当前位置:文档之家› (完整版)第三章习题解答

(完整版)第三章习题解答

(完整版)第三章习题解答
(完整版)第三章习题解答

第三章双极型三极管基本放大电路

3-1 选择填空

1.晶体管工作在放大区时,具有如下特点______________。 a. 发射结正偏,集电结反偏。 b. 发射结反偏,集电结正偏。 c. 发射结正偏,集电结正偏。 d. 发射结反偏,集电结反偏。 2.晶体管工作在饱和区时,具有如下特点______________。

a. 发射结正偏,集电结反偏。

b. 发射结反偏,集电结正偏。

c. 发射结正偏,集电结正偏。

d. 发射结反偏,集电结反偏。 3.在共射、共集、共基三种基本组态放大电路中,电压放大倍数小于1的是______组态。

a. 共射

b. 共集

c. 共基

d. 不确定

4.对于题3-1图所示放大电路中,当用直流电压表测得U CE ≈V CC 时,有可能是因为______,测得U CE ≈0时,有可能是因为________。

题3-1图

cc

R L

a.R B 开路

b. R C 开路

c. R B 短路

d. R B 过小

5.对于题3-1图所示放大电路中,当V CC =12V ,R C =2k Ω,集电极电流I C 计算值为1mA 。用直流电压表测时U CE =8V ,这说明______。

a.电路工作正常

b. 三极管工作不正常

c. 电容C i 短路

d. 电容C o 短路 6.对于题3-1图所示放大电路中,若其他电路参数不变,仅当R B 增大时,U CEQ 将______;若仅当R C 减小时,U CEQ 将______;若仅当R L 增大时,U CEQ 将______;若仅更换一个β较小的三极管时,U CEQ 将______;

a.增大

b. 减小 c . 不变 d. 不确定 7.对于题3-1图所示放大电路中,输入电压u i 为余弦信号,若输入耦合电容C i 短路,则该电路______。

a.正常放大

b. 出现饱和失真

c. 出现截止失真

d. 不确定 8. 对于NPN 组成的基本共射放大电路,若产生饱和失真,则输出电压_______失真;若产生截止失真,则输出电压_______失真。

a.顶部

b. 低部

9. 当输入电压为余弦信号时,如果PNP 管共射放大电路发生饱和失真,则基极电流i b 的波形将___________,集电极电流i c 的波形将__________,输出电压u o 的波形将________。

a.正半波消波

b. 负半波消波 c . 双向消波 d. 不消波

10. 当输入电压为余弦信号时,如果NPN 管共射放大电路发生饱和失真,则基极电流i b 的

波形将___________,集电极电流i c 的波形将__________,输出电压u o 的波形将________。 a.正半波消波 b. 负半波消波 c . 双向消波 d. 不消波

11. 为了使高阻输出的放大电路(或高阻信号源)与低阻负载(或低阻输入电阻的放大电路)很好地配合,可以在高阻输出的放大电路与负载之间插入________。

a.共射电路

b. 共集电路 c . 共基电路 d. 任何一种组态的电路 12.为了使一个低阻输出的放大电路(或内阻极小的电压源)转变为高阻输出的放大电路(或内阻尽可能大的电流源),可以在低阻输出的放大电路的后面接入_____________。

a.共射电路

b. 共集电路 c . 共基电路 d. 任何一种组态的电路 13.在单级放大电路中,若输入电压为余弦波形,用示波器同时观察输入u i 和输出u o 的波形。当为CE 电路时,u i 和u o 的相位_________;当CC 电路时,,u i 和u o 的相位_________;当CB 电路时,,u i 和u o 的相位________。

a.同相

b. 反相

c. 相差90o

d. 不确定

14.可以放大电压又能放大电流的是_________组态放大电路;可以放大电压又不能放大电流的是_________组态放大电路;可以放大电流又不能放大电压的是_________组态放大电路;能够进行功率放大的是___________组态放大电路。

a.CE

b. CC

c. CB

d. 任意组态

15.在共射、共集、共基三种基本放大电路组态中,电压放大倍数小于1的是_______组态;输入电阻最大的是________组态,最小的是________;输出电阻最大的是________组态,最小的是________。

a.CE

b. CC

c. CB

d. 任意组态

16.放大电路在低频信号作用下电压放大倍数下降的原因是存在___________电容和_______电容;而在高频信号作用下的电压放大倍数下降的主要原因是存在_________电容。 a.耦合 b. 旁路 c . 三极管极间

17.三极管的特征频率f T 点对应的β为_______。

a. β=1

b. β=21

c. β=0.5

d. β=3

18. 某三极管的带宽增益积为1MHz 。如果输入信号为单一频率的余弦波,电路能够进行信号放大的最高频率为_________。 a. 1MHz b. 2MHz c. 500kHz d. 700kHz

19. 某放大电路无耦合电容。利用单一频率的余弦信号进行测试,测试结果是:低频增益为A U ,提高输入信号频率,频率f 1时信号增益为21

A U ,频率f 2时输入信号增益为21

A U ,频

率f 3时信号增益为0.1A U 。电路的通频带宽为__________。 a. f 1 b. f 2 c. f 3

20 为了简化分析过程,分析题3-1图电路的低频特性时,可以忽略_________电容的影响。

分析中频特性时,忽略_________电容的影响。分析高频特性时,忽略_________电容的影响。 a.耦合 b. 旁路 c . 三极管极间

3-1答案

1.d. 2.c 3.b 4.a,d 5. d. 6. a,a,c,a 7.c 8.b,a 9.d,a,a 10.d,a,b

11.b 12.c 13.b,a,a 14. a,c,b,d 15.b,b,c,c,b 16.a,b,c 17.a 18. a 19. a 20. c, abc, ab

3-2 说明利用三极管组成放大电路的基本原则。

解答:不论那种组态的放大电路,如果希望能够正常放大信号,必须遵守以下原则。 1. 有极性连接正确的直流电源、合理的元件参数,以保证三极管发射结正偏、集电结反偏

和合适的静态工作点,使三极管工作在放大区。

2. 信号能够从放大电路的输入端 加到三极管上,经过三极管放大后,又能传给放大电路

的下一级或负载。

3-3题3-3图所示电路中,已知硅型晶体三极管发射结正向导通电压为0.7V ,β=100, 临界放大饱和时三极管压降(集电极-发射极之间)为0.3V 。判断电路中各晶体管的工作状态。

