当前位置:文档之家› 动态几何变化问题

动态几何变化问题

动态几何变化问题
动态几何变化问题

--------动态几何变化问题(★★★★) 以运动的观点探究几何图形部分变化规律的问题,称之为动态几何问题.

动态几何问题充分体现了数学中的“变”与“不变”的和谐统一,其特点是图形中的某些元素(点、线段、角等)或某部分几何图形按一定的规律运动变化,从而又引起了其它一些元素的数量、位置关系、图形重叠部分的面积或某部分图形的形状等发生变化,但是图形的一些元素数量和关系在运动变化的过程中却互相依存,具有一定的规律可寻.

1.了解动态几何问题涉及的常见情况;

2.掌握讲义中涉及的动态几何变换的思考策略与解题方法;

3.数形结合、空间想象能力和综合分析能力的训练。

知识结构

本部分建议时长5分钟

“知识结构”这一部分的教学,老师在教学时刻根据每种情况进行简单例举,也可让学生进行回顾例举

考点一、建立动点问题的函数解析式

动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.下面结合中考试题举例分析.

一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

考点二、动态几何型压轴题

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

(一)点动问题。(二)线动问题。(三)面动问题。

二、解决动态几何问题的常见方法有:

1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三、专题二总结,本大类习题的共性:

1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数.

2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

考点三、双动点问题

点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 1 以双动点为载体,探求函数图象问题。 2 以双动点为载体,探求结论开放性问题。 3 以双动点为载体,探求存在性问题。 4 以双动点为载体,探求函数最值问题。

这类试题信息量大,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。 考点四、函数中因动点产生的相似三角形问题 考点五、以圆为载体的动点问题

动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。

本部分建议时长25分钟

1.(★★★)如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC→CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是( )

A .

B .

C .

D .

【分析】∵动点Q 从B 点出发,以每秒2个单位长度的速度沿BC→CD 方向运动,

1、建立函数型 、

∴点Q 运动到点C 的时间为4÷2=2秒。

由题意得,当0≤t≤2时,即点P 在AB 上,点Q 在BC 上,AP=t ,BQ=2t ,

211

S AP BQ t 2t t 22=

??=??=,为开口向上的抛物线的一部分。 当2<t≤4时,即点P 在AB 上,点Q 在DC 上,AP=t ,AP 上的高为4,

11

S AP 4t 42t 22

=

??=??=,为直线(一次函数)的一部分。 观察所给图象,符合条件的为选项D 。故选D 。

答案:D

2.(★★★)如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A→B→C 和A→D→C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:cm 2

),则y 与x (0≤x≤8)之间函数关系可以用图象表示为( )

A .

B .

C .

D .

【分析】①0≤x≤4时,y=S △ABD ﹣S △APQ =

12×4×4﹣12?x?x=﹣12x 2

+8, ②4≤x≤8时,y=S △BCD ﹣S △CPQ =12×4×4﹣12?(8﹣x )?(8﹣x )=﹣12

(8﹣x )2

+8,

∴y 与x 之间的函数关系可以用两段开口向下的二次函数图象表示,纵观各选项,

只有B 选项图象符合。故选B 。 答案:B

3. (★★★★)直线3

64

y x =-

+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA

运动,速度为每秒1个单位长度,点

P 沿路线O →B →A 运动.

(1)直接写出A B 、两点的坐标;

(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48

5

S =

时,求出点P 的坐标,并直接写出以点

B y

O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

解:(1)A (8,0)B (0,6) (2)86OA OB == ,

10AB ∴=

点Q 由O 到A 的时间是8

81

=(秒)

∴点P 的速度是610

28

+=(单位/秒) 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2

S t =

当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由

PD AP BO AB =,得4865

t

PD -=, 21324

255

S OQ PD t t ∴=?=-+

(3)82455P ?? ???, 12382412241224555555I M M 2??????

--

? ? ??????

?,,,,,

1、 解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化

动为静,以静制动。

2、 解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全

过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系. 3、动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系

我来试一试!

