当前位置:文档之家› 图像质量评价

图像质量评价

图像质量评价
图像质量评价

第一章绪论

1.1 引言

早期的图像处理是随由于通讯方面的要求而发展起来的,随着图像处理技术的发展,数字图像处理技术与理论已经成为计算机应用的一个重要领域,广泛应用于众多的科学与工程应用,如遥感、医学、气象、通信等。然而随着图像处理技术的迅速发展,如何正确有效地评价一幅图像的质量好坏变得越发重要起来。近年来,图像质量评价已经成为了图像信息工程领域内一项重要的研究课题,引起了学者的高度重视。

图像质量评价方法中客观评价方法又可以分为三类:全参考质量评价方法、部分参考质量评价方法和无参考质量评价方法。全参考质量评价方法需要原始图像的完整信息作为评价的参考:部分参考质量评价方法需要原始图像的部分特征或者统计信息作为评价参考:无参考质量评价方法则完全依赖于待评测图像本身的信息来进行质量评价,而无须原始图像的任何信息。在很多情况下,如在网络传输中,往往无法获得发送端的原始图像信息,因此研究无参考的客观质量评价方法是很有意义的。

1.2 图像质量评价

图像质量的含义主要包括两个方面:图像的逼真度和图像的可懂度。图像质量直接取决于成像装备的光学性能、图像对比度、仪器噪声等多种因素的影响,通过质量评价可以对影像的获取、处理等各环节提供监控手段。为了对图像处理的各个环节进行合理评估,图像质量评价的研究已经成为图像信息工程的基础技术之一。多少年来,人们希望能够找出图像逼真度和可懂度的定量测量方法,作为评价图像和设计图像系统的依据,但目前人们对人类视觉特性仍没有充分理解,特别是对人眼视觉的心理特性还难以找出定量的描述方法,因此图像质量评价还有待深入研究。

1.2.1 主观评价方法

国际上已有成熟的主观评价技术和国际标准,例如 ITU-T Rec. P.910规定了多媒体应用的主观评价方法]1[;ITU-R BT.500-11规定了电视图像的主观评价方法]2[,就视频质量主观评价过程中的测试序列、人员、距离以及环境做了详细规定。主观质量评分法]3[(MOS:Mean Opinion Score)是图像质量最具代表性的

主观评价方法,它通过对观察者的评分归一化来判断图像质量。而主观质量评分法又可以分为绝对评价和相对评价两种类型。

绝对评价是将图像直接按照视觉感受分级评分,表 1.1 列出了国际上规定的 5 级绝对尺度,包括质量尺度和妨碍尺度。对一般人来讲,多采用质量尺度;对专业人员来讲,则多采用妨碍尺度。

表 1.1 绝对评价尺度

质量尺度妨碍尺度

5分丝毫看不出图像质量变坏 5 非常好

4分能看出图像质量变化但不妨碍观看 4 好

3分清楚看出图像质量变坏,对观看稍有妨碍 3 一般

2分对观看有妨碍 2 差

1分非常严重的妨碍观看 1 非常差

相对评价是由观察者将一批图像从好到坏进行分类,将它们相互比较得出好坏,并给出相应的评分。相对尺度如表 1.2 所示。

表 1.2 相对评价尺度与绝对评价尺度对照

分数相对测量尺度绝对测量尺度

5分一群中最好的非常好

4分好于该群中平均水平的好

3分该群中的平均水平一般

2分差于该群中平均水平的差

1分该群中最差的非常差

评价的结果可用一定数量的观察者给出的平均分数求得。平均分数按照公式计算得到:

∑∑===

K

i i

i

K

i i

N

C

N C 1

1

式中,i C 为图像属于第 i 类的分数,i N 为判定该图像属于第i 类的观察者人数。为了保证图像主观评价在统计上有意义, 参加评分的观察者至少应有 20 名, 其中包括一般观察者和专业人员。

图像质量的主观评价方法的优点是能够真实的反映图像的直观质量,评价结果可靠,无技术障碍。但是主观评价方法也有很多缺点,如需要对图像进行多次重复实验,无法应用数学模型对其进行描述,从工程应用的角度看,耗时多、费用高,难以实现实时的质量评价。在实际应用中,主观评价结果还会受观察者的知识背景、观测动机、观测环境等因素的影响。此外,主观质量评价无法应用于所有场合,如需要进行实时图像质量评价的领域。

1.2.2 客观评价方法

图像质量的客观评价方法是根据人眼的主观视觉系统建立数学模型,并通过具体的公式计算图像的质量。传统的图像质量客观评价方法主要包括均方误差(MSE ,mean squared error )和峰值信噪比(PSNR ,peak signal to noise rate )

]

5,4[。均方误差法首先计算原始图像和失真图像象素差值的均方值,然后通过均

方值的大小来确定失真图像的失真程度。计算公式如下:

2

00')(1

∑∑<≤<≤-?=

N i M

j ij ij

f f

N

M MSE

其中 M 、N 为图像的长和宽,ij f 表示原始图像的象素值,'

ij f 表示降质后图像的象素值。PSNR 作为衡量图像质量的重要指标,基于通信理论而提出,是最大信号量与噪声强度的比值。由于数字图像都是以离散的数字表示图像的像素,因此采用图像的最大象素值来代替最大信号量。

具体公式如下:

MSE

L

L PSNR ??=lg

10

其中 L 为图像中像素的最大灰度值,一般采用 255。

上述方法的优点是直观、严格,计算简单,而且可以直接应用于依据“MSE 最小”原则设计的图像系统。因此,这类方法成为应用最广泛的图像质量评价手段。但它的缺点也是显而易见的。文献[6]具体分析了 MSE 性能不稳定的原因,并指出这一缺点是方法本身的缺陷,无法克服。PSNR 只在评价白噪声失真图像时效果良好,而在其它领域也会出现如 MSE 一样的不稳定现象,文献[7]对此进行了深入分析。

对图像质量进行客观评价时,根据对原始无失真图像依赖程度的不同,可将图像质量的客观评价算法分成三类:全参考(Full Reference, FR)图像质量评价、半参考(Reduced Reference, RR)图像质量评价和无参考(No Reference, NR)图像质量评价。全参考图像质量评价主要是将失真图像和参考图像逐像素进行比较,得出对失真图像的评价;半参考的图像质量评价是从原始图像和失真图像中分别提取图像的有效特征,如图像的梯度和直方图,通过对有效特征进行比较,得出对失真图像的评价;无参考的图像质量评价则无需任何参考图像的信息,直接提取失真图像的某些失真因素特征,如图像的边界强度、噪声率、模糊度]8[等,

图像质量评价最终取决于观察者的感觉,所以不论采用上述哪种客观评价方法,目标都是追求客观评价结果与人的主观评价尽可能的一致,即客观评价要以主观评价为准则。

客观评价方法的优点是速度快、费用低、应用领域广,评价结果具有重现性,不受主观因素的影响。缺点是目前只能在某些方面有限度的模仿人眼的主观视觉系统,常会出现与主观评价结果不一致的情况,不同的模型依据具体的应用领域进行不同的条件假设,难以建立适用于任何领域的数学模型。

1.3 国内外研究现状

客观质量评价的早期研究主要集中在传统的误差统计方法上,如清晰度、峰值信噪比(PSNR)和均方误差(MSE)等。随着研究的深入,人们发现这种方法忽视了图像内容对人眼的影响,不能完全反映图像的质量,因此人们采用了更多的方法在更深的层面上做了尝试。

无参考图像质量评价是一个全新的研究领域,虽然这个领域的研究尚处于探索阶段,但已吸引了很多人的关注,呈蓬勃发展之势。目前,公开发表的关于无参考图像质量评价的论文渐渐增多,如文献提出了三个无参考质量评价指标,分

别是边缘强度(Contour-Volume,简称 CV)、噪声率(Noise-Rate,简称 NR)和统一亮度分布(Uniform Intensity-Distribution,简称 UID)。这三个参数分别就图像的边缘、噪声和亮度分布进行了分析,结果与主观的一致性较高。文献专门研究了噪声对数字图像质量的影响,它在图像分块和噪声检测方面较文献都有改进;文献[9]研究真彩图像的色彩问题,其中色彩丰富度(CCI)与人眼对色彩的感知有很高的一致性;Huitno Luo 使用机器学习算法进行人脸质量的检测;Kyungnam Kim和 krty Davis 利用局部统计量提出一种用于视频质量评价的方法,主要用于评价噪声和模糊的问题;殷晓丽等人提出了一种基于半脆弱性数字水印算法(WIQM)的无参考图像质量评价方法,这种方法只是针对 JPEG 图像作质量评价;杨守义等人还提出一种基于高阶统计量的评价方法。无参考图像的评价方法完全脱离了对原始参考图像的依赖,其应用范围更加广泛,发展前景更加广阔,正因如此,其研究难度也是最大的。下面介绍几个具有代表意义的典型方法]10[。

1.3.1 图像评价因子

哈尔滨工业大学和日本电器股份有限公司(Nippon Electric Company,NEC)合作,从图像增强考虑了图像边界强度、噪声和灰度分布,来制定图像质量评价的因子]11[。

1.3.1.1 边缘强度(Contour-Volume,CV)

