当前位置:文档之家› 1THz高次谐波混频器

1THz高次谐波混频器

1THz高次谐波混频器
1THz高次谐波混频器

1THz高次谐波混频器

太赫兹波由于其优越的特性,在各个领域成为研究的焦点。美国“DARPA计划”1.03THz射频放大器的实现使得高速通信看到了曙光。目前,国内太赫兹技术还集中于太赫兹波的较低频段,主要在ITHz以下;而对太赫兹波的较高频段,由于研究环境限制未能触及。

未来高频高速信息传输必然是发展的主流,更高频的太赫兹接收系统也是未来研究的主要课题之一。作为太赫兹接收系统的第一级,混频器的性能影响整个系统的性能,本文主要研究作为太赫兹接收系统的最主要组成部分—混频器。太赫兹混频器主要是将接收到的高频太赫兹信号搬移到低频段进行信号处理。

基波混频器对本振源要求很高,目前,国内没有满足要求的高功率太赫兹波本振源。因此本文根据二极管的非线性特性,利用反向并联二极管对研究高次谐波混频器,本振频率只是射频频率的十分之一,甚至更低,可以很大程度降低对于本振源的需求。本文首先研究了适用于高频太赫兹混频的肖特基二极管,根据肖特基二极管的载流子特性和结构,分别建立二极管非线性肖特基结SPICE参数模型和寄生参数三维等效模型,随后联合仿真二极管非线性特性;其次,根据谐波混频器理论,并根据国内加工工艺水平,优化电路,采用三维电磁仿真和谐波平衡法仿真联合优化电路;最后,根据实验结果,反馈修正二极管模型和电路参数,完成混频器。

混频器联合仿真和实验结果验证了 1THz高次谐波混频器是可行的。十次谐波混频器仿真结果,在1000GHz-1200GHz频率范围内,变频损耗小于40dB,最优频点可以达到22dB。完成优化仿真后,对十次谐波混频器进行实验研究。

十次谐波混频器测试结果,在980GHz-1130GHz频率范围内,混频器都有输出,

最优点可以达到60dB。在十次谐波混频器仿真过程中,发现十次谐波混频器可靠性较低,所以本文为增加混频器的可靠性,还研究了 1THz二十八次谐波混频器。二十八次谐波混频器仿真结果,在1000GHz-1200GHz频率范围内,变频损耗小于50dB,在1060GHz-1140GHz内,变频损耗小于40dB,最优频点可以达到30dB。

本文1THz高次谐波混频器的研究是对太赫兹更高频段应用的探索,可以为

1THz以上太赫兹接收机研究提供参考。本课题由于受国内加工工艺和研究条件的限制,测试结果未能实现更好的结果,还有诸多工作需要后续改进。

高频电子技术实验指导书

高频电子技术 实验指导书安阳工学院电子信息与电气工程学院

目录 实验一、小信号调谐放大器 -------------------------------------- 2 实验二、通频带展宽----------------------------------------------5 实验三、LC与晶体振荡器 ---------------------------------------- 8 实验四、幅度调制与解调---------------------------------------- 18 实验五、集成乘法器混频实验 ----------------------------------- 19实验六、变容二极管调频器与相位鉴频器-------------------------22

实验一、小信号调谐放大器 一、实验目的 1)、了解谐振回路的幅频特性分析——通频带与选择性。 2)、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。 3)、掌握放大器的动态范围及其测试方法。 二、实验预习要求 实验前,预习教材选频网络、高频小信号放大器相应章节。 三、实验原理说明 1、小信号调谐放大器基本原理 高频小信号放大器电路是构成无线电设备的主要电路,它的作用是放大 信道中的高频小信号。为使放大信号不失真,放大器必须工作在线性范围内,例如无线电接收机中的高放电路,都是典型的高频窄带小信号放大电路。窄带放大电路中,被放大信号的频带宽度小于或远小于它的中心频率。如在调幅接收机的中放电路中,带宽为9KHz,中心频率为465KHz,相对带宽Δf/f0约为百分之几。因此,高频小信号放大电路的基本类型是选频放大电路,选频放大电路以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。它主要由放大器与选频回路两部分构成。用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。用于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表面波滤波器等。本实验用三极管作为放大器件,LC谐振回路作为选频器。在分析时,主要用如下参数衡量电路的技术指标:中心频率、增益、噪声系数、灵敏度、通频带与选择性。 单调谐放大电路一般采用LC回路作为选频器的放大电路,它只有一个LC 回路,调谐在一个频率上,并通过变压器耦合输出,图1-1为该电路原理图。 中心频率为f0 带宽为Δf=f2-f1 图1-1. 单调谐放大电路 为了改善调谐电路的频率特性,通常采用双调谐放大电路,其电路如图12-2所示。双调谐放大电路是由两个彼此耦合的单调谐放大回路所组成。它们的谐振C Ec 1 f 0.707 02 1 u