1. (★★)如图为反比例函数1

y=

x

在第一象限的图象,点A 为此图象上的一动点,过点A 分别作AB⊥x 轴和AC⊥y 轴,垂足分别为B ,C .则四边形OBAC 周长的最小值为( )

A . 4

B . 3

C . 2

D . 1

2.(★★★)如图①,在梯形ABCD 中,AD∥BC,∠A=60°,动点P 从A 点出发,以1cm/s

的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积s (单位:错误!未找到引用源。)与点P 移动的时间t (单位:s )的函数关系式如图②所示,则点P 从开始移动到停止移动一共用了 秒(结果保留根号).

3. (★★★★)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为ycm 2

.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,22

y= t 5;④当29

t 4

秒时,△ABE∽△QBP;其中正确的结论是 (填序号).

4. (★★★★)在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停

止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ;

(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)

(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.

答案:1.A 2. 4+23 3.①③④

4.解:(1)1,8

5

(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC ,2

2

534BC =-=, 得

45QF t =.∴4

5

QF t =. ∴14

(3)25S t t =-?,

即226

55

S t t =-+.

(3)能.

①当DE ∥QB 时,如图4.

∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP

AC AB

=

, 即33

5t t -=. 解得9

8

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.

此时∠APQ =90°.

由△AQP ∽△ABC ,得 AQ AP

AB AC

=

, 即

353t t -=

. 解得15

8

t =.

(4)52t =

或45

14

t =. ①点P 由C 向A 运动,DE 经过点C .

连接QC ,作QG ⊥BC 于点G ,如图6.

PC t =,222QC QG CG =+2234

[(5)][4(5)]55

t t =-+--.

A

C

B

P

Q

E

D

图16

A

C

B P

Q E

D

图4

A

C

B

P

Q E D 图5

A

C (E ) B

P

Q

D

图6

G

A C (E )

B P

Q

D

图7

G

由22PC QC =,得22234

[(5)][4(5)]55

t t t =-+--,解得52t =.

②点P 由A 向C 运动,DE 经过点C ,如图7. 22234

(6)[(5)][4(5)]55t t t -=-+--,45

14t =

例题2

1. (★★)如图所示,已知A 点从点(1,0)出发,以每秒1个单位长的速度沿着x 轴

的正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且∠AOC=600

,又以P (0,4)为圆心,PC 为半径的圆恰好与OA 所在直线相切,则

t= .

答案:431-

2.(★★★)如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且∠ACD=45°,DF⊥AB 于点F ,EG⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )

2、以圆为载体型

A.B.C.D.

答案: A

3.(★★★★)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有个.

【分析】如图,符合条件的Q点有5个。

当BP=BQ时,在AB,BC边上各有1点;

当BP=QP时,可由锐角三角函数求得点P到AB的距离为2,到CD的距离为4,

,故在BC,CD,DA边上各有1点;

到BC的距离为23,到AD的距离为623

当BQ=PQ时,BP的中垂线与AB,BC各交于1点,故在AB,BC边上各有1点。

又当Q在BC边上时,由于△BPQ是等边三角形,故3点重合。

因此,符合条件的Q点有5个。

答案:5

4. (★★★★)在平面直角坐标系xOy 中,已知二次函数2

14

y x mx n =

++的图象经过点(2,0)A 和点3

(1,)4

B -,直线l 经过抛物线的顶点且与y 轴垂直,垂足为Q .

(1) 求该二次函数的表达式;

(2) 设抛物线上有一动点P 从点B 处出发沿抛物线向上运动,其纵坐标1y 随时间

(t t ≥0)的变化规律为13

24

y t =-+.现以线段OP 为直径作C .

①当点P 在起始位置点B 处时,试判断直线l 与C 的位置关系,并说明理由;在点P 运动的过程中,直线l 与C 是否始终保持这种位置关系? 请说明你的理由;

②若在点P 开始运动的同时,直线l 也向上平行移动,且垂足Q 的纵坐标2y 随时间t 的变化规律为213y t =-+,则当t 在什么范围内变化时,直线l 与C 相交? 此时,若直线l 被C 所截得的弦长为a ,试求2

a 的最大值.