图像的细节越丰富,图像越清晰,则图像的边缘也就越清晰。边缘强度(CV)能够反映图像的清晰程度,数值越大,图像越清晰,反之图像模糊,这是一个图像清晰度的测量指标。首先使用3×3的拉普拉斯窗口提取图像边缘,然后统计图像的边缘,将边缘像素值进行绝对值的叠加求得图像的边缘强度CV]12[。

1.3.1.2 噪声率(Noise-Rate,NR)

噪声是造成图像失真的一个重要因素,噪声是高频分量,能够影响CV的评价。图像中的噪声越多,CV就会越大。面对这类失真图像,CV的评价性能将受到很大的影响,因此无法给出正确的评价结果。鉴于CV的这种缺陷,文献[13]提出了一种针对噪声的评价因子,即噪声率(Noise-Rate)。

噪声率是一个反映图像受噪声污染程度的评价因子,主要通过比较失真前参考图像的噪声量和失真后图像中所含噪声量的多少而确定。由于无参考图像质量

评价方法没有参考图像可以借鉴,所以通常将经滤波算法去噪后的图像作为准参考图像,计算其包含的噪声率,然后和原失真图像进行比较。噪声的种类很多,针对不同的噪声,有不同的滤波算法。这些滤波算法往往对去除某种特定噪声有较好的性能,而处理其他噪声时性能就大大减弱。中值滤波算法是一种较为全面的噪声滤除算法,能够去除图像中的大部分噪声,因此文献采用中值滤波作为一种通用的滤波算法。

1.3.1.3 统一亮度分布(Uniform Intensity-Distribution ,UID )

根据信息论,图像的像素分布越均匀,图像包含的信息就越多,因此定义图像的统一亮度分布如下]14[:

)

1log(

)

1log(1

1

++=

∑∑====L

n

L n

UID L k k

L k k

L 是图像的灰度级数, k n 是第K 级灰度的个数。在公式中的分子和分母加上常数1是为了避免在计算过程中分母为0,而且由于1很小,不会影响UID 的评价性能。

1.3.2基于掩盖的无参考图像信噪比(NPSNR )

文献[15]针对噪声对数字图像质量的影响,从噪声检测的角度 ,提出一种基于掩盖效应的无参考图像质量评价方法。方法首先对图像进行分块,将图像按不同的频率成分区分开,采用的是改进后的Hosaka 分块算法,新算法取消了Hosaka 对图像尺寸的限制;然后检测各个子图像块的噪声;最后根据图像的污染程度,计算基于掩盖效应的无参考图像峰值信噪比NPSNR 。下面介绍具体的计算过程。

1.3.

2.1 分块

图像中的高频成分变化剧烈,低频成分变化缓慢。当图像中高频成分较多时,其均方差较大,反之当图像中低频成分较多时,其均方差较小。由于HVS 的掩盖效应,变化剧烈的部分中出现的噪声不易被人眼所感知,因此,对于不同的频率子块内出现的噪声采取不同的权值,才能体现出HVS 的掩盖效应,更加符合人的视觉感知。 目前,方案使用实验阈值来区分图像中的高低频成分。首先计算失

真图像(大小为M ×N )如果该均方差超过设定的阈值(文献中使用的阈值为实验值300), 则表明图像中存在较多的高频成分,需要继续分块,则将图像等分成四份,否则,保留图像块的大小。重复该分块过程,直到均方差小于阈值或图像的长或宽之一小于8。至此,图像被分成大小不一的子块,高频区的子块相对较小,低频区的子块则相对较大。

1.3.

2.2 噪声检测

噪声属于高频成分,而图像的边缘也属于高频成分,它们都具有较高的梯度值,但是图像边缘具有明显的结构特征,根据这个特点,可以将图像噪声和边缘进行分离。NPSNR 首先进行块内噪声检测,然后计算图像的噪声污染度。

分别计算该像素垂直方向和两个对角方向的梯度,将四个方向梯度的最小值定义为该像素的最终梯度当某像素梯度大于预设阈值(文献取实验阈值50)时,将该像素划归为噪声。

1.3.

2.3 基于掩盖的无参考图像信噪比

根据图像的噪声污染程度提出基于掩盖的无参考图像信噪比]16[:

K

l

l NPSNR ?=10

log 10 其中l 为图像的灰度级数。

上面介绍了两种典型的无参考图像质量评价方法,其中第一种方法针对不同的失真因素制了三个评价因子,第二种方法只是针对噪声造成的图像失真进行评价。

1.4 本文的研究工作和组织结构

本文主要研究无参考图像质量评价方法,在分析三种典型方法的基础上,提出种新的无参考图像质量评价方法,选取无参考图像质量评价的因子,对其进行正交试验,研究哪些因子的影响最大,本文是针对轮廓提取问题进行。

本文的由五章组织成,各章内容如下

第一章:阐述本文研究内容的意义所在,介绍图像质量评价方法的分类,概

述当前国内外对图像质量评价方法的研究现状,指出本文主要的研究内容。

第二章:介绍无参考质量评价以及传统无参考评价的一些方法。

第三章:简单介绍什么是正交试验、正交表、正交表的因子和因素以及正交试验的方差分析。

第四章:对实验所需要的数据进行采集,并对其进行计算分析。

第五章:总结与展望。

第二章 无参考图像质量评价

无参考图像质量评价不需要参考图像就可以直接对失真图像的质量进行评价,大大拓宽了图像质量评价的应用领域,是图像质量评价的发展方向。由于难度大,目前的研究进展缓慢,而且多是针对特定领域进行的。

2.1 无参考图像质量评价的方法

2.1.1 均值和方差

均值是像素的平均灰度值,它反映了图像的平均亮度,如果均值适中,则目视效果良好;方差作为衡量图像信息量的重要指标,反映了灰度偏离灰度均值的程度,标准差越大,则灰度等级越分散,图像中所有灰度级出现概率越趋近于相等,则包含的信息量越趋近于最大。在统计理论中,统计均值μ、方差σ图像均值何方差的定义为]18,17[:

∑==n i i x n 11μ,∑=--=n i i x n 122

)(11μσ

2.1.2 灰度标准差

设一幅图像的灰度分布为)}1(),...,(),...,1(),0({-=L p g p p p P ,)(g p 为灰度等于g 的像素数与图像总的像素数的比值,L 为灰度级数,且∑-==1

01)(L g g p ,则该图

像的灰度统计均值为:∑-=?=1

)(L g g p g g ,其灰度标准差的定义为

∑-=?-=

1

2

)()

(L g g g p g g σ

灰度标准差反映了相对灰度均值的离散状况,标准差越大,灰度分布越分散。

2.1.3 熵

图像信息熵是衡量图像信息丰富程度的一个重要标志,通过对图像信息熵的比较可以对比出图像之间的细节表现能力。图像信息熵的定义为]19[

∑-=-=1

2)(log )(L g g p g p EN

其中,L 表示图像总的灰度级数,)(i p 表示灰度值为i 的像素数与图像总像素之比,)(i p 反映了图像中灰度值为i 的像素的概率分布。熵的大小反映了图像携带信息的多少。

2.2 传统无参考图像质量评价

由于全参考方法和半参考方法需要有原始图像信息作参考,且这两种方法得到的结果往往不能很好的反映人的主观感受阳田,所以无参考方法正受到越来越多的关注。

相对于全参考和质降参考评价方法,无参考评价方法的研究仍处于起步阶段。目前,无参考图像失真度量一般是针对某一种或几种类型的失真,如模糊效应、分块效应、噪声效应等]21,20[:

● 模糊效应

模糊是一种常见的失真现象.其表现是边缘的平滑效应。引起模糊的原因有很多,如图像压缩、拍摄时运动、聚焦不准、镜头失常等。从频域的角度看,模糊往往是高频分量的不足。模糊效应的度量一般是基于模糊会产生边缘的平滑效应的现象。

● 分块效应

分块效应一般是由离散余弦变换压缩算法带来的降质效应。JPEG 图像便是采用离散余弦变换压缩算法。客观评价分块效应对于图像、视频压缩系统的发展、优化和评估都很重要。分块效应的度量一般是基于相邻分块间的差异提出来的。

● 噪声效应

数字图像中往往存在各种类型的噪声。产生噪声的原因可能有几种,与生成图像的方法有关,如:图像的处理过程、图像数据的传输、获取罔像数据的电子设备等。噪声效应度量一般是通过对局部平滑度的测量进行,如Xin Li 认为,一

个像素点如果破坏了一个局部的平滑度,则该像素点可以被以为是噪点。通过对一个像素点与其周围八个像素点的信息比较判断其是否为噪点。

可以看出,多数无参考图像质量评价方法所选择的反应图像质量的特征都有比较强的针对性。当然,仅仅评价某一种并不能很好的反应图像的整体质量,应该综合考虑多种因素进行评价。

对图像失真效应的度量只能反应出图像的失真程度,并不能直观的反应出人的主观感受。一般将失真效应的度量结果与主观测试值相结合,得出客观质量评价值。

2.2.1 基于函数拟合方法

函数拟合是指,在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的关系函数表达式。在无参考图像质量评价中。根据从样本中提取的特征值结合图像质量的主观测试值构造预测函数,以此函数评价图像质量。