场效应晶体管混频器原理及其电路

场效应晶体管混频器原理及其电路 混频器一般由输入信号回路、本机振荡器、非线性器件和滤波网络等4部分组成,如图1所示。这里的非线性器件本身仅实现频率变换,本振信号由本机振荡器产生。若非线性器件既产生本振信号,又实现频率变换,则图1变为变频器。所谓混频,是将两个不同的信号(如一个有用信号和一个本机振荡信号)加到非线性器件上,取其差频或和频。 图1 混频器的组成部分 混频器可根据所用非线性器件的不同分为二极管混频器、晶体管混频器、场效应管混频器和变容管混频器等。混频器又可根据工作特点的不同,分为单管混频器、平衡混频器、环形混频器、差分对混频器和参量混频器等。在设计混频器时应注意如下几点:(1)要求混频放大系数越大越好。混频放大系数是指混频器的中频输出电压振幅与变频输入信号电压振幅之比,也称混频电压增益。增大混频放大系数是提高接收机灵敏度的一项有力措施。(2)要求混频器的中频输出电路有良好的选择性,以抑制不需要的干扰频率。(3)为了减少混频器的频率失真和非线性失真以及本振频率产生的各种混频现象,要求混频器工作在非线性特性不过于严重的区域,使之既能完成频率变换,又能少产生各种形式的干扰。(4)要求混频器的噪声系数越小越好,在设计混频器时,必须按设备总噪声系数分配给出的要求,合理地选择线路和器件以及器件的工作点电流。(5)要考虑混频器的工作稳定性,如本机振荡器频率不稳定引起的混频器输出不稳等。(6)注意混频器的输入端和输出端的连接条件,在选定电路和设计回路时,应充分考虑如何匹配的问题。场效应管混频性能比三极管混频好,原因在于场效应管工作频率高,其特性近似平方率,动态范围大,非线性失真小,噪声系数低,单向传播性能好。场效应管混频器实际电路举例(1)有源混频器1)200MHz 场效应管混频器电路(有源混频器) 为提高混频增益,在下列的A、B电路中输入、输出端都有匹配网络完成阻抗匹配,获得大的变频增益;并且L3,C5均谐振ωL,起了抑制本振信号输出的作用。电路A)υs,υ L均从栅极注入(如图2所示)。 图2 υs,υL均从栅极注入电路图 电路B)υs从栅极注入,本振υL从源极注入(如图3所示)。

5模拟乘法混频

模拟乘法混频 一、实验目的 1. 进一步了解集成混频器的工作原理 2. 了解混频器中的寄生干扰 二、实验原理及实验电路说明 混频器的功能是将载波为vs (高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。 混频器的电路模型如图1所示。 图1 混频器电路模型 混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号VL ,并与输入信号 VS 经混频器后所产生的差频信号经带通滤波器滤出。目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。本实验采用集成模拟相乘器作混频电路实验。 图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。 V s V

+12 -12 J7J8 J9 C12104 C11104 C7104 C15104 C8104 R101K R11200 R12820 R13820 R71K R14100 R153.3K R163.3K R216.8K R20510 R171k F24.5M D28.2V C16104 TH6 TH7 TH8 TH9 TP5 SIG+ 1 G N A D J 2 G N A D J 3 SIG- 4 B I A S 5 OUT+6NC 7CAR+8 NC 9CAR- 10 NC 11OUT-12 NC 13V E E 14 U1 MC1496 图2 MC1496构成的混频电路 MC1496可以采用单电源供电,也可采用双电源供电。本实验电路中采用+12V ,-8V 供电。R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz 选频回路。本实验中输入信号频率为 fs =4.2MHz ,本振频率fL =8.7MHz 。 为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS 和本振电压VL 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。 三、 实验仪器与设备 高频电子线路综合实验箱; 高频信号发生器; 双踪示波器; 频率计。 四、实验步骤 1. 打开本实验单元的电源开关,观察对应的发光二极管是否点亮,熟悉电路各部分元件的作用。 2、用实验箱的信号源做本振信号,将频率L f =8.7MHz (幅度V LP-P =300mV