题3-3图

R C =10K Ω

(a )

R C

(b )R C =10K Ω

+5V (c )

R E =1K Ω-5V

分析:判断晶体三极管的工作状态并计算各级电流问题的分析方法如下。 方法一:

1. 对于NPN 管,若U BE <0.7V ,则管子截止;对于PNP 管,若U BE >-0.7V ,或U EB <0.7V

则管子截止;

2. 若NPN 管,U BE >0.7V ,PNP 管U EB >0.7V ,则说明三极管处于放大状态或饱和状态。

对于NPN 管,如果假设三极管工作在放大区,计算结果得管子压降U CE >0.3V (设小功率三极管饱和压降为0.3V ),说明管子确实工作在放大状态。如果计算结果得管子压降U CE <0.3V ,说明管子工作在饱和区。

对于PNP 管,如果假设三极管工作在放大区,计算结果得管子压降U EC >0.3V ,说明管子确实工作在放大状态。如果计算结果得管子压降U EC <0.3V ,说明管子工作在饱和区。 方法二:

当确定三极管处于非截止状态时,计算三极管的基极电流I B 及饱和电流集电极电流I CMAX (U EC =0.3V ),如果βI B I CMAX ,说明电路处于饱和状态

方法二似乎更为简单。 解:

1. 列写输入回路方程,计算基极电流

BE B B 220.7

130μA 10U I R --=

==

电路饱和时,集电极电流

CC CES CMAX C 120.3 1.17mA 10V U I R --=

==

B CMAX I I β>Q

所以晶体管处于饱和状态。

2.计算基极电流

BE B B 0.80.80.710μA 10U I R --=

==

电路饱和时,集电极电流

CC CES CMAX C 120.3

1.17mA 10V U I R --=

==

B CMAX I I β

所以晶体管处于放大状态。

3.计算基极电流

()()EE BE B B E 50.741.8μA

1211001V U I R R β--=

==++++?

电路饱和时,集电极电流CC EE CES B C E 550.3

0.88mA

101V V U I R R +-+-=

==++

CMAX B I I >βΘ

所以晶体管处于饱和状态。

3-4 试画出用PNP 、NPN 型三极管组成的单管共射放大电路的原理图,标出电源电压的极性,静态工作电流I B 、I C 的实际方向及静态电压U BE 、U CE 的实际极性。 解:用PNP 型三极管组成的单管共射放大电路的原理图如题3-4图(a)所示。

其中静态工作电流I B 、I C 的实际方向如图中箭头所示,静态电压U BE <-0.7V 、U CE <-0.3V 。 用NPN 型三极管组成的单管共射放大电路的原理图如题3-4图(b)所示。 其中静态工作电流I B 、I C 的实际方向如图中箭头所示,静态电压U BE >0.7V 、U CE >0.3V 。

R L

题3-4图

(a )

R L

(b )

3-5电路如图3-5所示。说明这些电路能否对交流电压信号进行线性放大,为什么?

(a )

(b )

(c )

(d )

(e )

u -+

u o -

题3-5图

+u i -u -

+u o -

分析:解决此问题需要进行以下几个方面的判断。

1. 判别三极管是否满足发射结正偏、集电结反偏的条件,具备合适的静态工作点。 2. 判断有无完善的直流通路。 3. 判断有无完善的交流通路。

4. 在前三个条件满足的条件下,最后根据电路给出的参数进行计算,根据计算结果判断

三极管是否工作在放大区。但是如果电路没有给出电路参数,该步骤可以省略。默认电路参数取值合适。 解:

a 不能。没有直流偏置,不能提供合适的静态工作点。

b 不能。电源V CC 使发射结反偏,不能提供合适的静态工作点。

c 不能。基极电压V BB 使发射结满足正偏条件,但是集电结不是反偏,电路不具备合适的静态工作点。

d 不能。2C 电容使集电极交流接地,从而使输出电压交流部分为零。

e 能。有合适的直流偏置电路,输入能加到三极管上,输出也能够送到负载上。

3-6 请画出如题3-6图中放大电路的直流通路。

(a )

u -

+o -题3-6图

V CC

(b )

+o -

R

CC

(c )

+o -

V CC

(d )

+

o -

R CC

分析:在画直流通路时,电容开路,电感短路。 解:题3-6图中的直流通路如题3-6图a 所示。

V CC

(a )

V CC

(b )

R CC

C

CC

(c )

R V CC

(d )

题3-6图a

3-7请画出如题3-6图中放大电路的交流通路。

分析:在画交流通路时,直流电源短路,电源内阻近似认为0;当电容、电感值较大时,近似认为电容短路,电感开路。

解:题3-6图中的交流通路如题3-7图所示。

L

(a )

u

-

+u o

-

题3-7图

(b )

+o -

(c )

+

u o -

(d )

+

u o -

3-8已知晶体管的β=50,U BE =0.7V ,求题3- 8图所示电路的工作点。

题3-8图

R L 12k Ω

+u s -

解:经过V CC 、R C 、R B1、U BE 到地的回路电压方程为

()()()

()()()()CC BQ C BQ B1BE CC BE BQ C B1CQ BQ CEQ CC BQ C 10120.7

32μA 151********μA 1.6mA 1125132μA 37.1V V I R I R U U U I R R K K

I I U V I R ββββ-+--=--∴=

==++?+∴=?=?=∴=-+=-??=Q

3-9 放大电路如题3-9图所示。已知V CC =3V ,U B =0.7V ,R C =3 kΩ,R B =150 kΩ,晶体管VT 的输出特性曲线如题3-9图a 所示。试求: 1.放大电路的静态工作点I CQ 和U CEQ ;

2.若R L =∞,求输入电压u i 为正弦电压时输出最大不失真电压的幅值; 3.若R L =7kΩ,输出最大不失真电压的幅值。

题3-9图

u -

+u o -

R

题3-9图a

0.5

解: 1.