2.2.2 基于机器学习方法

基于机器学习方法的无参考图像质量评价算法的基本思路是:在训练阶段,通过主观测试值对图像按质量进行分类;抽取反应图像质量的特征向量,以此特征向量和其所对应的图像质量类别构建质量分类器。在测试阶段,将以同样方法抽取的特征向量作为分类器的输入值,分类器的输出值即为图像质量的客观评价值。这类方法的特点是可以借助机器学习领域所取得的研究成果,改进客观质量评价结果。主要是针对JPEG图像的评价,大致可以分为基于统计特征的方法和基于HVS特性的方法两类]22[。

基于统计特征的评价方法

该方法以图像中的原始像素值对图像的各种失真效应进行度量,作为机器学习的原始特征向量。Huitao Luo提出对视觉感兴趣区域进行评价并以此作为图像质量的方法:首先对感兴趣区域的模糊度、亮度、噪声进行度量,接着采用RBF 神经网络进行质量评价。Yanwei Yu等分别度量图像的分块效应和模型效应并以此作为机器学习特征,然后采用广义回归神经网络来评价JPEG图像质量。

基于HVS特性的评价方法

该方法提取HVS特性作为机器学习的特征,如R.Venkatesh[、SureshI等提取边缘振幅、边缘长度、背景活跃度和背景亮度作为机器学习的特征,分别使用两种机器学习方法进行质量评价:串行可裁减径向基函数神经网络和极限学习机。

无论是哪类无参考评价模型,模型的准确性都难以比拟全参考模型。一方面

是由于缺乏图像的先验知识;另一方面也是由于图像质量的定义模糊造成的。例如一幅发生几何偏移失真的图像,如果有原始图像作为参照,其失真可以明显地察觉。但忽略原始图像的相关信息,单纯从人眼感知的角度去考虑,则图像的质量可以认为不变。为此,在设计质量评价模型时,需要更多关注视觉心理学的相关研究,并可借鉴盲信号处理领域的研究方法,提高模型的精确度。

无参考图像质量评价是一个比较新的研究领域,所取得的成果还非常有限。无参考图像质量评价的难点在于]23[:

a)首先,图像中存在许多无法量化的因素,比如,美学、认识联系、知识、

上下文等在图像质量评价中起着重要的作用,这些因素会导致基于个人

主观印象的人类观察者的一些感知变化,而同时又无法利用可参考信号

对比,使得无参考质量评价的问题变得更加复杂。

b) 其次,对人类视觉系统的了解还相当有限,图像的理解水平仍然比较低,利用图像的统计信息获取相应的模型和知识表示是一个关键,做到这一点是很困难的。

第三章正交试验分析

3.1 正交试验

3.1.1 概念

正交试验设计方法是工程技术人员进行实验设计最重要的工具。正交试验设计法又称正交试验法、正交设计法或正交法,是一种安排与分析多因素试验的科学试验方法,它是以人们的生产实践经验、有关的专业知识和概率论与数理统计为基础,利用一套根据数学上的“正交性”原理而编制并以标准化了的表格——正交表来科学安排试验方案,提供充分有用的信息,并对试验结果进行计算、分析,实现优化目标的数学方法]24[。

正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通过一个例子来说明正交试验设计法的基本想法。

[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:

A:80-90℃

B:90-150分钟

C:5-7%

试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。试制定试验方案。

这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃

B:Bl=90分,B2=120分,B3=150分

C:Cl=5%,C2=6%,C3=7%

当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。

这个三因子三水平的条件试验,通常有两种试验进行方法:

图3-1 一般试验点

(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。用图表示就是图3-1 立方体的27个节点。这种试验法叫做全面试验法。

全面试验对各因子与指标间的关系剖析得比较清楚。但试验次数太多。特别是当因子数目多,每个因子的水平数目也多时。试验量大得惊人。如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。如果应用正交实验法,只做25次试验就行了。而且在某种意义上讲,这25次试验代表了15625次试验。

图3-1全面试验取点发Ⅱ)简单对比法,即变化一个因素而固定其他因素,试验结果以C2最好。于是就认为最好的工艺条件是A3B2C2。

这种方法一般也有一定的效果,但缺点很多。首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内没有选点。因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定。

简单对比法的最大优点就是试验次数少,例如六因子五水平试验,在不重复时,只用5+(6-1)×(5-1)=5+5×4=25次试验就可以了。

图3-2 正交试验点的选取

考虑兼顾这两种试验方法的优点,从全面试验的点中选择具有典型性、代表性的点,使试验点在试验范围内分布得很均匀,能反映全面情况。但我们又希望试验点尽量地少,为此还要具体考虑一些问题。

如上例,对应于A 有Al 、A2、A3三个平面,对应于B 、C 也各有三个平面,共九个平面。则这九个平面上的试验点都应当一样多,即对每个因子的每个水平都要同等看待。具体来说,每个平面上都有三行、三列,要求在每行、每列上的点一样多。这样,作出如图2所示的设计,试验点用⊙表示。我们看到,在9个平面中每个平面上都恰好有三个点而每个平面的每行每列都有一个点,而且只有一个点,总共九个点。这样的试验方案,试验点的分布很均匀,试验次数也不多。

当因子数和水平数都不太大时,尚可通过作图的办法来选择分布很均匀的试验点。但是因子数和水平数多了,作图的方法就不行了。试验工作者在长期的工作中总结出一套办法,创造出所谓的正交表。按照正交表来安排试验,既能使试验点分布得很均匀,又能减少试验次数, 图2正交试验设计图例而且计算分析简单,能够清晰地阐明试验条件与指标之间的关系。用正交表来安排试验及分析试验结果,这种方法叫正交试验设计法]2725[ 。

3.1.2 正交试验的特点

正交试验具有均匀分散、整齐可比这两个特点。以正交表)3(49L 为例,“L ”表示正交表,“9”,“3”,“4”分别表示试验次数、水平数和可安排的因素数。在正交表)3(49L 中可以看出正交设计的具有如下特点]28[:

(1)每个因素的水平都重复了三次试验; (2)每四个因素的水平组成一个全面试验方案。

正交设计在保证试验点的代表性和数据分析的方便性的前提下能大大降低试验工作量,正是基于其“均匀分散,整齐可比”的设计思想,正交设计也因此成为人们常用的试验设计方法。

3.1.3 正交试验的分析方法

在正交试验中,比较常规的数据分析方法是直观分析法和方差分析法,各有其特点。直观分析法简单、有效,但它不能回答哪些因素对试验指标有显著影响,它只考虑因素水平变动而使指标变动的大小,不分析指标变动究竟是由因素水平变化引起的还是由误差因素引起的;方差分析法能指出哪些因素对试验指标有显著影响,并考虑了误差的影响。在本课题的研究中采用了方差分析法对正交试验结果进行了分析。

3.2 因素、水平的确定与正交表的选择

“因素”(或称“因子”)是指设计者所选取的对优化结果可能产生影响的原因或者要素;“水平”是指为了多方案选优对比而对每个因索确定的若干条件(或不同用量、不同状态),每个条件称为一个“水平”]29[。

分别以一幅图像的均值、方差、标准差和熵作为正交表的因子,并对多幅图像进行分析测试这些图像的数据,并选出集中在三个数值作为各个因子的水平。正交表具有两条性质:(1)每一列中各数字出现的次数都一样多。(2)任何两列所构成的各有序数对出现的次数都一样多,所以称之谓正交表。由于本课题正交试验选取4个因子、每个因子各取3个水平,因此我们选择使用L9(34)正交表,不考虑交互作用,如表3-3所示。

表3-3 L9(34)正交表

A B C D Y

1 1 1 1 1 Y1

2 1 2 2 2 Y2

3 1 3 3 3 Y2

4 2 1 2 3 Y4

5 2 2 3 1 Y5

6 2 3 1 2 Y6

7 3 1 3 2 Y7

8 3 2 1 3 Y7

9 3 3 2 1 Y9

3.3 正交试验的方差分析

(一)假设检验

在数理统计中假设检验的思想方法是:提出一个假设,把它与数据进行对照,判断是否舍弃它。其判断步骤如下:

(1)设假设H。正确,可导出一个理论结论,设此结论为R。;

(2)再根据试验得出一个试验结论,与理论结论相对应,设为R1;

(3)比较R。与Rl,若R。与Rl没有大的差异,则没有理由怀疑H。,从而判定为:"不舍弃H。"(采用H。);若R。与R1有较大差异,则可以怀疑H。,此时判定为:"舍弃H。"。

但是,R1/R。比l大多少才能舍弃H。呢?为确定这个量的界限,需要利用数理统计中关于F分布的理论。

若yl服从自由度为φ1的χ2分布,y2服从自由度为φ2的χ2分布,并且yl、y2相互独立,则(y1/φ1)/(y2/φ2)服从自由度为(φ1,φ2)的F分布。F分布是连续分布,分布模数是两个自由度(φ1,φ2)。称φ1为分子自由度,称φ2为分母自由度。在自由度为(φ1,φ2)的F分布中,某点右侧面积为p,也就是F比此值大的概率为p,把这个值写为 (p)。若检验的显著性水平(或危险率)给定为α时,则可以把 (α)作为临界值来检验假设。