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

单相逆变器SPWM调制技术的仿真

课程设计(论文)任务书 电气学院学院11电力牵引专业(3)班 一、课程设计(论文)题目单相逆变器SPWM调制技术的仿真 二、课程设计(论文)工作自 2014年6月16日起至2014年 6月20 日止。 三、课程设计(论文) 地点: 电气学院机房 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)熟练掌握MATLAB语言的基本知识和技能; (2)熟悉matlab下的simulink和simpowersystems工具箱; (3)熟悉构建单相桥式逆变器SPWM单极性和双极性调制的仿真模型; (4)培养分析、解决问题的能力;提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)要求对主电路和脉冲电路进行封装,并对调制度和载波比参数进行封装;(2)仿真参数为:E=100-300V; Ma= N=9-21; h=,其他参数自定;

(3)给出调制波原理图、相电压、相电流、线电压、不同器件所承受的电压波形以及 频谱图,要求采用subplot作图; (4)选取不同参数进行仿真,比较仿真结果有何变化,给出自己的结论。 (5)利用matlab下的simulink和simpowersystems工具箱构建单相桥式逆变器spwm 单极性和双极性调制的仿真模型。 2)创新要求: 封装使仿真模型更加美观、合理 3)课程设计论文编写要求 (1)要按照课程设计模板的规格书写课程设计论文 (2)论文包括目录、正文、心得体会、参考文献等 (3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成 4)答辩与评分标准: (1)完成原理分析:20分;

(2)完成设计过程:40分; (3)完成调试:20分; (4)回答问题:20分; 5)参考文献: [1] 刘凤君. 现代逆变技术及应用[M]. 北京: 科学出版社, 2006. [2] 伍家驹, 王文婷, 李学勇, 等. 单相SPWM逆变桥输出电压的谐波 分析[J]. 电力自动化设备, 2008, 28(4): 45-49, 52. [3]王兆安,刘进军,电力电子技术,机械工业出版社, [4]汤才刚,朱红涛,李莉,陈国桥,基于PWM的逆变电路分析,《现代电子技术》2008年第1期总第264期。 [5]刘卫国.MATLAB程序设计与应用(第二版).北京:高等教育出版社,2008. 6)课程设计进度安排 内容天数地点 构思及收集资料 2 图书馆 编程设计与调试 2 实验室

实验13 调幅发射与接收完整系统的联调

实验13 调幅发射与接收完整系统的联调 13-1 无线电通信概述 一.无线电通信系统的组成 无线电通信的主要特点是利用电磁波的空间的传播来传递信息,例如将一个地方的语言消息传送到另一个地方。这个任务是由无线电发射设备、无线电接收设备和发射天线、接收天线等来完成的。这些设备和传播的空间,就构成了通常所说的无线电通信系统,图13-1是传送语言消息的无线电系统组成图。 图13-1 发射设备是无线电系统的重要组成部分,它是将电信号变换为适应于空间传播特性的信号的一种装置。它首先要产生频率较高并且具有一定功率的振荡。因为只有频率较高的振荡才能被天线有效地辐射,还需要有一定的功率才可能在空间建立一定强度的电磁场,并传播到较远的地方去。高频功率的产生通常是利用电子管或晶体管,把直流能量转换为高频能量,这是由高频振荡器和高频功率放大器完成的。 通常是经过转换设备如话筒就是最简单的转换设备,把消息转变成电的信号,这种电信号的频率都比较低,不适于直接从天线上辐射。因此,为了传递消息,就要使高频振荡的某一个参数随着上述电信号而变化,这个过程叫做调制。在无线电发射设备中,消息是“记载”在载波上而传送出去的。 接收设备的功能和发射设备相反,它是将经信道传播后接收到的信号恢复成与发送设备输入信号相一致的一种装置。 将接收天线架设在上述电磁波传播所能到达的地方,则通过电磁感应就会在接收天线上得到高频信号的感应电动势,它加到接收设备的输入端。由于接收天线同时处在其它电台所