答案:解:(1)将点(2,0)A 和点3

(1,)4B -的坐标代入2

14

y x mx n =

++,得 120

1344

m n m n ++=??

?++=-??,解得01m n =??

=-?。 ∴二次函数的表达式为2

114

y x =

-。 (2)①当点P 在点B 处时,直线l 与C 相切。理由如下:

∵点3(1,)4

P -,∴圆心的坐标为13(,)2

8

C -,C 的半径为

22135()||288

r =+-=。

又抛物线的顶点坐标为(0,-1),即直线l 上所有点的巫坐标均为-1,

从而圆心C 到直线l 的距离为35

(1)88

d r =---=

=。 ∴直线l 与C 相切。

在点P 运动的过程中,直线l 与C 始终保持相切的位置关系。理由如下:

设点03(,2)4P x t -

+,则圆心的坐标为03

(,)28

x C t -+, ∴圆心C 到直线l 的距离为35

()(1)88

d t t =-+--=+。

又∵20312144

t x -+=-,∴2081x t =+。 则C 的半径为222203813955(

)||()28446488

x t r t t t t t d +=+-+=+-+=+=+=。 ∴直线l 与C 始终相切。 ②由①知C 的半径为5

8

r t =+, 又∵圆心C 的纵坐标为3

8

t -

+,直线l 上的点的纵坐标为13t -+, ∴(ⅰ)当38t -+≥13t -+,即t ≤5

16时,圆心C 到直线l 的距离为

35()(13)288d t t t =-+--+=-。则由d r <,得55

288

t t -<+,解得0t >,

∴此时0t <≤5

16。

(ⅱ)当38t -+<13t -+,即t >5

16

时, 圆心C 到直线l 的距离为

35

(13)()288

d t t t =-+--+=-。

则由d r <,得55

288

t t -<+,解得54t <。∴此时516<54t <。

综上所述,当5

04

t <<时,直线l 与C 相交。

∵当504t <<时,圆心C 到直线l 的距离为5

|2|8

d t =-,又半径为58r t =+,

∴2

2

2

2

222555754()4[()|2|]1215=12+88816

a r d t t t t t ??=-=+--=-+-- ???。

∴当58t =

时, 2

a 取得最大值为7516

1. 关于圆的动点问题要考虑圆的对称性;

2. 建立函数模型解决动点问题是很好的突破口;

3. 空间想象能力的培养注重平时的积累。

本部分建议时长10分钟

1. (★★)如图,⊙O1和⊙O2内切于A ,⊙O1的半径为3,⊙O2的半径为2,点P 为⊙O1

上的任一点(与点A 不重合),直线PA 交⊙O2于点C ,PB 切⊙O2于点B ,则PC BP

的值为( )

(A )2 (B )3 (C )23 (D )26

2.(★★★)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( )

A . 1

B .3

C . 2

D .3+1

3. (★★★★)如图,已知直线l 经过点A (1,0),与双曲

线y =m

x (x >0)交于点B (2,1).过点P (p ,p -1)(p >1)

作x 轴的平行线分别交双曲线y =m x (x >0)和y =-

m

x (x <0)于点M 、N .

C

O 1O 2

P

B

A

O

A

B

l x

y

y x

E

Q P

C B O

A (1)求m 的值和直线l 的解析式;

(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若 不存在,请说明理由.

4. (★★★★)已知抛物线2

y ax bx c =++经过53(33)02P E ?? ? ???

,,,及原点(00)O ,.

(1)求抛物线的解析式.(由一般式...

得抛物线的解析式为2253

33

y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线

PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC

于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与

PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.