这里,Se/σ2服从自由度为φe,的χ2分布;当H。成立,σ2=0时,SA /σ2也服从自由度为φA的χ2分布;又SA与Se相互成立,所以(SA/(φAσ2)/ Se/(φeσ2))=VA/Ve服从自由度为(φA,φe)的F分布。这就是假定H。正确时的理论结论R。。而试验结论Rl要与理论结论R。相比较。由给定的显著性水平,通常是α=0.05;分子自由度φ1=φA=a-l,分母自由度φ2=φe=a(n-1);查F分布表得出 (α)。所以H。:αl=α2=……=αa=0(σA2=0)的检验是:(显著性水平α)

FA=VA/Ve> (α) →舍弃H。

FA=VA/Ve≤ (α) →不舍弃H。

通常, (α)一般性地表示成Fα(φA,φB)。

假设因子A对试验结果的影响不显著,那么A的两个水平的效应该表现为相等或相近,即假设H。:α1=α2=0。如果因子A显著,则舍弃假设。

为了判断因子A是否显著,首先要计算比值

显然,这个比值越大,因子A 对指标的影响越显著;反之,因子A 就不显著。在给定置信度α后,如α=0.05,查F 分布表,自由度φA 是因子A 的,自由度φe 是误差的,其临界值F α(φA,φe),如果 FA >F α(φA,φe)

就舍弃假设,可以认为因子A 是显著的;如果

FA ≤F α(φA,φe)

就没有理由否定假设,而只能认为因子A 是不显著的。因为按照F 分布表的物理念义,F 值小于F α(φA,φe)的概率是95%,即有95%的机会出现小于F α(φA,φe)的F 值,既然出现了这种情况,就有了95%的把握,所以就没有理由否定假设,只能接受假设,认为因子A 不显著。另一方面,F 值大于F α(φA,φe)的概率是5%,也就是只有5%的机会出现大于F α(φA,φe)的F 值,这是小概率事件,如果小概率事件居然发生了,则可认为情况异常,假设不可信,必须否定假设,因子A 是显著的]3230[ ,对其他因子的显著性检验完全类似。

第四章数据分析

4.1 图像分析的步骤

首先选取一幅图像,然后对其进行运算,计算出该图像的均值、标准差和熵,另外对其进行轮廓提取,在对轮廓提取后的图像进行主观评价,分出等级。对多幅图片重复此工作,分别对图像的四因素均值、标准差和熵取三水平,做出正交表。图像参数计算流程图:

读入图像

计算均值计算标准

计算熵轮廓提取

主观评价

质量

做正交表

计算正交

结束

开始

图4-1 参数计算流程

在图4-1中做正交表之前的数据要先记录下来,选取合适的因素和水平,然后做正交表。

表4-2图像的因素

编号均值标准差熵轮廓提取评价

1 127.00 1.0000 0 1

2 127.8775 127.4780 1.1035 1

3 195.5200 99.3681 2.1566 3

4 221.3072 26.5970 1.0740 5

5 201.5405 63.650

6 1.2490 5

6 183.5114 53.9072 2.4055 2

7 140.6076 42.8636 7.3585 2

8 114.4016 42.8618 7.3557 3

9 107.0972 62.4836 7.8084 2

10 90.0702 51.0792 7.6008 4

11 170.6128 65.8444 1.9803 3

12 114.5284 49.6955 3.2430 2

13 125.4842 43.3969 7.1599 4

14 121.1349 56.5187 7.7038 4

15 105.0392 79.0253 7.5456 2

16 25.8021 57.5382 4.8198 3

17 120.6010 66.1312 7.7582 3

18 113.0225 66.0420 7.4769 2

19 120.3539 60.9980 7.8701 2

20 116.1902 45.9865 7.5301 2

图1 4号原图图2 6号原图

[汇集]放射科图像质量评价记录

[汇集]放射科图像质量评价记录 放射科图像质量评价结果汇总 汇总季度:2011年第四季度 汇总时间:2011年1月2日 汇总人员:孙万龙 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中1份CR照片有异物(纽扣),1份CR照片有遮线器边影,1份CR片颗粒粗糙。 2.1份CR照片忘记填写患者的年龄。 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为91%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人的资料,务必将这些资料填写完整、准确无误。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.激光打印机、阅读器应有专人定期清洁维护,保持打印机和阅读器所在房间清洁,无关人员禁止入内,减少灰尘带入。 放射科图像质量评价结果汇总汇总季度:2012年第一季度 汇总时间:2012年4月4日 汇总人员:于清山 汇总结果;

本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中2份CR照片有异物(分别为拉链和内衣上的胶字)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CR片有伪影,系IP板污染。 4.CT片未查出问题,本次抽查结果为甲级片率为93%,无废片。整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人身上有无异物,并耐心地说服病人摘除异物,取得病人的配合。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.IP板暗盒影轻取轻放,竖立直放,避免碰撞、震动、跌落,远离放射源,避免强光照射,IP板应定期用脱脂棉及无水乙醇清洁。 放射科图像质量评价结果汇总汇总季度:2012年第二季度 汇总时间:2012年7月3日 汇总人员:郑和永 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中4份CR照片有异物(分别为文胸上的金属、拉链、内衣上的胶字和身上贴的膏药)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为90%,无废片。 整改措施:

评价B超诊断图像质量的指标综述优选稿

评价B超诊断图像质量 的指标综述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

评价B超诊断图像质量的指标综述 [摘要]医学超声诊断仪在临床上用于疾患和计划生育已得到了肯定,并广泛应用。正因为如此,它的图像质量问题涉及到人类的生命健康及生命繁衍。如何提高图像质量,尽可能获取真实丰富的人体信息,便成为该领域内科学研究和技术攻关的焦点。而影响图像质量的指标就是其中至关重要的环节。本文对这些技术参数进行了分析和描述。 [关键词]B超伪像图像质量分辨率探测深度盲区 1B超 B超成像的基本原理就是:向人体发射一组超声波,按一定的方向进行扫描。根据监测其回声的延迟时间,强弱就可以判断脏器的距离及性质。经过电子电路和计算机的处理,形成了我们今天的B超图像。B超的关键部件就是我们所说的超声探头(probe),其内部有一组超声换能器,是由一组具有压电效应的特殊晶体制成。这种压电晶体具有特殊的性质,就是在晶体特定方向上加上电压,晶体会发生形变,反过来当晶体发生形变时,对应方向上就会产生电压,实现了电信号与超声波的转换。 2.伪像 B超成像过程中形成的伪像包括混响伪像,声像图伪像,镜面伪像 (mirror?artifacts),旁瓣伪像,切片厚度伪像等。 2.1混响伪像:是指超声垂直照射到平整的界面如胸壁、腹壁上,超声波在探头和界面之间来回反射,所引起的多次反射。混响的形态呈等距离多条回声,回声强度依深度递减。 2.2声像图伪像:是指超声显示的断层图像与其相应的客观的解剖断面之间存在的差异。 2.3镜面伪像(mirror?artifacts):遇到深部的界面,即声阻抗差异较大的平整大界面时,在近侧的结构同时在图像的该界面另一侧出现的伪像。当肋缘下向上扫查右肝和横膈时,声束遇到膈-肺界面而发生全反射和镜面伪像。膈下出现肝实质回声(实象),膈上

影像科图像质量评价

影像科图像与报告质量评价制度根据医院规定与科室具体情况及发展的要求,制定相应的质控、项目评价、改进措施制度。 一、科主任负责全部的质控指标检查CT检查由石应同志负责质控指标,普放检查由袁林同志负责质控指标MR 检查由黄静同志负责质控指标,报告书写由王大江同志负责质控指标。 二、要求各部门认真做好检查及报告质量的督查,对不合格的投照检查CT 扫描MR检查和相关不合格的报告要进行及时的修改更正,提出相应的改进措施及方案,做好相关的记录。 三、普放CR、DR 质控指标,登记时是否与患者的姓名、性别、年龄、检查部位一致,投照时是否与申请单一致,扫描图像后投照部位的左右一定要标记准确,对投照条件使用不佳的图像不要传输,一定要重新投照后再传输,对打印胶片时,外科需要手术的患者和内科有病变的片子一定要打1:1 的胶片,对普放报告要及时检查描述的准确性,左右的描述及意见,及诊断意见的正确与否。 CT 质控量指标,CT 扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 MR质控量指标,MR扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及

时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 六、对修改的检查及报告要做好相关记录。 七、对不按照上述标准执行的按相关文件做相应的处理。

图像及报告质量评价小组成员及职责为加强影像科图像质量管理和质量控制,保证影像科诊断质量与医疗安全,并明确图像质量评价小组。 一、影像科图像及报告质量评价小组成员如: 组长: 成员: 技师组: 诊断组: 二、影像科图像与报告质量评价小组职责: (一)影像科应建立图像及报告质量评价小组,小组成员应包括影像科主任、影像诊断医师、影像科技师。 (二)影像科图像与报告质量评价小组负责图像与报告质量评价的全面实施,组织定期和不定期的核查。 (三)影像科技师负责检查扫描过程的质量控制,发现图像质量问题应及时解决。 (四)影像诊断医师负责诊断操作的质量控制和图像诊断质量控制,发现问题应及时解决并与技师沟通。 (五)每月进行图像质量评价记录。