辐射的电磁场中,因此接收设备的首要任务是从所有信号中选择出需要的信号,而抑制不需要的信号。接收设备另一个任务是将天线上接收到的微弱信号加以放大,放大到所需要的程度。接收设备的最后一个任务是把被放大的高频信号还原为原来的调制信号,例如通过扬声器(喇叭)或耳机还原成原来的声音信号(语言或音乐)。 二.发信机的组成 主振器幅度调制器中间放大器功率放大器 调制器 话筒 图13-2 图13-2画出了调幅发信机原理方框图,在这个图中,发信机由主振器、幅度调制器、中间放大器、功率放大器和调制器组成,电源部分在图上没有画出来。 主振器是用来产生最初的高频振荡,通常振荡功率是很小的,由于整个发信机的频率稳定度由它决定,因此要求它具有准确而稳定的频率。幅度调制器是用来产生调幅波,即将调制信号调制到高频振荡频率上。中间放大器的作用是将幅度调制器输出的功率,放大到功率放大器输入端所要求的大小,功率放大器是发信机最后一级,它的主要作用是在激励信号的频率上,产生足够大的功率送到天线上去,同时滤除不需要的频率(高次谐波),以免造成对其它电台的干扰。调制器实际上就是低频放大器,它的作用是将话音或低频信号放大,供给幅度调制器进行调制所需的电压和功率。 图上各处的信号波形反映了上述各部分的工作过程。 三.接收机的组成 无线电信号的接收过程与发射过程相反,为了提高灵敏度和选择性,无线电接收设备目

倍频单极性SPWM调制法逆变器设计

目录 1 设计要求 (1) 2 逆变器控制方式选择 (1) 3 方案设计 (2) 3.1系统总体框图 (2) 3.2主电路的设计 (3) 3.3 DSP的选取 (4) 3.4驱动电路的设计 (5) 3.5采样电路 (6) 3.6保护电路 (6) 4 元件参数计算 (7) 4.1输出滤波电感L f、滤波电容C f的选取 (7) 4.2变压器的设计8 4.3功率开关的选择 (8) 5 仿真结果 (9) 5.1驱动波形 (9) 5.2功率开关器件两端的电压波形 (10) 5.3逆变器输出波形 (10) 6 结论 (11) 参考文献 (12)

1 设计要求 主要内容:利用倍频单极性SPWM 调制法究逆变器的调制方式,分析系统的稳定性和外特性,给出系统的硬件结构框图,设计系统各个部分的硬件电路,完成数字控制SPWM 逆变器的原理试验和仿真。 基本要求:输入电压:40~60VDC ;输出额定容量:1kVA ;输出电压:220V ±3%;输出电压频率:50Hz 载波频率:25kHz ;THD :≤3%。 2 逆变器控制方式选择 传统逆变器的控制电路都是采用模拟电路和小规模数字集成电路实现的。随着信息技术的发展,数字控制技术在逆变电源控制领域已得到越来越广泛的应用。综合考虑系统性价比以及数字控制方式存在的问题,目前,部分数字化(CPU )产生基准正弦,宽频带的电压调节器仍由模拟电路实现)不失为中小功率逆变器控制电路的优选方案。本文分别对两种模拟/数字混合控制方案进行了比较研究,分析了它们的设计与实现,给出了相关实验结果。 本章研究的混合控制方式,也是基于数字控制器的。利用DSP 取代纯模拟控制中的一些实现环节,如基准正弦发生器、输出过载保护、输出过压/欠压保护等,对于减小控制电路复杂程度、提高系统控制特性是有好处的。同时,混合控制方式也考虑了数字控制可能产生的一些问题,尽可能保留模拟控制的优点,仍采用模拟电路实现电压调节器,与全数字控制系统相比,提高了系统带宽频率和动态响应速度。可见,这种模拟/数字混合控制逆变器具有较高的性价比,在一些应用场合具有较大的优势。 根据PWM 控制信号的产生方式,常用的混合控制实现方案有两类:模拟/数字混合控制方案Ⅰ、模拟/数字混合控制方案Ⅱ。方案Ⅰ的实现框图如图1。 图1 混合控制方案Ⅰ的实现框图

模拟乘法混频实验报告

模拟乘法混频实验报告 姓名: 学号: 班级: 日期:

模拟乘法混频 一、实验目的 1. 进一步了解集成混频器的工作原理 2. 了解混频器中的寄生干扰 二、实验原理及实验电路说明 混频器的功能是将载波为vs (高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。 混频器的电路模型如图1所示。 图1 混频器电路模型 混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号VL ,并与输入信号 VS 经混频器后所产生的差频信号经带通滤波器滤出。目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。本实验采用集成模拟相乘器作混频电路实验。 图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。 V s V

+12 -12 J7J8 J9 C12104 C11104 C7104 C15104 C8104 R101K R11200 R12820 R13820 R71K R14100 R153.3K R163.3K R216.8K R20510 R171k F24.5M D28.2V C16104 TH6 TH7 TH8 TH9 TP5 SIG+ 1 G N A D J 2 G N A D J 3 SIG- 4 B I A S 5 OUT+6NC 7CAR+8 NC 9CAR- 10 NC 11OUT-12 NC 13V E E 14 U1 MC1496 图2 MC1496构成的混频电路 MC1496可以采用单电源供电,也可采用双电源供电。本实验电路中采用+12V ,-8V 供电。R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz 选频回路。本实验中输入信号频率为 fs =4.2MHz ,本振频率fL =8.7MHz 。 为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS 和本振电压VL 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。 三、 实验仪器与设备 高频电子线路综合实验箱; 高频信号发生器; 双踪示波器; 频率计。 四、实验步骤 1. 打开本实验单元的电源开关,观察对应的发光二极管是否点亮,熟悉电路各部分元件的作用。

模拟乘法器MC1496 1596设计混频电路

班级: 姓名: 学号: 指导教师:林森 成绩: 电子与信息工程学院 信息与通信工程系

混频器的设计 1概述 在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 本次设计主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。 1.1混频器原理 混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要放在中放,

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

实验步骤

实验1 电容三点式LC振荡器 一、仪器、模块: ●LC振荡器模块 ●双踪示波器 ●万用表 二、实验步骤 1、按下开关3K1接通电源 2、西勒振荡电路幅频特性的测量 1)示波器接3TP02,开关3K05拨至右侧 2)开关3K01、3K02、3K03、3K04分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。 3)按照表3-1(a)电容的变化测出与电容相对应的振荡频率和输出电压(峰一峰值VP-P),并将测量结果记于表中。 表3-1(a) 3、克拉泼振荡电路幅频特性的测量 1)示波器接3TP02,开关3K05拨至左侧。 2)按照表3-1(b)电容的变化测出与电容相对应的振荡频率和输出电压(峰一峰值VP-P),并将测量结果记于表中。 表3-1(b)

4、波段覆盖系数的测量(计算) 测量方法:根据测量的幅频特性,以输出电压最大点的频率为基准,即为一边界频率,再找出输出电压下降至1/2处的频率,即为另一边界频率,再由公式求出K。 分别计算西勒振荡电路、克拉波振荡电路的k

实验2 集成乘法器混频器实验 一、仪器、模块: ●集成乘法器混频模块 ●LC振荡与射随放大模块 ●高频信号源 ●双踪示波器 二、实验步骤 1、中频频率的观察 1)信号发生器输出频率为8.8MHZ,幅度Vp-p约为1.5V的等幅波,作为本振信号连接到6P01 2)信号发生器输出频率为6.3MHZ,幅度Vp-p=0.4V的等幅信号,作为射频信号连接到6P02 3)填下表 F L=8.8MHZ Fs=6.3MHZ 4)改变高频信号源的频率,输出中频6TP04的波形如何变化?为什么? 输入6P01的信号不变。 改变输入到6P02的信号的频率,填下表

模拟乘法器1496实验报告

实验课程名称:_高频电子线路

五.实验原理与电路设计仿真 1、集成模拟乘法器1496的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍MC1496集成模拟乘法器。 (1)MC1496的内部结构 MC1496 是目前常用的平衡调制/解调器。它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。 (a)1496内部电路 (b)1496引脚图 图1 MC1496的内部电路及引脚图 它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。 各引脚功能如下: 1:SIG+ 信号输入正端 2: GADJ 增益调节端 3:GADJ 增益调节端 4: SIG- 信号输入负端 5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端 9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端 13: NC 空脚 14: V- 负电源 (2)Multisim建立MC1496电路模块 启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。被选择的电路部分由周围的方框标示,表示完成子电路的选择。为了能对子电路进行外部连接,需要对子电路添加输入/输出。单击Place / HB/SB Connecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,