(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形

OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

答案:1.B 2.B

3.解:(1)由点B (2,1)在y =m

x 上,有2=1

m

,即m =2。

设直线l 的解析式为y kx b =+,由点A (1,0),点B (2,1)在y kx b =+上,得

, ,解之,得1=1k b =-, ∴所求 直线l 的解析式为 1y x =-。

(2) 点P (p ,p -1)在直线y =2上,∴P 在直线l 上,是直线y =2和l 的交点,见图(1)。

∴根据条件得各点坐标为N (-1,2),M (1,2),P (3,2)。

0k b +=

21k b +=

∴NP =3-(-1)=4,MP =3-1=2,AP =2222822+==, BP =22112+=

∴在△PMB 和△PNA 中,∠MPB =∠NPA ,

2NP AP

MP BP

==。 ∴△PMB ∽△PNA 。

(3)S △AMN =()1

11222

?+?=。下面分情况讨论:

①当1<p <3时,延长MP 交X 轴于Q ,见图(2)。设直

线MP 为y kx b =+则有

2

11k b p pk b

=?+-=+解得 3

1

11

p k p p b p -=

-+=

-

则直线MP 为31

11

p p y x p p -+=+-- 当y =0时,x =

13p p +-,即点Q 的坐标为(13p p

+-,0)。 则()2111143

121123233AMP AMQ APQ

p p p p S S S p p p p

???????++-+-=-=-?---= ? ?---????, 由2=42433p p p -+-?-有22990p p -+=,解之,p =3(不合,舍去),p =3

2

②当p =3时,见图(1)S △AMP =1

2222

??==S △AMN 。不合题意。

③当p>3时,延长PM 交X 轴于Q ,见图(3)。

此时,S △AMP 大于情况②当p =3时的三角形面积S △AMN 。故不存在实数p ,使得S △AMN =4S △AMP 。 综上,当p =3

2

时,S △AMN =4S △AMP 。

4.解:(1)由已知可得:

33375

5304

20a b a b c ?+=?

?+

=??=??

解之得,253033a b c =-==,,. 因而得,抛物线的解析式为:225333

y x x =-+. (2)存在.

设Q 点的坐标为()m n ,,则225333

n m m =-

+, 要使,BQ PB OCP PBQ CP OC =△∽△,则有3333

n m --=,即2253

333333m m

m +--= 解之得,12232m m ==,.

当123m =时,2n =,即为Q 点,所以得(232)Q ,

要使,BQ PB OCP QBP OC CP =△∽△,则有3333

n m --=,即2253

333333m m

m +--= 解之得,12333m m ==,,当3m =时,即为P 点,

当133m =时,3n =-,所以得(333)Q -,. 故存在两个Q 点使得OCP △与PBQ △相似.

Q 点的坐标为(232)(333)-,,,.

(3)在Rt OCP △中,因为3tan 3CP COP OC ∠=

=.所以30COP ∠=

. 当Q 点的坐标为(232),时,30BPQ COP ∠=∠=

. 所以90OPQ OCP B QAO ∠=∠=∠=∠=

因此,OPC PQB OPQ OAQ ,

,,△△△△都是直角三角形. 又在Rt OAQ △中,因为3tan 3

QA QOA AO ∠=

=

.所以30QOA ∠=

. 即有30POQ QOA QPB COP ∠=∠=∠=∠=

. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ ∠=∠=

, 所以OQA OQP △≌△.

O

x

y

图1 C B

E D 3

1

2

A 图2

O x

y C

B E

D P M

G

l

N

A

F

教师:本专题你有哪些收获和感悟?

初中数学动态几何问题

[导读] 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线 摘要:本文结合笔者的教学实践对初中数学教学中的动态几何问题进行了探讨。 关键词:二次函数;动点;动线;动态 作者简介:郭兴淑,任教于云南腾冲一中。 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线,函数为背景,集多个知识点为一体,集多种解题思想于一题。这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.本类问题主要有动点、动线、动面三个方面的问题。其中动点问题有单动点和双动点两种类型,无论是动点、动线、单动点还是双动点,我们都要注意到如何在动中求静,在静中求解,找到相应的关系式,把想知道的量用常量或含自变量的关系式表示出来。下面就以二次函数为背景的动态问题和单纯几何图形变化的动态问题采撷几例加以分类浅析,供读者参考。 动态问题在中考中占有相当大的比重,主要由综合性问题构成,就运动而言,可以分为三类:动点、动线、动形;就题型而言,包括计算题、证明题和应用题等。它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性。一般的,解题设计要因题定法。无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等。 动态问题一直是近几年数学中考的一个热点,随着编者的不断刨新,动态问题又有升温,比如双动问题就是中考中的最新风景区,他可以培养同学们在运动变化中发展空间想象能力.这类问题只要我们掌握“动中有静,静观其变,动静结合”的基本解题策略,我们就能以不变碰多变.以下列举近几年数学中考的两类双动问题供读者参考交流. 随着新课程改革的进行,全国各地的中考试卷异彩纷呈,尤其是解答题中的动态问题,集数与代数、空间与图形两大内容于一体,题型新颖,阅读量大,考查面广.为体现中考试