图像质量评价标准

图像质量评价标准图像质量评价标准 文件编号 : 秘密等级:发出部门 : 颁发日期 : 版本号 : 发送至: 抄送: 总页数: 附件: 主题词:图像质量评价 编制 : 审核 : 批准 : 文件分发清单 分发部门/人数量签收人签收日期分发部门/人数量签收人签收日期 文件更改历史 更改日期版本号更改原因

图像质量评价标准 目录 1.目的及适用范围 (3) 2.规范性参考文件 (3) 3.术语与定义: (3) 3.1 主观评价 (3) 3.2 测试图像 (3) 4.一般要求 (3) 4.1测试样品 (3) 4.2测试环境 (3) 4.3 图片的选择 (4) 4.4测试项目 (4) 4.4.1静态图片测试项目: (4) 4.4.2 动态视频测试项目: (4) 4.5 评价方法及等级等级 (5) 4.5.1评价方法描述 (5) 4.5.2 数据处理 (6) 5.测试项目及评价方法 (6) 5.1 完整性及几何失真测试图 (6) 5.2 清晰度测试 (7) 5.3 图像层次、灰阶测试 (9) 5.4 色彩饱和度测试 (10) 5.6 抖动及噪点测试 (14) 5.7图像暗场特性 (17) 5.8图像亮场特性 (18) 5.9 图像完整性及失真测试 (19) 5.10 RGB重合性测试 (19) 5.11 移动字幕处理能力测试 (20) 5.11视频显示流畅性测试: (21) 5.12运动图像帧速度测试 (21) 5.13运动图像同步性测试 (21) 5.14运动图像更新程度测试 (21) 6.附件:评价项目及表格 (22) 第2页共22页

1.目的及适用范围 标准规定了公司显示产品图像质量测试的静态图片及动态视频。 标准的目的是给出图像质量的评价、判断标准及方法。 标准适用于公司所有显示产品(DLP、LCD、IDB等)的设计、生产、调试评价的依据。 2.规范性参考文件 GB/T 9379-1988 电视广播接收机主观试验评价方法 GY/T 228 -2007 标准清晰度数字电视主观评价 3.术语与定义: 3.1 主观评价 subjective assessment 直接利用观察者对被测系统质量的主观反应来确定被测系统性能的一种方法 3.2 测试图像 test materials 用于公司显示产品图像质量评价的、在图像内容上有特定要求的静止图像或动态视频。 4.一般要求 4.1测试样品 测试样品(以下简称“样品”)应是在逐批检查的合格产品批次中随机抽取的合格品。 4.2测试环境 本标准的测试环境应使用经过确认的标准测试设备,标准测试设备是指正常工作状态下的显示单元及显示系统(显示系统需确认颜色一致、机械位置、光学性能参数等均已达到系统要求或客户使用要求);标准的DVD播放机;标准的信号源;标准连接线缆。

图像质量评价2

基于空间域统计特性的图像质量评价 摘 要 煤矿井下的安全高效生产离不开清晰流畅的监控图像,针对煤矿井下拍摄图像光照不均匀的问题,对常见的几类可以改善非均匀照度图像视觉效果的增强理论进行了深入研究,并对在实际应用中遇到的问题和存在的缺点进行分析,分析了灰度图像空间域统计特性相关参数,对图像质量做出了客观评价。实验表明,直方图均衡化图像增强方法在处理低照度图像方面有不错的视觉效果,但由于它在均衡化过程中会对灰度级进行四舍五入,使得部分灰度级丢失,容易造成图像失真。 关键字:图像增强 空间域统计特性 质量评价 随着科学技术的发展,视频监控系统应用越来越广泛。例如煤矿井下,调度人员了解井下重要设备、人员及生产过程的现场状况,不仅能直观的监视和记录井下现场的安全生产情况,也能为事后分析事故提供相关第一手图像资料。由于井下摄像头采集到图像受到光照影响,导致在获取图像信息后对图像分析和决策等变得困难,因此在进行图像分析与决策前首先对图像信息进行增强,并对增强后图像进行相关参数分析,对图像质量进行客观评价,以获的人们认为较为理想的处理结果以及算法。 1 图像增强算法 基于图像处理所应用的空间不同,图像增强方法通常可以分为频域增强方法和空域增强方法两类。频域增强方法首先将图像看成一种二维信号,然后再对该信号进行基于域变换的增强。常见的空域图像增强算法有直接对比度增强、反锐化掩模增强和直方图均衡化增强。 1.1 直接对比度增强 直接对比度增强是根据特定的算法规则对图像中每一个像素点的灰度值进行逐点改变,以此达到改变图像灰度值动态范围的目标。在图像处理中,一般将输出图像的像素点灰度值与其对应的输入图像的像素点灰度值之间的对数关系称之为图像的对数变换,该种方法常常用来压缩高灰度值范围、扩展低灰度值范围,从而使低灰度值的图像细节更加清晰的目标。其一般公式为: (,)log[(,)1]g x y C f x y =+ (1) 在式(1)中,(,)g x y 表示变换后输出图像像素点灰度值,而(,)f x y 表示变换前输入图像像素点灰度值,其中log 表示以10为底。同时,上式也可选用自然对数ln 为底。 为了增加变换的动态范围,适当考虑变换的灵活性,可以加入一些调制参数,上述公式可变为: log[(,)1](,)log f x y g x y a b c +=+ (2) 式中a 、b 、c 是可以选择的变换参数,(,)1f x y +项是为了避免对零求对数而设置。当(,)0f x y =时,log[(,)1]0f x y +=,则(,)g x y a =。而a 是(,)g x y 轴上的截距,可见参数a 的大小反映确定变换曲线的起始位置的变化关系,b 、c 两个参数可以确定变换曲线的曲率[1-2]。对数变化曲线如图1所示。 (,) f x y (,) g x y

超声科图像质量评价细则讲解学习

超声科图像质量评价 细则

超声科图像质量评价评分标准细则 附表(一) 1.图像清晰度(10分)(一副图像显示不清晰扣1分) 2.图像均匀性(10分)(一副图像不均匀扣1分) 3.超声切面标准性(10分)(一副图像不标准扣1分,漏一个常规切面扣2分) 4.伪相识别(10分)(缺伪像图像相关图像扣5分) 5.彩色血流显示情况(10分)(缺规定血流图像一副扣2分)6.图像于超声报告相关性(10分)(缺报告相关性常规切面图像一副扣1分) 7.图像有无斑点、雪花细粒、网纹(10分)(一副图像有斑点、雪花细粒、网纹扣1分) 8.图像与临床疾病相关性(10分)(报告所选图像与疾病相关性无关扣5分) 9.探测深度(要占1/2以上)(10分)(一副图像未达到1/2扣1分) 10.工作频率与脏器相关性(10分)(一副图像工作频率与脏器相关性不符扣1分)

超声科图像质量评价评分标准 1.图像清晰度 10分 2.图像均匀性 10分 3.超声切面标准性 10分 4.伪相识别 10分 5.图像与报告相关性 10分 6.彩色血流显示情况 10分 7.图像有无斑点、雪花细粒、网文 10分 8.图像与临床疾病相关性 10分 9.探测深度(要占1/2以上) 10分 10.工作频率与脏器相关性 10分

超声科图像质量评价细则 附表(二) 按照超声科常规切面操作规范规定细则如下: 1.肝脏:正常肝脏6个切面(第一肝门,门静脉二维图像,门静脉 血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像)。 异常肝脏8个切面(第一肝门,门静脉二维图像,门静脉血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像,异常部位二维及彩色) 2.胆囊:正常1个切面(显示胆囊颈部,胆囊底部) 异常2个切面(显示胆囊颈部+胆囊底部,异常部位图像) 3.胰腺:正常2个切面(胰腺的二维+彩色血流图像,显示胰头, 胰体,胰尾,) 4.异常3个切面(胰头,胰体,胰尾,胰腺彩色血流图像) 5.脾脏:正常2个切面(脾脏全长及脾门彩色血流图像) 异常3个切面(脾脏全长切面,异常二维及彩色血流图像)5.泌尿系统:正常双肾2个切面(肾脏纵切面二维及彩色血流图像) 异常双肾4个切面(肾脏纵切面二维及彩色血流图像,异常部位二维及彩色) 6.膀胱:正常2个切面(膀胱三角,膀胱底部)

超声科图像质量评价详细介绍

超声科图像质量评价评分标准细则 附表(一) 1.图像清晰度(10分)(一副图像显示不清晰扣1分) 2.图像均匀性(10分)(一副图像不均匀扣1分) 3.超声切面标准性(10分)(一副图像不标准扣1分,漏一个常规切面扣2分) 4.伪相识别(10分)(缺伪像图像相关图像扣5分) 5.彩色血流显示情况(10分)(缺规定血流图像一副扣2分)6.图像于超声报告相关性(10分)(缺报告相关性常规切面图像一副扣1分) 7.图像有无斑点、雪花细粒、网纹(10分)(一副图像有斑点、雪花细粒、网纹扣1分) 8.图像与临床疾病相关性(10分)(报告所选图像与疾病相关性无关扣5分) 9.探测深度(要占1/2以上)(10分)(一副图像未达到1/2扣1分) 10.工作频率与脏器相关性(10分)(一副图像工作频率与脏器相关性不符扣1分)