混频电路设计3

通信电路实验报告 ——谐振功率放大器设计及仿真 姓名:陈强华 学号: 班级: 专业:通信工程

实验三混频器设计及仿真 一、实验目的 1、理解和掌握二极管双平衡混频器电路组成和工作原理。 2、理解和掌握二极管双平衡混频器的各种性能指标。 3、进一步熟悉电路分析软件。 二、实验准备 1、学习二极管双平衡混频器电路组成和工作原理。 2、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、 LO 本振输入频率:, RF 输入频率: 1MHz, IF 中频输出频率: 450KHz。 2、 LO 本振输入电压幅度: 5V, RF 输入电压幅度:。 3、混频器三个端口的阻抗为50Ω 。 4、在本实验中采用二极管环形混频器进行设计,二极管采用 DIN4148。 5、分析混频器的主要性能指标:混频增益、混频损耗、1dB 压缩点、输入阻抗,互调失真等;画出输入、输出功率关系曲线。 四、设计步骤 1、原理分析混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。两个输入端分别为射频端( RF)和本振( LO),输出端称为中频端( IF)其基本的原理如下图所示。

通常,混频器通过在时变电路中采用非线性元件来完成频率转换,混频器通过两个信号相乘进行频率变换,如下: 输入的两个信号的频率分别为ωRF \ωLO ,则输出混频信号的频率为ωRF LO +ω (上变频)或ωRF LO ?ω (下变频),从而实现变频功能。在本试验中,我们采用二极管环形混频器,其的原理电路如图 3-2 所示,其中v V t RF RF RF = cosω ,v V t LO LO LO = cosω ,并且有V V LO RF >> ,因此二极管主要受到大信号v LO 控制,四个二极管均按开关状态工作,各电流电压的极性如图 3-2 所示。在本振电压的正半周,二极管D2 \ D3 导通,D1 \ D4 截止;在本振电压的负半周,二极管D1 \ D4 导通,D2 \ D3截止。因此,混频电路可以拆分成两个单平衡混频器。

MIX 1

实验十二 集成乘法器混频实验 MIX1 一、实验目的 1.学习混频电路的概念和原理。 2.掌握用集成模拟乘法器构成混频电路的原理。 3.掌握集成模拟乘法器MC1496用于混频电路的方法以及对干涉的测定。 二、实验仪器与设备 1.THEX-1型实验平台、集成乘法器混频实验(MIX1)、LC 与晶体振荡(本振)实验(OSC ) 2.20MHz 双踪示波器、BT5频率扫频仪、万用表 三、实验原理 (一)混频器电路模型 混频器的功能是将载波为fs (高频)的已调波信号不失真地变换为另一载频f I (固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。 混频器的电路模型如图12-1所示。 混频器常用的的非线性器件有二极管、三极管、场 效应管和乘法器。本振用于产生一个等幅的高频信号u L , 并与输入信号u S 经混频器后所产生的差频信号经带通滤 ωI =ωL -ωS 波器滤出。目前,高质量的通信接收机广泛采用二极管环 图12-1 混频器电路模型 形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。本实验采用集成模拟乘法器作混频电路实验。 为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压u S 和本振电压u L 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。 干扰是由于混频不满足线性时变工作条件而形成的,因此不可避免地会产生干扰,其中影响最大的是中频干扰和镜象干扰。 (二)集成模拟乘法器的混频电路 ·? ???÷???¨ ??¨?÷ ± ?????÷u L u I u s

混频器实验

实验5 乘法器的应用3---混频器实验 一、实验目的 1. 熟悉集成电路实现的混频器的工作原理。 2. 了解混频器的多种类型及构成。 3. 了解混频器中的寄生干扰。 二、预习要求 1. 预习混频电路的有关资料。 2. 认真阅读实验指导书,对实验电路的工作原理进行分析。 三、实验仪器 1. 双踪示波器 2. 高频信号发生器(最好有产生调制信号功能的信号源) 3. 频率计 4. 实验板GPMK7 四、实验电路说明 目前高质量的通信接收机中多采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,本实验采用的是集成模拟乘法器(MC1496)构成的混频电路。 用模拟乘法器实现混频,只要u x 端和u y 端分别加上两个不同频率的信号,相差一中频如1.5MHz ,再经过带通滤波器取出中频信号,其原理方框图如图5-1所示 5-1 混频原理框图 若输入信号为: ()cos x sm s u t U t ω= 本振信号为: ()c o s y c m c u t U t ω= 则混频信号为: []12c s c s ()cos cos cos()t cos()t o cm sm c s sm cm u t KU U t t KU U ωωωωωω=?=++- c s i ωωω-= 为某中频频率。 若输入信号为:()(1cos )cos x sm a s u t U m t t ω=+Ω 本振信号为:()cos y cm c u t U t ω= 则混频信号为:c s ()(1cos )cos()o om a u t U m t t ωω=+Ω-