放大电路的静态工作点I CQ 和U CEQ 计算如下。 根据题3-9图所示电路列写直流负载线方程如下:

CQ

C CQ CC CEQ 33I R I V U -=-=

分别令I C =0,U CE =0,代入直流负载线方程,得到负载线上两个坐标点,M (3,0),N (0,1),连接M 、N 得到直流负载线。

题3-9图b 题3-9直流负载线

0.5

I

根据直流通路,得基极静态工作电流为

()

μA 315k 1507

03B BE CC BQ ..R U V I =-=-=

直流负载线MN 与i B =I B =15.3μA 的输出特性曲线的交点Q 就是静态工作点。Q 点坐标

V

25.1mA

38.0μA 3.15CEQ CQ BQ ===U I I

2. R L =∞时,输入电压u i 为正弦电压时输出最大不失真电压的幅值的计算。

若R L =∞,交流负载线斜率与直流负载线斜率相同,为k 31

1//1C L C =

=R R R

如题3-9图b 所示。

0.5

I CQ

题3-9图c 题3-9交流负载线

输入电压u i 为正弦电压时输出最大不失真电压的幅值为

[

]2

max ,o 1max ,o max ,o ,min U U U =

()()ces o,max1CEQ ces o,max 2C L

o,max VT 0.3V,1.250.30.95//0.383 1.14V

1//0.95V

CQ CQ C L U U U U V I U I R R R R U ==-=-=≈

==?=∴=如果三极管的饱和压降则

3.若R L =7kΩ,交流负载线斜率为

k 1.21

k 7//k 31//1L C =

=R R

输入电压u i 为正弦电压时输出最大不失真电压的幅值为

()()

()()

()o,max o,ma1o,max 2o,max1CEQ ces CQ o,max 2CQ C L C L o,max min , 1.250.30.95V //0.38 2.10.80V 1

//0.80V U U U U U u I U I R R R R U ??=??

=-=-==

==?=∴=Q Q

3-10 用图解法确定题3-10图所示放大电路的静态工作点Q 。已知该电路三极管的输出特性如题3-10图a 所示,其中V CC =12V 。

题3-10图

+u o -

题3-10图a

0.8

分析:利用图解法确定放大电路静态工作点Q 的步骤如下: (1)画出放大电路的直流通路。

(2)根据直流通路列出直流负载线方程,在三极管输出特性坐标平面内画直流负载线。 (3)用估算法(或图解法)求出静态工作点I BQ 。

(4)查出直流负载线与i B =I BQ 的输出特性曲线的交点,该交点就是静态工作点Q 。 解:

根据题3-10图所示电路列写直流负载线方程整理如下。

()C L L1CE C CC C O C CC CE R R

R U I V R I I V U ???? ?

?++-=+-=

整理得

()()C

C

CC C

C

L L1C L L1CC C L L1L

L1CE 5.35.104

622462246226

22I I V I R R R R R R V R R R R R U -=++?+-+++=

+++-+++=

分别令I C =0,U CE =0,代入直流负载线方程,得到负载线上两个坐标点,M (0,3),N

(10.5,0),连接M 、N 得到直流负载线。

题3-10图b

0.8

根据直流通路,得

CC BE B B 120.7

37μA 300k V U I R --=

==

直流负载线MN 与i B =I B =37μA 的输出特性曲线的交点Q 就是静态工作点。Q 点坐标为

V

7.5mA

3.1μA 37CEQ CQ BQ ===U I I

3-11 用图解法确定题3-11图电路的静态工作点。已知电路中三极管的β=100, U BE =0.3V

(锗管),管子的饱和压降U CES =0.3V 。当其它参数不变,仅R C 增加时,Q 点将如何移动?为了使三极管不进入饱和状态,R C 应该如何选择?

V CC

20V

题3-11图

解:

1.估算静态工作点。

根据直流通路,得

()

()()V3

10

5.0

2.1

20

mA

10

μA

100

5.0

101

148

3.0

20

1

E

C

C

CC

CE

B

C

E

B

BE

CC

B

=

?

+

-

=

+

-

=

=

=

?

+

-

=

+

+

-

=

R

R

I

V

U

I

I

R

R

U

V

I

β

β

所以电路的静态工作点为

V

3

mA

10

μA

100

CEQ

B

CQ

BQ

=

=

=

=

U

I

I

I

β

2.电路的直流负载线方程为

()()CQ

C

E

C

CQ

CC

CEQ5.0

20I

R

R

R

I

V

U+

-

=

+

-

=

直流负载线示意图如题3-11图a所示。

题3-11图a

当其他参数不变,R C 增加时,直流负载线的斜率减小,但此时基极电流I BQ 并没有变化,所以静态工作点Q1将向左边移动到Q2,向饱和区方向移动。

为了使三极管不进入饱和区,U CE 的最小值为三极管饱和压降,U CE =U CES =0.3V ,此时

()CEQ CC CQ C,max E CES CC CQ E CES

C,max CQ

C 20100.50.3

1.47k Ω

10

1.47k Ω

U V I R R U V I R U R I R =-+=---?-∴=

=

=∴

3-12如题3-12图所示放大电路中,已知晶体管的β=100,U BE =-0.3V 。 1.估算直流工作点I CQ 和U CEQ 。

2.若偏置电阻R B1、R B2分别开路,试分别估算集电极电位U C 值,并说明各自的工作状态; 3

.若R B1开路时,要求I CQ =2mA ,试确定R B2应该取多大的值。

V CC 12v

题3-12图

解:

1.直流工作点I CQ 和U CEQ 估算。

()()()()

()()()B2B CC B1B2CC B EB BQ E

CQ B CEQ CC BQ E CQ C

470

1211.63V 154701211.630.3

0.53μA 1101 1.3k 53mA 1121010.53μA 1.3k 53mA 2k 11.82V

R U V R R V U U I R I I U V I R I R βββ=

=?=++----∴=

==+?∴==∴=-+-=-??-?=

2.若偏置电阻R B1开路,管子的静态工作电流为

()()()

()()

CC EB BQ B2E C BQ C EC CC BQ C BQ E

120.30.020mA 1470k 1100 1.3k

1000.02024V 11241010.020 1.3 5.4V V U I R R U I R U V I R I R ββββ--=

==++++?∴=?=??==-?-+=--??=Q 集电极电位()

此时三极管的发射结正偏、极点结反偏,管子处于放大状态。 若偏置电阻R B2开路,

00

C BQ =∴=U I

此时管子处于截止状态。 3.若R B1开路时,有

()()()

()CC EB

BQ B2E

CQ BQ

CC EB

B2E

2B212mA 2mA 1120.3

1002

1100 1.3453.7k Ω

CQ B V U I R R I I I V U R R R K R ββββ-=

++∴=?=-?