超声科图像质量评价评分标准 1.图像清晰度10分 2.图像均匀性10分 3.超声切面标准性10分 4.伪相识别10分 5.图像与报告相关性10分 6.彩色血流显示情况10分 7.图像有无斑点、雪花细粒、网文10分 8.图像与临床疾病相关性10分 9.探测深度(要占1/2以上)10分 10.工作频率与脏器相关性10分

超声科图像质量评价细则 附表(二) 按照超声科常规切面操作规范规定细则如下: 1.肝脏:正常肝脏6个切面(第一肝门,门静脉二维图像,门静脉 血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像)。 异常肝脏8个切面(第一肝门,门静脉二维图像,门静脉血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像,异常部位二维及彩色) 2.胆囊:正常1个切面(显示胆囊颈部,胆囊底部) 异常2个切面(显示胆囊颈部+胆囊底部,异常部位图像) 3.胰腺:正常2个切面(胰腺的二维+彩色血流图像,显示胰头, 胰体,胰尾,) 4.异常3个切面(胰头,胰体,胰尾,胰腺彩色血流图像) 5.脾脏:正常2个切面(脾脏全长及脾门彩色血流图像) 异常3个切面(脾脏全长切面,异常二维及彩色血流图像) 5.泌尿系统:正常双肾2个切面(肾脏纵切面二维及彩色血流图像)异常双肾4个切面(肾脏纵切面二维及彩色血流图像,异常部位二维及彩色) 6.膀胱:正常2个切面(膀胱三角,膀胱底部) 异常4个切面(膀胱三角,膀胱底部,异常部位二维及彩色)7.前列腺:正常3个切面(前列腺纵切面,前列腺横切面,前列腺彩

放射科图像质量评价标准(精编文档).doc

【最新整理,下载后即可编辑】 放射科图像质量评价标准 (2016年修订) 一、一般要求 1、X线照片满足影像诊断要求。 2、X线照片标识,左右标志正确,检查号、检查日期、检查医院、被检者姓名、性别、年龄、图像放大比例或比例尺等信息完整。 3、图像放大比例一致:正位片与侧位片或斜位片放大比例一致。同一部位不同时间摄片放大比例一致。 4、整体画面布局美观,影像无失真变形。 二、优质图像标准 1、密度合适 2、层次分明 3、摄影体位标准: 4、照射野大小合适: 被检部位影像全部在照片上显示,但不应过多包含非检查部位,尤其是内分泌腺;重点组织界限清楚;脊柱应含相邻椎体;四肢长骨应至少包括1个邻近关节;肋骨应包括第1或第12肋骨。 5、无体外伪影。 6、无运动伪影。 7、特殊检查体位应标注。 8、胶片无污片、划片、粘片、指纹。

放射科图像质量评价内容及方法 项目评价内容和方法扣分 图像对比看电脑图片或胶片图像,对比欠佳5 图像层次看电脑图片或胶片,层次欠分明 5 投照野控制投照野过大或包括不全 5 伪影不影响诊断的伪影,如内衣扣、金属线5 有可能误认为病变的伪影 50 伪影范围较大,掩盖诊断区。50 呼吸伪影或运动伪影5~10 抽查胶片,有污片、划片、粘片 5 图像标识不完整 5 图像重要标识如左右、姓名、性别错误 50 摄影体位不标准15~20 特殊体位无标注,如腹部立位位,水平侧位10 摄影部位错误对照申请单和摄影部位是否一致50 图像放大比例抽查胶片,图像放大比例是否一致5 用片统一,尺寸合理抽查胶片 5 质量等级评价方法:结合DR影像质量要求,每份图像为100分,扣完为止。 优:≥90分良:80~89分合格:70~79分不合格:<70分

影像科图像质量评价标准

影像科图像质量评价标准 This model paper was revised by the Standardization Office on December 10, 2020

影像科图像质量评价标准 一、图像质量保证组织和人员职责分工 影像科建立图像质量保证工作小组,小组成员包括高年资影像诊断医师、影像科技师、影像设备维修人员相关专业工程技术人员。 影像质量保证工作小组成员中,影像设备维修人员或相关专业技术人员负责影像设备正常运行,保证影像设备运行稳定,参数准确,发生设备故障及时检修。技师负责检查扫描过程的质量控制。影像诊断医师负责诊断操作的质量控制和影像诊断质量报告的控制。 二、图像质量评价制度 影像技术质控每周一次。根据影像质量评价标准,评价影像质量,分析不合格片和差级片原因,提出改进办法。 在日常诊断读片的同时,从诊断角度,对影像质量进行评价,发现图像质量不能满足影像诊断,技师与技术人员沟通,提出改进建议。 定期进行影像诊断与手术、病理或出院诊断随访对比,统计影像诊断与临床诊断的符合率,分析误诊漏诊原因,不断总结经验,提高诊断正确性。 三、图像质量评价标准 (一)一般要求 1、被检查器官和结构在检查范围内可观察到。主要结构、解剖结构、解剖细节清晰辨认,影像能满足影像诊断要求。

2、照片中的诠释齐全、无误、左右标志、检查号、检查日期、检查医院、被检查者姓名、性别、年龄、图像放大比例或比例尺等信息完整。正确放置铅号码,以分辨前后位或前位。 3、用片统一,用片寸合理,分隔规范,照射野大小控制适当。成人胸片不小于11x14英寸,成人四肢不小于10x12英寸。 4、图像放大比例一致:正位片、侧位片或斜位片放大比例不小于65%。 5、整体画面布局美观,影像无失真变形。 6、对辐射敏感的组织和器官应尽可能的屏蔽。 7、对不同检查部位的影像质量标准参照《影像科管理与技术规范》X片影像标准。 (二)优质片标准 1、密度合适(照片中诊断密度范围控制在—之间); 2、层次分明(不同部位要求不同); 3、摄影体位正确:被检组织影像全部在照片上显示;重点组织界限清楚;脊柱应含相邻椎体;四肢应包括临近关节;肋骨应包括第1或第12肋骨;组织影像应符合正常的解剖投影,无失真; 4、无技术操作缺陷:无体外阴影,无污片、划片、粘片、水迹、指纹、漏光、静电等阴影 (三)良级片标准

影像图像质量评价表.doc

影像图像质量评价: 以每天阅片的形式对每一张图像进行评价,参加人员前一天夜班、当天 上夜班、白班、技术组人员。 日期:影像号:操作员:分数:内容备注扣分标准扣分 1. 图像对比看电脑图片或胶片图像,对比欠佳 5 2. 图像层次看电脑图片或胶片图像,层次欠分明 5 3 被检查者部位、肢位置不正、照片上下、左右边缘不对 5 体位置准确,照片上称、体位不标准 下、左右边缘对称 4. 人为伪影如未去除金属物引起的伪影10 5. 运动伪影不影响诊断5-10 6. 设备伪影不影响诊断5-10 7. 拼音错误如‘ o’拼为‘ e’等10 8. 图像标识不完整 5 9. 图像重要标识错如左右 . 姓名 . 性别错误50 误 10. 造影片造影剂造影剂显影不均匀、充盈吧不满意55 显影均匀、充盈满意 11 图像后处理方法不准确,不影响诊断10 12. 检查部位错误对照申请单和检查部位是否一致50 日期 : 影像号:操作员:分数:内容备注扣分标扣分 准 1. 图像对比看电脑图片或胶片图像,对比欠佳 5 2. 图像层次看电脑图片或胶片图像,层次欠分明 5 3 被检查者部位、肢位置不正、照片上下、左右边缘不对 5 体位置准确,照片上称 下、左右边缘对称 4. 人为伪影如未去除金属物引起的伪影10 5. 运动伪影不影响诊断5-10 6. 设备伪影不影响诊断5-10 7. 拼音错误如‘ o’拼为‘ e’等 8. 图像标识不完整 5 9. 图像重要标识错如左右 . 姓名 . 性别错误50 误 10. 造影片造影剂造影剂显影不均匀、充盈吧不满意55 显影均匀、充盈满意 11 图像后处理方法不准确,不影响诊断10 12. 检查部位错误对照申请单和检查部位是否一致50 质量等级评价方法:结合影像质量要求,每份图像为100 分,扣完为止 优:≥ 90 分良: 80~89 分差: 70~79分不合格:< 70 分

影像科图像质量评价标准

影像科图像质量评价标准 一、图像质量保证组织和人员职责分工 影像科建立图像质量保证工作小组,小组成员包括高年资影像诊断医师、影像科技师、影像设备维修人员相关专业工程技术人员。 影像质量保证工作小组成员中,影像设备维修人员或相关专业技术人员负责影像设备正常运行,保证影像设备运行稳定,参数准确,发生设备故障及时检修。技师负责检查扫描过程的质量控制。影像诊断医师负责诊断操作的质量控制和影像诊断质量报告的控制。 二、图像质量评价制度 影像技术质控每周一次。根据影像质量评价标准,评价影像质量,分析不合格片和差级片原因,提出改进办法。 在日常诊断读片的同时,从诊断角度,对影像质量进行评价,发现图像质量不能满足影像诊断,技师与技术人员沟通,提出改进建议。 定期进行影像诊断与手术、病理或出院诊断随访对比,统计影像诊断与临床诊断的符合率,分析误诊漏诊原因,不断总结经验,提高诊断正确性。 三、图像质量评价标准 (一)一般要求 1、被检查器官和结构在检查范围内可观察到。主要结构、解剖结构、解剖细节清晰辨认,影像能满足影像诊断要求。 2、照片中的诠释齐全、无误、左右标志、检查号、检查日期、检查医院、被检查者姓名、性别、年龄、图像放大比例或比例尺等信息完整。正确放置铅号码,以分辨前后位或前位。