由MC1496 模拟乘法器构成的混频器电路如图5-2所示。注意:电源+12V -12V 本振信号U C(频率为6MHz)接到乘法器的⑽脚,将调幅波信号U S(频率为4.5MHz)接到乘法器的⑴脚,混频后的中频信号由乘法器的⑹脚输出,经形带通滤波器(其调谐在1.5MHz,带宽为450KHz)由电路输出端OUT得到差频(1.5MHz)信号(即:所谓中频信号)。 为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压U S和本振电压U C外,不可避免地存在干扰和噪声信号。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。因此不可避免地会产生干扰,其中影响最大的是中频干扰和镜像干扰。 图5-2 混频电路板 五、实验内容与步骤 1.中频频率的观测 将实验板GPMK1中的晶体振荡器产生的6MHz(幅值为0.2V P-P)信号作为本振信号接到混频电路的IN1端,高频信号发生器的输出(4.5MHz,0.1V P-P的载波)信号接到混频电路的IN2端,观测混频电路输出端OUT的输出波形和频率(中频),可适当调节RP使输出波形最大,记录测试结果。 2.镜像干涉频率的观测 用双踪示波器观测IN2端和OUT端的波形,缓慢调节高频信号发生器的输出频率(由4.5MHz调至7.5MHz,以0.3MHz步长填写下表),观测调幅波和中频,并记录。验证下列关系。 f镜像-f调幅波=2f中频 f in2 4.2MHz 6MHz 7.8MHz U out f out 描出输出端滤波器的频响特性 3.倍频实验观测(注:两端要在平衡条件下相乘)

通信电路实验报告书

通信电路实验报告书 第一部分 实验小组:第1组 姓名学号:08021135 郑超 指导教师:徐小平 完成日期:2011年4月4日

实验1 单调谐回路谐振放大器 —、实验准备 1.做本实验时应具备的知识点: ●放大器静态工作点 ●LC并联谐振回路 ●单调谐放大器幅频特性 2.做本实验时所用到的仪器: ●单调谐回路谐振放大器模块 ●双踪示波器 ●万用表 ●频率计 ●高频信号源 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法; 4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响; 5.掌握测量放大器幅频特性的方法。 三、实验内容 1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性; 3.用示波器观察静态工作点对单调谐放大器幅频特性的影响; 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。 四、实验报告要求 1.对实验数据进行分析,说明静态工作点变化对单调谐放大器幅频特性的影响,并画出

相应的幅频特性。 2.对实验数据进行分析,说明集电极负载变化对单调谐放大器幅频特性的影响,并画出 相应的幅频特性。 3.总结由本实验所获得的体会。 五、实验结果记录及结论 记录:输入电压幅值:200mv 输出最大电压:1.44v 计算得出的放大倍数:7.2 调整1W01使基极直流电压为2.5v 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 输入信 号频率 f(MHZ) 输出电 365 400 461 523 602 715 824 1270 1445 1298 1100 930 775 660 584 519 460 361 压幅值 U(mv) 调整1W01使基极直流电压为1.5v 输入信 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 号频率 f(MHZ) 211 233 244 282 312 386 435 680 882 1220 1160 896 717 572 472 398 342 300 输出电 压幅值 U(mv) 调整1W01使基极直流电压为5v 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 输入信 号频率 f(MHZ) 输出电 596 666 778 880 1051 1222 1461 1601 1600 1420 1220 1070 917 786 720 650 593 545 压幅值 U(mv) 接通1R3时 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 输入信 号频率

高频电子线路设计(三极管混频器的设计)

通信电子线路课程设计说明书 三极管混频器 院、部:电气与信息工程学院 学生姓名:蔡双 指导教师:俞斌职称讲师 专业:电子信息工程 班级:电子1002 完成时间:2012-12-20

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

ABSTRACT With the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit. Key words mixer;intermediate frequency signal;frequency selective circuit

相关主题
文本预览
相关文档 最新文档