=++-?=++?=若要求,有解得

3-13在电路如题3-13图中,已知V CC =6V ,U BEQ =0.7V ,R S =500Ω,R C =4kΩ,R B =300kΩ,晶体管VT 的h fe =50,r bb’=300Ω。 (1)估算直流工作点I CQ 。

(2)画出放大电路的简化h 参数等效电路。

(3)估算放大电路的输入电阻和R L =∞时的电压增益A U 。 (4)若R L =4kΩ时,求电压增益A U =u O /u i 和A US =u O /u S 。

u -

+

u O -

题3-13图

解:

1.估算直流工作点I CQ 。

()()C BE BQ B CQ fe B 60.7

17.7μA 300k

5017.7μA 0.89(mA)C V U I R I h I --=

==∴=?=?=

2.放大电路的简化h 参数等效电路如题3-13图a 。

题3-13图a

R i

o

+u O -

+

u -

3.估算放大电路的输入电阻和R L =∞时的电压增益A U 。

()

()113

k 77.1//k 450//k Ω75.177.1//300//k Ω77.1017

.026

300mV 26ie

L C f e U ie BQ bb'ie -=∞-

=-

=====+=+

=h R R h A K K h R r I r h B i

4.若R L =4 kΩ时,电压增益A U 和A US 的计算。

()

()

fe C L U ie

i US U i s //504k //4k 57

1.77k

1.77

57440.5 1.77

h R R A h r A A r R =-=-

=-=

=-?=-++

3-14 电路如题 3-14图所示。已知V CC =12V ,R B1=51kΩ,R B2=10kΩ,R C =3kΩ,R E =1kΩ,三

极管的r be =0.7kΩ,β=30。试求: 1.电路的静态工作点。 2.画出交流小信号等效电路 3.电压放大倍数。 4.输入电阻和输出电阻。 5.C E 开路时的电压放大倍数。

+u o -

题3-14图

解:

1.电路的静态工作点。

利用戴维南定理进行计算。

基极的电位

V

97.112105110

CC B2B1B2B ≈?+=+=

V R R R U

基极静态电流

()()μA

32130110//517

.097.11//E 2B 1B BEQ B BQ =?++-=++-=

R R R U U I β

基极静态电流 mA

96.03230BQ CQ =?=?=I I β

集电极-发射极之间的电压

()()V

16.81396.012E C CQ CC E EQ C CQ CC CEQ =+?-=+-≈--=R R I V R I R I V U

2.交流小信号等效电路如题3-14图a 所示。

+u i -

o

题3-14图a 题3-14图放大电路低频小信号等效电路

3.电压放大倍数的计算

6

.1287.03

30be C be b C b U -=?-=-=-=

r R r i R i A ββ

4.输入电阻和输出电阻的计算。

输入电阻k Ω7.07.0//10//51////be B2B1i ≈==r R R r 输出电阻k Ω3C o ==R r

5. C E 开路时电压放大倍数的计算。此时等效电路如题3-14图b 所示。

o

题3-14图 题3-14图无C E 时低频小信号等效电路

电压放大倍数为()()84

.21317.03

3011E be C E b be b C b U -=?+?-=++-=++-=R r R R i r i R i A ββββ 3-15 在题3-15图所示放大电路中,已知晶体管的U BE =0.7V ,β=100,r bb’=100Ω,R s =200Ω,各电容足够大。

1.画出直流通路;计算静态工作点。

2.画出交流通路及交流等效电路,计算r i 、r O 、A U 、A Us 。

V CC

u -

+

u O -

题3-15图

解:

1. 直流通路如题3-15图a ;静态工作点计算如下。

R C 2k Ω

题3-15图a

V CC

()()CC BE BQ 12C CQ BQ 63CEQ CC BQ C 100.7

30.8μA

1100k 101210030.8μA 3.08mA

11010130.810210 3.8V V U I R R R I I U V I R βββ---===++++?=?=?==-+=-????=()

2.交流通路及交流等效电路如题3-15图b 、题3-15图c 所示.。

R R L

Ω题3-15图c

R i

o

题3-15图b

u -

+u o -

+u s -

+u o -

r i 、A U 、A Us 、r O 的计算如下。

()()()()

()

ie bb'3

BQ i 1ie o 2C 23L U ie

i Us U i s 26m V 26

100944Ω30.810

//20k//9440.94k Ω//2k //80k 1.98k Ω////10080k //20k //2k 125

0.944k

0.94

1251030.940.2

h r I r R h r R R R R R A h r A A r R β-=+

=+=?∴======?=-=-=-=

=-?=-++

3-16 如题3-16图所示电路,已知R s =50Ω,R B1=33KΩ,R B2=10KΩ,R C =1KΩ,R L =1KΩ,晶体管的h ie =1.2 KΩ,β=50。

1.画出交流通路及简化h 参数等效电路。 2.计算r i 、A U 、A Us 、r O 。

题3-16图

u -

+u o -

解:

1.交流通路及简化h 参数等效电路如题3-16图a 、题3-16图b 。

R

L +

u O

-

题3-16图a 图题3-16图电路的交流通路

题3-16图b 图题3-16图的交流等效通路

+u O -

R +u -

2.r i 、A U 、A Us 、r O 计算如下。

()()()

()20

2105.0k 04.1k

04.121

k

2.1k 1//k 150//k Ω1k Ω04.1k 2.1//k 10//k 33////U s i i US ie

L C U C o ie 21i -=?+-=+=

-=?-

=-======A R r r A h R R A R r h R R r β

3-17 已知下列电压传输函数为

()()()

()()43U 10j 10j 10j 10j 100j .1++++=

ωωωωωA

行程问题典型例题及答案详解

行程问题典型例题及答案详解 行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。 例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间? 分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则 回来时的时间为:,即回来时用了3.5小时。评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。 例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少? 分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。 解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。 答:汽车在后半段路程时速度加快8千米/时。 例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时? 分析:求时间的问题,先找相应的路程和速度。 解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时) 答:行驶这段路程逆水比顺水需要多用10小时。