3、用片统一,用片寸合理,分隔规范,照射野大小控制适当。成人胸片不小于11x14英寸,成人四肢不小于10x12英寸。 4、图像放大比例一致:正位片、侧位片或斜位片放大比例不小于65%。 5、整体画面布局美观,影像无失真变形。 6、对辐射敏感的组织和器官应尽可能的屏蔽。 7、对不同检查部位的影像质量标准参照《影像科管理与技术规范》X片影像标准。 (二)优质片标准 1、密度合适(照片中诊断密度范围控制在—之间); 2、层次分明(不同部位要求不同); 3、摄影体位正确:被检组织影像全部在照片上显示;重点组织界限清楚;脊柱应含相邻椎体;四肢应包括临近关节;肋骨应包括第1或第12肋骨;组织影像应符合正常的解剖投影,无失真; 4、无技术操作缺陷:无体外阴影,无污片、划片、粘片、水迹、指纹、漏光、静电等阴影 (三)良级片标准 优级片中有1项不足,但对影像诊断影响不大。 (四)差级片标准 优级片中有2项以上不足,尚能用于诊断。 (五)废片标准 不能用于诊断

图像质量评价概述

在图像信息技术被广泛应用的情况下,对图像质量的评估变成一个广泛而基本的问题。由于图像信息相对于其它信息有着无可比拟的优点,因此对图像信息进行合理处理成为各领域中不可或缺的手段。在图像的获取、处理、传输和记录的过程中,由于成像系统、处理方法、传输介质和记录设备等不完善,加之物体运动、噪声污染等原因,不可避免地带来某些图像失真和降质,这给人们认识客观世界、研究解决问题带来很大的困难。 比如,在图像识别中,所采集到的图像质量直接影响识别结果的准确性和可靠性;又如,远程会议和视频点播等系统受传输差错、网络延迟等不利因素影响,都需要在线实时的图像质量监控,以便于服务提供商动态地调整信源定位策略,进而满足服务质量的要求;在军事应用方面,战场监视和打击评估的效果也取决于无人机等航拍设备所采集到的图像或视频的质量。因此,图像质量的合理评估具有非常重要的应用价值。 从有没有人参与的角度区分,图像质量评价方法有主观评价和客观评价两个分支。主观评价以人作为观测者,对图像进行主观评价,力求能够真实地反映人的视觉感知;客观评价方法借助于某种数学模型,反映人眼的主观感知,给出基于数字计算的结果。 图像质量的主观评价 主观评价只涉及人作出的定性评价,它以人为观察者,对图像的优劣作出主观的定性评价。对于观察者的选择一般考虑未受训练的“外行”或者训练有素的“内行”。该方法是建立在统计意义上的,为保证图像主观评价在统计上有意义,参加评价的观察者应该足够多。主观评价方法主要可分为两种:绝对评价和相对评价。 绝对评价 所谓绝对评价,是由观察者根据自己的知识和理解,按照某些特定评价性能对图像的绝对好坏进行评价。通常,图像质量的绝对评价都是观察者参照原始图像对待定图像采用双刺激连续质量分级法(Double Stimulus Continuous Scale,DSCQS),给出一个直接的质量评价值。具体做法是将待评价图像和原始图像按一定规则交替播放持续一定时间给观察者,然后在播放后留出一定的时间间隔供观察者打分,最后将所有给出的分数取平均作为该序列的评价值,即该待评图像的评价值。国际上也对评价尺度做出了规定,对图像质量进行等级划分并用数字表示,也称为图像评价的5分制“全优度尺度”。(见表1.1)

放射科图像质量评价记录42681

汇总季度:2011年第四季度 汇总时间:2011年1月2日 汇总人员:孙万龙 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中1份CR照片有异物(纽扣),1份CR照片有遮线器边影,1份CR片颗粒粗糙。 2.1份CR照片忘记填写患者的年龄。 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为91%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人的资料,务必将这些资料填写完整、准确无误。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.激光打印机、阅读器应有专人定期清洁维护,保持打印机和阅读器所在房间清洁,无关人员禁止入内,减少灰尘带入。

汇总季度:2012年第一季度 汇总时间:2012年4月4日 汇总人员:于清山 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中2份CR照片有异物(分别为拉链和内衣上的胶字)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CR片有伪影,系IP板污染。 4.CT片未查出问题,本次抽查结果为甲级片率为93%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人身上有无异物,并耐心地说服病人摘除异物,取得病人的配合。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.IP板暗盒影轻取轻放,竖立直放,避免碰撞、震动、跌落,远离放射源,避免强光照射,IP板应定期用脱脂棉及无水乙醇清洁。

汇总季度:2012年第二季度 汇总时间:2012年7月3日 汇总人员:郑和永 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中4份CR照片有异物(分别为文胸上的金属、拉链、内衣上的胶字和身上贴的膏药)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为90%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人身上有无异物,并耐心地说服病人摘除异物,取得病人的配合。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.激光打印机、阅读器应有专人定期清洁维护,保持打印机和阅读器所在房间清洁,无关人员禁止入内,减少灰尘带入。

影像科报告诊断质量评价标准

诊断报告书写格式和质量评价标准 (一)诊断报告书写格式参照我科《影像诊断报告书写规范》(二)承诺出报告时间: 1、X线平片报告:急诊30分钟,普通2小时;胃肠等特殊造影:当日出片。 2、CT、MR报告:急诊30分钟,普通24小时内(隔日上午9点30 分前)。 3、特殊病例在与患者及家属沟通后于48小时内发出。 (三)诊断报告质量评价标准 1、良好的影像诊断报告:书写格式符合诊断报告书写规范。要求项目齐全,影像描写如实反映影像学改变,影像描述与诊断意见一致,重点突出,条理清楚,术语准确,字迹清析。 2、不符合影像诊断报告要求的:①影像描述与诊断意见矛盾;②书写过于简单;③用语不规范;④病灶主要象征未描述错误;⑤字迹不清。 (四)读片及随访质量控制 1、每工作日读片对疑难病例进行集中讨论,讨论意见及时作出记录。 2、每月及时登记病例随访结果并利用PACS及相关系统统计诊断符合率,结合诊断随访结果每月进行一次随访病例学习,并对重点病例进行讨论,提高医师诊断水平。 读片及报告书写制度 (1)每日集体读片,安排在上午晨会后,由当班医师选出疑难病例和典型病例进行讨论和示教,以便集思广益,提高诊疗质量。 (2)读片应密切结合病史、体格检查及其他必要的检查资料进行充分讨论,遇有疑难问题时,可协同超声、核医学和各有关科室会诊解决。 (3)诊疗报告必须按要求逐项填写,描述和分析应符合规范要求,并作出诊断或提出参考意见。报告医师应签全名,并由主治医师或以上人员负责复审签发。 (4)诊疗报告发出:急诊检查于完成后半小时内出报告(从检查结束到报告时间),普通X线平片2小时内出报告,CT、MR普通检查当日出报告,CT、MR特殊病例及特殊检查48小时内出报告。特殊情况

影像科图像质量评价

影像科图像质量评价Newly compiled on November 23, 2020

影像科图像与报告质量评价制度 根据医院规定与科室具体情况及发展的要求,制定相应的质控、项目评价、改进措施制度。 一、科主任负责全部的质控指标检查CT检查由石应同志负责质控指标,普放检查由袁林同志负责质控指标MR 检查由黄静同志负责质控指标,报告书写由王大江同志负责质控指标。 二、要求各部门认真做好检查及报告质量的督查,对不合格的投照检查CT 扫描MR检查和相关不合格的报告要进行及时的修改更正,提出相应的改进措施及方案,做好相关的记录。 三、普放CR、DR 质控指标,登记时是否与患者的姓名、性别、年龄、检查部位一致,投照时是否与申请单一致,扫描图像后投照部位的左右一定要标记准确,对投照条件使用不佳的图像不要传输,一定要重新投照后再传输,对打印胶片时,外科需要手术的患者和内科有病变的片子一定要打1:1 的胶片,对普放报告要及时检查描述的准确性,左右的描述及意见,及诊断意见的正确与否。 CT 质控量指标,CT 扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 MR质控量指标,MR扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求

的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 六、对修改的检查及报告要做好相关记录。 七、对不按照上述标准执行的按相关文件做相应的处理。 图像及报告质量评价小组成员及职责 为加强影像科图像质量管理和质量控制,保证影像科诊断质量与医疗安全,并明确图像质量评价小组。 一、影像科图像及报告质量评价小组成员如: 组长: 成员: 技师组: 诊断组: 二、影像科图像与报告质量评价小组职责: (一)影像科应建立图像及报告质量评价小组,小组成员应包括影像科主任、影像诊断医师、影像科技师。 (二)影像科图像与报告质量评价小组负责图像与报告质量评价的全面实施,组织定期和不定期的核查。 (三)影像科技师负责检查扫描过程的质量控制,发现图像质量问题应及时解决。 (四)影像诊断医师负责诊断操作的质量控制和图像诊断质量控制,发现问题应及时解决并与技师沟通。

