡诺定理,熵的导出,孤立系统熵增原理,熵方程,熵流与熵产,作功能力损失 第六章实际气体的性质实际气体的性质,范德瓦尔方程,对应态原理,通用压缩因子图 第七章蒸汽的性质蒸汽的性质,蒸汽图表及其应用, 第八章气体和蒸气流动稳定流动基本方程,流速和流量,临界压力比,临界流速和最大流量,喷管的计算,摩阻对流动的影响,绝热滞止,绝热节流,第九章气体的压缩气体的理想压缩功,压缩机的效率,活塞式压缩机余隙容积的影响,多级压缩和中间冷却 第十章动力循环分析分析循环的热效率法,分析循环中不可逆损失的熵方法第十一章蒸汽动力循环朗肯循环,蒸汽参数对循环热效率的影响,再热循环,回热循环, 第十二章气体动力循环活塞式内燃机循环,燃气轮机装置循环,提高循环热效率的各种途径, 第十三章制冷循环空气压缩制冷,蒸汽压缩制冷,提高制冷系数的各种途径,第十四章湿空气湿空气的概念,湿空气的热力过程,焓湿图,湿空气的应用,

工程热力学复习提纲

工程热力学复习提纲 第一章 1、热力系、边界和外界的关系。特别是边界是可以真实的、虚拟的、固定的或移动的。 2、闭口系和开口系的定义。 闭口系是热力系与外界通过边界没有质量交换,但可以有能量交换;开口系是热力系与外界通过边界有质量和能量交换。 3、绝热系和孤立系的定义 绝热系是热力系与外界通过边界没有热量交换,但可以有质量交换。孤立系是无能量交换和质量交换。 4、简单可压缩系的定—由可压缩物质组成,与外界除了热量交换外,只交换容积变化功的有限物质系统。 5、状态参数,,,,, p V T U H S与过程无关而与初终态有关。对于简单可压缩系,只需要两个彼此独立的状态参数就可以确定其状态。 6、平衡态的定义—无外界影响的系统保持状态参数不随时间而改变的状态。在边界上与外界无能量交换。 系统与外界不存在任何势差:温度差、压力差等。 7、理想气体状态方程

8、热力过程—处于平衡状态的热力系,如果在边界上受到势差的影响,平衡状态就被破坏,随之产生一系列变化直至新的一个平衡状态建立为止,这一系列变化组成的就是热力过程。 不平衡过程(有限势差)—只有初态和终态是平衡状态,中间经历的状态都是不平衡状态。在参数坐标图上只能用虚线表示。 准平衡过程(无限小势差) 9、可逆过程—如果热力系完成一个过程后,在按原路径逆向进行时,使热力系和外界都返回原状态而不留下任何变化的过程,称为可逆过程。 实现条件: (1)准平衡过程; (2)不存在任何形式的能量耗散,如摩擦、电阻等使功变为热的现象。 10、功和热 微元过程不能表示成d W ,d Q 。只能表示成δW,δQ。 有限过程,不能表示成△W,△Q ,只能表示成W,Q。 循环过程,∮W≠0,∮Q ≠0。 系统对外作功为“+ 外界对系统作功为“-” 条件:可逆过程 系统对外放热为“-” 系统向外界吸热为“+”

工程热力学概念整理

工程热力学与传热学概念整理 工程热力学 第一章、基本概念 1.热力系:根据研究问题的需要,人为地选取一定范围内的物质作为研究对象,称为热力系(统),建成系统。 热力系以外的物质称为外界;热力系与外界的交界面称为边界。 2.闭口系:热力系与外界无物质交换的系统。 开口系:热力系与外界有物质交换的系统。 绝热系:热力系与外界无热量交换的系统。 孤立系:热力系与外界无任何物质和能量交换的系统 3.工质:用来实现能量像话转换的媒介称为工质。 4.状态:热力系在某一瞬间所呈现的物理状况成为系统的状态,状态可以分为平衡态和非平衡态两种。 5.平衡状态:在没有外界作用的情况下,系统的宏观性质不随时间变化的状态。 实现平衡态的充要条件:系统内部与外界之间的各种不平衡势差(力差、温差、化学势差)的消失。 6.强度参数:与系统所含工质的数量无关的状态参数。 广延参数:与系统所含工质的数量有关的状态参数。 比参数:单位质量的广延参数具有的强度参数的性质。 基本状态参数:可以用仪器直接测量的参数。 7.压力:单位面积上所承受的垂直作用力。对于气体,实际上是气体分子运动撞击壁面,在单位面积上所呈现的平均作用力。 8.温度T:温度T是确定一个系统是否与其它系统处于热平衡的参数。换言之,温度是热 力平衡的唯一判据。 9.热力学温标:是建立在热力学第二定律的基础上而不完全依赖测温物质性质的温标。它采用开尔文作为度量温度的单位,规定水的汽、液、固三相平衡共存的状态点(三相点)为基准点,并规定此点的温度为273.16K。 10状态参数坐标图:对于只有两个独立参数的坐标系,可以任选两个参数组成二维平面坐标图来描述被确定的平衡状态,这种坐标图称为状态参数坐标图。 11.热力过程:热力系从一个状态参数向另一个状态参数变化时所经历的全部状态的总和。 12.热力循环:工质由某一初态出发,经历一系列状态变化后,又回到原来初始的封闭热力循环过程称为热力循环,简称循环。 13.准平衡过程:由一系列连续的平衡状态组成的过程称为准平衡过程,也成准静态过程。 实现条件:推动过程进行的势差无限小。这样保证系统在任意时刻皆无限接近平衡状态。 14.可逆过程:如果一个系统完成一个热力过程后,再沿原路径逆向进行时,能使系统和外界都返回原来状态,而不留下任何变化的过程。 实现条件:过程为准静态过程且无任何耗散效应。 15.状态量:描述工质状态的参数。

相关主题
文本预览