计量经济学题库及答案

计量经济学题库 一、单项选择题(每小题1分) 1.计量经济学是下列哪门学科的分支学科(C)。 A.统计学 B.数学 C.经济学 D.数理统计学 2.计量经济学成为一门独立学科的标志是(B)。 A.1930年世界计量经济学会成立B.1933年《计量经济学》会刊出版 C.1969年诺贝尔经济学奖设立 D.1926年计量经济学(Economics)一词构造出来 3.外生变量和滞后变量统称为(D)。 A.控制变量 B.解释变量 C.被解释变量 D.前定变量4.横截面数据是指(A)。 A.同一时点上不同统计单位相同统计指标组成的数据B.同一时点上相同统计单位相同统计指标组成的数据 C.同一时点上相同统计单位不同统计指标组成的数据D.同一时点上不同统计单位不同统计指标组成的数据 5.同一统计指标,同一统计单位按时间顺序记录形成的数据列是(C)。 A.时期数据 B.混合数据 C.时间序列数据 D.横截面数据6.在计量经济模型中,由模型系统内部因素决定,表现为具有一定的概率分布的随机变量,其数值受模型中其他变量影响的变量是( A )。 A.内生变量 B.外生变量 C.滞后变量 D.前定变量7.描述微观主体经济活动中的变量关系的计量经济模型是( A )。 A.微观计量经济模型 B.宏观计量经济模型 C.理论计量经济模型 D.应用计量经济模型 8.经济计量模型的被解释变量一定是( C )。 A.控制变量 B.政策变量 C.内生变量 D.外生变量9.下面属于横截面数据的是( D )。 A.1991-2003年各年某地区20个乡镇企业的平均工业产值 B.1991-2003年各年某地区20个乡镇企业各镇的工业产值 C.某年某地区20个乡镇工业产值的合计数 D.某年某地区20个乡镇各镇的工业产值 10.经济计量分析工作的基本步骤是( A )。 A.设定理论模型→收集样本资料→估计模型参数→检验模型B.设定模型→估计参数→检验模型→应用

计量经济学习题及答案汇总

《 期中练习题 1、回归分析中使用的距离是点到直线的垂直坐标距离。最小二乘准则是指( ) A .使 ∑=-n t t t Y Y 1)?(达到最小值 B.使∑=-n t t t Y Y 1达到最小值 C. 使 ∑=-n t t t Y Y 1 2 )(达到最小值 D.使∑=-n t t t Y Y 1 2)?(达到最小值 2、根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为 ?ln 2.00.75ln i i Y X =+,这表明人均收入每增加 1%,人均消费支出将增加 ( ) A. B. % C. 2 D. % 3、设k 为回归模型中的参数个数,n 为样本容量。则对总体回归模型进行显著性检验的F 统计量与可决系数2 R 之间的关系为( ) ~ A.)1/()1()/(R 2 2---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. ) 1()1/(2 2R k R F --= 6、二元线性回归分析中 TSS=RSS+ESS 。则 RSS 的自由度为( ) 9、已知五个解释变量线形回归模型估计的残差平方和为 8002=∑t e ,样本容量为46,则随机误 差项μ的方差估计量2 ?σ 为( ) D. 20 1、经典线性回归模型运用普通最小二乘法估计参数时,下列哪些假定是正确的( ) A.0)E(u i = B. 2 i )V ar(u i σ= C. 0)u E(u j i ≠ ) D.随机解释变量X 与随机误差i u 不相关 E. i u ~),0(2 i N σ 2、对于二元样本回归模型i i i i e X X Y +++=2211???ββα,下列各式成立的有( ) A.0 =∑i e B. 0 1=∑i i X e C. 0 2=∑i i X e D. =∑i i Y e E. 21=∑i i X X 4、能够检验多重共线性的方法有( )

五年级行程问题经典例题

行程问题(一) 专题简析: 行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。 例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米 分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。两车同时出发,为什么甲车会比乙车多行64千米呢因为甲车每小时比乙车多行56-48=8(千米)。64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。 32×2÷(56-48)=8(小时) (56+48)×8=832(千米) 答:东、西两地相距832千米。 练习一 》 1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。学校到少年宫有多少米 2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米

例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米 分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。 [ (40×3-25×2-7)÷3=21(千米) 答:慢车每小时行21千米。 练习二 1,兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米 2,汽车从甲地开往乙地,每小时行32千米。4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地 & 例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东、西两村相距多少千米 分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米/小时)。 因此,东西两村的距离是15×(5-1)=60(千米)

工程热力学思考题答案,第三章

第三章 理想气体的性质 1.怎样正确看待“理想气体”这个概念?在进行实际计算是如何决定是否可采用理想气体的一些公式? 答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。 判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。若为理想气体则可使用理想气体的公式。 2.气体的摩尔体积是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol? 答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。只有在标准状态下摩尔体积为 0.022414m 3 /mol 3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异? 答:摩尔气体常数不因气体的种类及状态的不同而变化。 4.如果某种工质的状态方程式为pv =R g T ,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗? 答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。 5.对于一种确定的理想气体,()p v C C 是否等于定值?p v C C 是否为定

值?在不同温度下()p v C C -、p v C C 是否总是同一定值? 答:对于确定的理想气体在同一温度下()p v C C -为定值, p v C C 为定值。在不同温度下()p v C C -为定值,p v C C 不是定值。 6.麦耶公式p v g C C R -=是否适用于理想气体混合物?是否适用于实际 气体? 答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。 7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。但又曾得出结论,理想气体的热力学能、焓、熵只取决于温度,这两点是否矛盾?为什么? 答:不矛盾。实际气体有两个独立的参数。理想气体忽略了分子间的作用力,所以只取决于温度。 8.为什么工质的热力学能、焓、熵为零的基准可以任选?理想气体的热力学能或焓的参照状态通常选定哪个或哪些个状态参数值?对理想气体的熵又如何? 答:在工程热力学里需要的是过程中热力学能、焓、熵的变化量。热力学能、焓、熵都只是温度的单值函数,变化量的计算与基准的选取无关。热力学能或焓的参照状态通常取 0K 或 0℃时焓时为0,热力学能值为 0。熵的基准状态取p 0=101325Pa 、T 0=0K 熵值为 0 。 9.气体热力性质表中的h 、u 及s 0的基准是什么状态? 答:气体热力性质表中的h 、u 及s 0的基准是什么状态00(,)T P 00T K =