(推荐)放射科图像质量评价标准

放射科图像质量评价标准 (2016年修订) 一、一般要求 1、X线照片满足影像诊断要求。 2、X线照片标识,左右标志正确,检查号、检查日期、检查医院、被检者姓名、性别、年龄、图像放大比例或比例尺等信息完整。 3、图像放大比例一致:正位片与侧位片或斜位片放大比例一致。同一部位不同时间摄片放大比例一致。 4、整体画面布局美观,影像无失真变形。 二、优质图像标准 1、密度合适 2、层次分明 3、摄影体位标准: 4、照射野大小合适: 被检部位影像全部在照片上显示,但不应过多包含非检查部位,尤其是内分泌腺;重点组织界限清楚;脊柱应含相邻椎体;四肢长骨应至少包括1个邻近关节;肋骨应包括第1或第12肋骨。 5、无体外伪影。 6、无运动伪影。 7、特殊检查体位应标注。 8、胶片无污片、划片、粘片、指纹。

放射科图像质量评价内容及方法 项目评价内容和方法扣分 图像对比看电脑图片或胶片图像,对比欠佳5图像层次看电脑图片或胶片,层次欠分明 5 投照野控制投照野过大或包括不全 5 伪影不影响诊断的伪影,如内衣扣、金属线 5

有可能误认为病变的伪影50 伪影范围较大,掩盖诊断区。50 呼吸伪影或运动伪影5~10 抽查胶片,有污片、划片、粘片 5 图像标识不完整5 图像重要标识如左右、姓名、性别错误50 摄影体位不标准15~20 特殊体位无标注,如腹部立位位,水平侧位10 摄影部位错误对照申请单和摄影部位是否一致 50 图像放大比例抽查胶片,图像放大比例是否一致5 用片统一,尺寸合理抽查胶片 5 质量等级评价方法:结合DR影像质量要求,每份图像为100分,扣完为止。 优:≥90分良:80~89分合格:70~79分不合格:<70分 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

图像质量评价的研究现状及其展望

图像质量评价的研究现状及其展望 [摘要] 符合人眼视觉系统特性的图像质量评价方法,不仅可以更好地评价图像处理算法的优劣,而且能够指导图像处理的思路和方法。近年来,图像质量评价的研究发展迅速。本文重点阐述模拟人眼视觉系统的两类客观评价方法,并介绍以这两类方法为基本框架的各种改进方法。然后针对图像融合、复原、压缩三个主要的处理领域的质量评价的特殊性进行分析。总结认为该领域的发展方向是对视觉感知生理心理学及HVS模型进一步研究,建立计算更简便、评价更准确的通用评价方法,并发展无参考的质量评价方法。 [关键词]图像质量评价HVS CSF SSIM 1 引言 图像质量评价一直是图像处理领域研究的基础和重点。图像质量评价方法包括:主观评价(MOS: Mean Opinion Score)方法和客观评价方法。因为人眼是图像处理系统的终端,所以主观评价方法是最合理的图像质量评价方法。但是该方法需要组织观察者对失真图像进行评分,难以用数学模型表达加以应用[1]。所以MOS 方法一般用来验证客观评价方法的有效性。目前应用最广泛的客观质量评价方法包括:均方差(Mean Squared Error,MSE)、峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)方法。试验证明MSE/PSNR对于单纯的噪声图像质量评价比较准确,但是对失真降质图像的评价是不可靠的,所以需要研究符合人眼视觉的评价方法。 自从60年代大量的视觉感知生理心理学试验[2]得到了人类视觉系统(Human Visual System,HVS)模型,图像质量评价的研究得到迅速发展。不但建立了各种模拟人眼视觉系统特性的数学模型,而且在此基础上提出了各种适用于特定图像处理领域的评价方法。但是,至今没有形成一些公认的、通用的评价方法,以至于目前图像各研究领域仍然停留在利用MSE/PSNR评价算法优劣的阶段。本文讨论模拟人眼视觉系统特性的图像质量评价方法,分析各种方法的思路及应用特点,总结其发展脉络及研究趋势。 2模拟人眼视觉系统的客观评价方法 过去的几十年中,研究者们致力于寻找符合HVS特性的图像质量评价数学模型。其中研究最多也比较成熟的主要包括两种,一是自底向上模拟HVS低阶组成结构的模型,二是自顶向下模拟HVS整体功能的模型。前者对应基于HVS感知误差测量的方法,后者对应基于结构相似度(Structure Similarity,SSIM)理论的方法。 基于HVS的图像质量评价利用已知的HVS特性,通过测量感知误差来评价质量,但由于目前对HVS认知有限,该方法需要基于多个假设前提,另外使用简单模拟的模型来预测自然界的复杂图像也存在诸多问题[3]。

医学影像质量评价制度及标准量

医学影像质量评价制度及标准量 影像科诊断组及技术组每月底进行一次医学影像质量评价,总结经验改正不足,并由专人负责详细记录结果。 一、常规X线影像质量标准 医学影像质量控制标准制定目的,是以最低辐射剂量、最高影像质量,为临床提供可信赖的医学影像信息,他由医学影像检查的正当化和成像过程最优化来体现。医学影像质量综合评价应以成像过程最优话的三条主线,给出影像综合评价标准: 1.以诊断学要求为依据 2.以能满足诊断学要求的技术条件为保证 3.同时充分考虑减少影像检查的辐射计量 二、常规X线影像质量控制 1.诊断学要求 2.影像显示标准 影像显示标准系指在照片影像上能显示特别重要的解剖 结构和细节,并用可见程度来表示其性质。可见程度的表征可分为三级:隐约可见:解剖学结构可探知,但细节未显示,只特征可见;可见:解剖学结构的细节可见,但不能清晰辨认,即细节显示;清晰可见:解剖学结构的细节能清晰辨认,即细节清晰。以上规定的解剖学结构和细节能在照片上看

到。从而有助于作出准确的诊断。这取决于正确的体位设计、病人的配合以及成像系统的技术技能。 3.重要的影像细节: 这些标准为在照片影像上应显示的重要解剖学细节提供 了最小尺寸的定量信息。这些细节也许是病理性的,也可能是不存在的。 4.体位显示标准:体位显示标准以相应摄影位置的体位显示标准为依据。 5.成像技术标准:为满足诊断学要求所必需的成像技术的合理组合。成像技术条件的参数是:摄影设备、标称焦点、管电压、总滤过、滤线栅比、屏/片体系感度、摄影距离、自动暴光控制探测野、暴光时间、防护屏蔽,共10项。 6受检查者计量标准:影像综合评价标准同时给出各种摄影类型的标准体型下,病人体表入射剂量的参考值。 7.照片影像特定解剖点的密度标准范围:密度是构成影像的基础,对比度是影像形成的本质。文本件设定的不同部位特定解剖点的密度范围,作为定量评价照片影像质量标准的参考值。

图像质量评价标准

图像质量评价标准 | 一、评价参数 (一)对比度 1、客观对比度:物体本身的差异,由被检体的密度和厚度决定。 2、x线对比度:穿过人体后,x线强度上的差异。 3、图像对比度:x线照片上所表现出的密度差。 客观对比度是成像的基础,图像对比度是图像的最基本特征。 下图很好的说明了以上三个对比度: 1、客观对比度:骨骼、软组织、气体存在密度上的差别。 2、X线对比度:透过不同组织形成的X线强度上的差别。 3、图像对比度:图像上形成的黑白差别。 对比度分辨率 是指将客观对比度转换成图像对比度的能力。 分辨率高的成像装置可将低对比的组织区分开;分辨率低的成像装置只能将高对比的组织区分开。例如:CT与平片。 左图是普通平片,属于分辨率低的装置(X线机)摄取的片子;右图是胸部CT横断片,属于高分辨率的装置(CT机)摄取的片子。对低对比的组织的区分能力,CT高于平片(即分辨率高的成像装置可将低对比的组织区分开),而平片只能区分差别较大组织(即分辨率低的成像装置只能将高对比的组织区分开)。

(二)模糊 1、指物体的边界不清楚。 2、原因:每个物点的像向周围有不同程度的扩展。 3、影响:降低了图像的清晰度。 空间分辨率:区分相互靠近的两个物体细节的能力。用LP/mm表示。是评价影像设备性能优劣的重要指标。 以下是电影《神话》的一幅海报,表现的是图像的模糊。 下图是一幅分辨率较高的图片,图像较清晰。 (三)噪声 1、定义:图像中可随机观察到的光密度变化。

2、表现为:斑点、雪花、网纹等。 3、原因:x线光子的随机分布。 4、描述:信噪比(SNR)。 SNR越大,图像质量越好。 (四)伪影 1、定义:指图像中出现的被检体不存在的虚假信息。 2、影响:干扰正常结构,造成误诊。 (五)畸变 定义:指物体的形态、大小和位置不同程度的改变。 (1)因观察角度不同,圆柱体的上面成为了椭圆。 (2)射线方向不同,产生了两种不同效果。左图垂直照射,两个物体的形态基本不变;右图斜射,使两个原本分离的物体,看起来象是一体的。

相关主题
文本预览
相关文档 最新文档