计量经济学习题与解答

第五章经典单方程计量经济学模型:专门问题 一、内容提要 本章主要讨论了经典单方程回归模型的几个专门题。 第一个专题是虚拟解释变量问题。虚拟变量将经济现象中的一些定性因素引入到可以进行定量分析的回归模型,拓展了回归模型的功能。本专题的重点是如何引入不同类型的虚拟变量来解决相关的定性因素影响的分析问题,主要介绍了引入虚拟变量的加法方式、乘法方式以及二者的组合方式。在引入虚拟变量时有两点需要注意,一是明确虚拟变量的对比基准,二是避免出现“虚拟变量陷阱”。 第二个专题是滞后变量问题。滞后变量包括滞后解释变量与滞后被解释变量,根据模型中所包含滞后变量的类别又可将模型划分为自回归分布滞后模型与分布滞后模型、自回归模型等三类。本专题重点阐述了产生滞后效应的原因、分布滞后模型估计时遇到的主要困难、分布滞后模型的修正估计方法以及自回归模型的估计方法。如对分布滞后模型可采用经验加权法、Almon多项式法、Koyck方法来减少滞项的数目以使估计变得更为可行。而对自回归模型,则根据作为解释变量的滞后被解释变量与模型随机扰动项的相关性的不同,采用工具变量法或OLS法进行估计。由于滞后变量的引入,回归模型可将静态分析动态化,因此,可通过模型参数来分析解释变量对被解释变量影响的短期乘数和长期乘数。 第三个专题是模型设定偏误问题。主要讨论当放宽“模型的设定是正确的”这一基本假定后所产生的问题及如何解决这些问题。模型设定偏误的类型包括解释变量选取偏误与模型函数形式选取取偏误两种类型,前者又可分为漏选相关变量与多选无关变量两种情况。在漏选相关变量的情况下,OLS估计量在小样本下有偏,在大样本下非一致;当多选了无关变量时,OLS估计量是无偏且一致的,但却是无效的;而当函数形式选取有问题时,OLS估计量的偏误是全方位的,不仅有偏、非一致、无效率,而且参数的经济含义也发生了改变。在模型设定的检验方面,检验是否含有无关变量,可用传统的t检验与F检验进行;检验是否遗漏了相关变量或函数模型选取有错误,则通常用一般性设定偏误检验(RESET检验)进行。本专题最后介绍了一个关于选取线性模型还是双对数线性模型的一个实用方法。 第四个专题是关于建模一般方法论的问题。重点讨论了传统建模理论的缺陷以及为避免这种缺陷而由Hendry提出的“从一般到简单”的建模理论。传统建模方法对变量选取的

计量经济学习题及全部答案

《计量经济学》习题(一) 一、判断正误 1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法。() 2.最小二乘法进行参数估计的基本原理是使残差平方和最小。() 3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为(n-1)。() 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0。() 5.总离差平方和(TSS)可分解为残差平方和(ESS)与回归平方和(RSS)之和,其中残差平方和(ESS)表示总离差平方和中可由样本回归直线解释的部分。() 6.多元线性回归模型的F检验和t检验是一致的。() 7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。() 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的 自相关。() 9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。() 10... DW检验只能检验一阶自相关。() 二、单选题

1.样本回归函数(方程)的表达式为( )。 A .i Y =01i i X u ββ++ B .(/)i E Y X =01i X ββ+ C .i Y =01??i i X e ββ++ D .?i Y =01??i X ββ+ 2.下图中“{”所指的距离是( )。 A .随机干扰项 B .残差 C .i Y 的离差 D .?i Y 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示( )。 A .当X 增加一个单位时,Y 增加1β个单位 B .当X 增加一个单位时,Y 平均增加1β个单位 C .当Y 增加一个单位时,X 增加1β个单位 D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指( )。 A .剩余平方和占总离差平方和的比重 B .总离差平方和占回归平方和的比重 C .回归平方和占总离差平方和的比重 D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估

七年级行程问题经典例题

第十讲:行程问题分类例析 主讲:何老师 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流, 回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设 甲车共 行使了 xh ,则乙车行使了h x )(60 25-.(如图1) 依题意,有72x+48)(60 25-x =360+100,

解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有6425 57525575.=-++x x 解得:x=1320. 答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2.

哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而 对 于 能 量 方 程 来 说 ,其循环积分:

计量经济学例题

一、单项选择题 4.横截面数据是指(A )。 A .同一时点上不同统计单位相同统计指标组成的数据 B .同一时点上相同统计单位相同统计指标组成的数据 C .同一时点上相同统计单位不同统计指标组成的数据 D .同一时点上不同统计单位不同统计指标组成的数据 5.同一统计指标,同一统计单位按时间顺序记录形成的数据列是(C )。 A .时期数据 B .混合数据 C .时间序列数据 D .横截面数据 9.下面属于横截面数据的是( D )。 A .1991-2003年各年某地区20个乡镇企业的平均工业产值 B .1991-2003年各年某地区20个乡镇企业各镇的工业产值 C .某年某地区20个乡镇工业产值的合计数 D .某年某地区20个乡镇各镇的工业产值 10.经济计量分析工作的基本步骤是( A )。 A .设定理论模型→收集样本资料→估计模型参数→检验模型 B .设定模型→估计参数→检验模型→应用模型 C .个体设计→总体估计→估计模型→应用模型 D .确定模型导向→确定变量及方程式→估计模型→应用模型 13.同一统计指标按时间顺序记录的数据列称为( B )。 A .横截面数据 B .时间序列数据 C .修匀数据 D .原始数据 14.计量经济模型的基本应用领域有( A )。 A .结构分析、经济预测、政策评价 B .弹性分析、乘数分析、政策模拟 C .消费需求分析、生产技术分析、 D .季度分析、年度分析、中长期分析 18.表示x 和y 之间真实线性关系的是( C )。 A .01???t t Y X ββ=+ B .01()t t E Y X ββ=+ C .01t t t Y X u ββ=++ D .01t t Y X ββ=+ 19.参数β的估计量?β具备有效性是指( B )。 A .?var ()=0β B .?var ()β为最小 C .?()0ββ-= D .?()ββ-为最小 25.对回归模型i 01i i Y X u ββ+=+进行检验时,通常假定i u 服从( C )。 A .2i N 0) σ(, B . t(n-2) C .2N 0)σ(, D .t(n) 26.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2i i ?Y Y 0∑(-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑(-)=最小 27.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y =

五年级行程问题典型练习题

行程问题(一) 【知识分析】 相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。 【例题解读】 例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米, 两地相距多少千米? 【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。 (1)两车经过几小时相遇?8×2÷(90-85)=3.2小时 (2)两地相距多少千米?(90+85)×3.2=560(千米) 例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地 相距多少千米? 【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离 1.5×2×8÷(10-8)×=120千米 【经典题型练习】

1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车 每小时都比原来多行10千米,则2小时就相遇,求两地的距离? 2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8 分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?

【知识分析】 两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题 【例题解读】 例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米? 【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米 从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离 95×3—55=230千米 【经典题型练习】 1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相 遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离 2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站 80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?

工程热力学经典例题-第三章_secret

3.5 典型例题 例题3-1 某电厂有三台锅炉合用一个烟囱,每台锅炉每秒产生烟气733 m (已折算成标准状态下的体积),烟囱出口出的烟气温度为100C ?,压力近似为101.33kPa ,烟气流速为30m/s 。求烟囱的出口直径。 解 三台锅炉产生的标准状态下的烟气总体积流量为 烟气可作为理想气体处理,根据不同状态下,烟囱内的烟气质量应相等,得出 因p =0p ,所以 烟囱出口截面积 32V 299.2m /s 9.97m q A = == 烟囱出口直径 3.56m 讨论 在实际工作中,常遇到“标准体积”与“实际体积”之间的换算,本例就涉及到此问题。又例如:在标准状态下,某蒸汽锅炉燃煤需要的空气量3V 66000m /h q =。若鼓风机送入的热空气温度为1250C t =?,表压力为g120.0kPa p =。当时当地的大气压里为b 101.325kPa p =,求实际的送风量为多少? 解 按理想气体状态方程,同理同法可得 而 1g1b 20.0kPa 101.325kPa 121.325kPa p p p =+=+= 故 33V1101.325kPa (273.15250)K 66000m 105569m /h 121.325kPa 273.15kPa q ?+=?=? 例题3-2 对如图3-9所示的一刚性容器抽真空。容器的体积为30.3m ,原先容 器中的空气为0.1MPa ,真空泵的容积抽气速率恒定为30.014m /min ,在抽气工程中容器内温度保持不变。试求: (1) 欲使容器内压力下降到0.035MPa 时,所需要的抽气时间。 (2) 抽气过程中容器与环境的传热量。 解 (1)由质量守恒得 即 所以 V d d q m m V τ-= (3) 一般开口系能量方程 由质量守恒得 out d d m m =- 又因为排出气体的比焓就是此刻系统内工质的比焓,即out h h =。利用理想气体热力性质得

计量经济学习题及参考答案解析详细版

计量经济学(第四版)习题参考答案 潘省初

第一章 绪论 试列出计量经济分析的主要步骤。 一般说来,计量经济分析按照以下步骤进行: (1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项? 为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。 什么是时间序列和横截面数据? 试举例说明二者的区别。 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。 横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。 估计量和估计值有何区别? 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。在一项应用中,依据估计量算出的一个具体的数值,称为估计值。如Y 就是一个估计量,1 n i i Y Y n == ∑。现有一样本,共4个数,100,104,96,130,则 根据这个样本的数据运用均值估计量得出的均值估计值为 5.1074 130 96104100=+++。 第二章 计量经济分析的统计学基础 略,参考教材。

请用例中的数据求北京男生平均身高的99%置信区间 N S S x = = 4 5= 用 =,N-1=15个自由度查表得005.0t =,故99%置信限为 x S t X 005.0± =174±×=174± 也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在至厘米之间。 25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体? 原假设 120:0=μH 备择假设 120:1≠μH 检验统计量 () 10/2510/25 X X μσ-Z == == 查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。 某月对零售商店的调查结果表明,市郊食品店的月平均销售额为2500元,在下一个月份中,取出16个这种食品店的一个样本,其月平均销售额为2600元,销售额的标准差为480元。试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化? 原假设 : 2500:0=μH 备择假设 : 2500:1≠μH ()100/1200.83?480/16 X X t μσ-= === 查表得 131.2)116(025.0=-t 因为t = < 131.2=c t , 故接受原假 设,即从上次调查以来,平均月销售额没有发生变化。

计量经济学练习题答案完整

1、已知一模型的最小二乘的回归结果如下: i i ?Y =101.4-4.78X (45.2)(1.53) n=30 R 2=0.31 其中,Y :政府债券价格(百美元),X :利率(%)。 回答以下问题: (1)系数的符号是否正确,并说明理由;(2)为什么左边是i ?Y 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。 答:(1)系数的符号是正确的,政府债券的价格与利率是负相关关系,利率的上升会引起政府债券价格的下降。 (2)i Y 代表的是样本值,而i ?Y 代表的是给定i X 的条件下i Y 的期望值,即?(/)i i i Y E Y X 。此模型是根据样本数据得出的回归结果,左边应当是i Y 的期望值,因此是i ?Y 而不是i Y 。 (3)没有遗漏,因为这是根据样本做出的回归结果,并不是理论模型。 (4)截距项101.4表示在X 取0时Y 的水平,本例中它没有实际意义;斜率项-4.78表明利率X 每上升一个百分点,引起政府债券价格Y 降低478美元。 2、有10户家庭的收入(X ,元)和消费(Y ,百元)数据如下表: 10户家庭的收入(X )与消费(Y )的资料 X 20 30 33 40 15 13 26 38 35 43 Y 7 9 8 11 5 4 8 10 9 10 若建立的消费Y 对收入X 的回归直线的Eviews 输出结果如下: Dependent Variable: Y

Variable Coefficient Std. Error X 0.202298 0.023273 C 2.172664 0.720217 R-squared 0.904259 S.D. dependent var 2.233582 Adjusted R-squared 0.892292 F-statistic 75.55898 Durbin-Watson stat 2.077648 Prob(F-statistic) 0.000024 (1)说明回归直线的代表性及解释能力。 (2)在95%的置信度下检验参数的显著性。(0.025(10) 2.2281t =,0.05(10) 1.8125t =,0.025(8) 2.3060t =,0.05(8) 1.8595t =) (3)在95%的置信度下,预测当X =45(百元)时,消费(Y )的置信区间。(其中29.3x =,2()992.1x x -=∑) 答:(1)回归模型的R 2=0.9042,表明在消费Y 的总变差中,由回归直线解释的部分占到90%以上,回归直线的代表性及解释能力较好。 (2)对于斜率项,11 ? 0.20238.6824?0.0233 ()b t s b ===>0.05(8) 1.8595t =,即表明斜率项 显著不为0,家庭收入对消费有显著影响。对于截距项, 00? 2.1727 3.0167?0.7202 ()b t s b ===>0.05(8) 1.8595t =, 即表明截距项也显著不为0,通过了显著性检验。 (3)Y f =2.17+0.2023×45=11.2735 0.025(8) 1.8595 2.2336 4.823t ?=?= 95%置信区间为(11.2735-4.823,11.2735+4.823),即(6.4505,16.0965)。

行程问题经典例题

8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此 圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次 相遇.求此圆形场地的周长. 【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完 12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32 圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路 程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为 32 圈,所以此圆形场地的周长为480米. 行程问题分类例析 欧阳庆红 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上 分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离 和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追 及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25 分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续 行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程.

解答:设甲车共行使了xh,则乙车行使了h x) ( 60 25 -.(如图1) 依题意,有72x+48) ( 60 25 - x=360+100, 解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm就应返回. 依题意,有6 4 25 575 25 575 . = - + + x x 解得:x=1320. 答:这架飞机最远飞出1320km就应返回. 解法二:设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2. (575+25)t=600×2.2=1320. 答:这架飞机最远飞出1320km就应返回. 说明:飞机顺风与逆风的平均速度是575km/h,则有6 4 575 2 . = x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是) / (h km v v v v v x v x x 574 550 600 550 600 2 2 2 ≈ + ? ? = + ? = +逆 顺 逆 顺 逆 顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km,甲、乙两人的速度分别为21 km/h、14 km/h. (1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇? (2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题. 解答:(1)设经过xh两人首次相遇. 依题意,得(21+14)x=42, 解得:x=1.2. 因此,经过1.2小时两人首次相遇. (3)设经过xh两人第二次相遇. 依题意,得21x-14x=42×2, 图1

工程热力学习题(第3章)解答

第3章 热力学第一定律 3.5空气在压气机中被压缩。压缩前空气的参数为p 1=1bar ,v 1=0.845m 3/kg ,压缩后的参数为p 2=9bar ,v 2=0.125m 3/kg ,设在压缩过程中1kg 空气的热力学能增加146.5kJ ,同时向外放出热量55kJ 。压缩机1min 产生压缩空气12kg 。求:①压缩过程中对1kg 空气做的功;②每生产1kg 压缩空气所需的功(技术功);③带动此压缩机所用电动机的功率。 解:①闭口系能量方程 q=?u+w 由已知条件:q=-55 kJ/kg ,?u=146.5 kJ/kg 得 w =q -?u=-55kJ-146.5kJ=-201.5 kJ/kg 即压缩过程中压气机对每公斤气体作功201.5 kJ ②压气机是开口热力系,生产1kg 空气需要的是技术功w t 。由开口系能量守恒式:q=?h+w t w t = q -?h =q-?u-?(pv)=q-?u-(p 2v 2-p 1v 1) =-55 kJ/kg-146.5 kJ/kg-(0.9×103kPa×0.125m 3/kg-0.1×103kPa×0.845m 3/kg) =-229.5kJ/kg 即每生产1公斤压缩空气所需要技术功为229.5kJ ③压气机每分钟生产压缩空气12kg ,0.2kg/s ,故带动压气机的电机功率为 N=q m·w t =0.2kg/s×229.5kJ/kg=45.9kW 3.7某气体通过一根内径为15.24cm 的管子流入动力设备。设备进口处气体的参数是:v 1=0.3369m 3/kg , h 1=2826kJ/kg ,c f1=3m/s ;出口处气体的参数是h 2=2326kJ/kg 。若不计气体进出口的宏观能差值和重力位能差值,忽略气体与设备的热交换,求气体向设备输出的功率。 解:设管子内径为d ,根据稳流稳态能量方程式,可得气体向设备输出的功率P 为: 2222f1121213(0.1524)()()(28262326)440.3369 c d P m h h h h v ×=?=?=?× =77.5571kW 。 3.9一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为500kPa ,温度为25℃。充气开始时,罐内空气参数为50kPa ,10℃。求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。 解:根据开口系统的能量方程,有: δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s 由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有: d(m·u )=h in ·d m 有: m ·d u +u ·d m=h in ·d m 即:m ·d u=(h in -u )·d m =pv ·d m =R g T ·d m 分离积分变量可得:(c v /R g )·d T /T=d m /m 因此经积分可得:(c v /R g )ln(T 2/T 1)= ln(m 2/m 1) 设储气罐容积为V 0,则:m 1=p 1·V 0/(R g T 1),m 2=p 2·V 0/(R g T 2) 易得T 2=T 1· (p 2/p 1) R g /cp =283×(500/50)0.287/1.004=546.56 K 3.10一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为1000kPa ,温度为27℃。充气开始时,储气罐内为真空,求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。 解:根据开口系统的能量方程,有: δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s 由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有: d(m·u )=h in ·d m

数学行程问题公式大全及经典习题答案

路程=速度×时间; 路程÷时间=速度; 路程÷速度=时间 关键问题 确定行程过程中的位置路程 相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和 相遇问题(直线) 甲的路程+乙的路程=总路程 相遇问题(环形) 甲的路程 +乙的路程=环形周长 追及问题 追及时间=路程差÷速度差 速度差=路程差÷追及时间 路程差=追及时间×速度差 追及问题(直线) 距离差=追者路程-被追者路程=速度差X追及时间 追及问题(环形) 快的路程-慢的路程=曲线的周长 流水问题 顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 解题关键 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式: 顺水速度=船速+水速,(1)

逆水速度=船速-水速.(2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。 根据加减法互为逆运算的关系,由公式(l)可以得到: 水速=顺水速度-船速, 船速=顺水速度-水速。 由公式(2)可以得到: 水速=船速-逆水速度, 船速=逆水速度+水速。 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。 另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到: 船速=(顺水速度+逆水速度)÷2, 水速=(顺水速度-逆水速度)÷2。 例:设后面一人速度为x,前面得为y,开始距离为s,经时间t后相差a米。那么 (x-y)t=s-a 解得t=s-a/x-y. 追及路程除以速度差(快速-慢速)=追及时间 v1t+s=v2t (v1+v2)t=s t=s/(v1+v2) (一)相遇问题 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。 小学数学教材中的行程问题,一般是指相遇问题。 相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。 它们的基本关系式如下: 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速) 另一个速度=甲乙速度和-已知的一个速度 (二)追及问题 追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。 根据速度差、距离差和追及时间三者之间的关系,罕用下面的公式: 距离差=速度差×追及时间 追及时间=距离差÷速度差 速度差=距离差÷追及时间

相关主题
文本预览
相关文档 最新文档