初二动态几何问题.

初二动态几何问题 一、动态几何问题涉及的几种情况 动态几何问题就其运动对象而言,有: 1、点动(有单动点型、多动点型). 2、线动(主要有线平移型、旋转型)。线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解. 3、形动(就其运动形式而言,有平移、旋转、翻折、滚动) 二、解决动态几何问题的基本思考策略与分析方法: 动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点: 1、把握运动变化的形式及过程; 2、思考运动初始状态时几何元素的关系,以及可求出的几何量; 3、动中取静:(最重要的一点) 要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量; 4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式; 5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型; (某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解) 6、是否以及怎么分类讨论: 将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决, 7、确定变化分界点: 若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的范围分类求解。

高三数学选择填空难题突破—立体几何的动态问题

高三数学选择填空难题突破—立体几何的动态问题 一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略 类型一立体几何中动态问题中的角度问题 例1.【2015高考四川,理14】如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点 θθ cos M在线段PQ上,E、F分别为AB、BC的中点。设异面直线EM与AF所成的角为,则的最大值为.

【答案】 ,当时取等号.所以 ,当时,取得最大值. 【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M 在P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当M 点向左移动时,EM 与AF 所成角逐渐变小时,点M 到达点Q 时,角最小,余弦值最大。 【举一反三】 1、【2014四川,理8】如图,在正方体中,点为线段的中点.设点在线段上,直线与平面所成的角为,则的取值范围是() 2 5 281161 81455 2y y t t +=≥++-1t =2 211222 cos 511555451144 y y y θ-+==≤=?++?++0y =C 1111ABCD A B C D -O BD P 1CC OP 1A BD αsin α

初中数学动态几何问题

MC NC EC CD (这个比例关系就是将静态与动态联系起来的关键) 中考数学专题 动态几何问题 第一部分真题精讲 【例1】如图,在梯形 ABCD 中,AD II BC , AD 3 , DC 5 , BC 10,梯形的高为4 ?动 点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点 C 运动;动点N 同时从C 点 出发沿线段CD 以每秒1个单位长度的速度向终点 D 运动?设运动的时间为t (秒)? (1 )当MN I AB 时,求t 的值; (2)试探究:t 为何值时,△ MNC 为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同 学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析 动态条件和静态条件之间的关系求解。 对于大多数题目来说, 都有一个由动转静的瞬间, 就 本题而言,M , N 是在动,意味着 BM,MC 以及DN,NC 都是变化的。但是我们发现,和 这些动态的条件密切相关的条件 DC,BC 长度都是给定的,而且动态条件之间也是有关系的。 所以当题中设定 MN//AB 时,就变成了一个静止问题。 由此,从这些条件出发,列出方程, 自然得出结果。 【解析】 解:(1 )由题意知,当 M 、N 运动到t 秒时,如图①,过 D 作DE II AB 交BC 于E 点,则 四边形 ABED 是平行四边形. ??? AB II DE , AB II MN ? ??? DE II MN ? (根据第一讲我们说梯形内辅助线的常用做法,成功将 MN 放在三角形 内,将动态问题转化成平行时候的静态问题)

动态几何问题 -

动态几何问题 动态几何形成的最值问题是动态几何中的基本类型,包括单动点形成的最值问题,双(多)动点形成的最值问题,线动形成的最值问题,面动形成的最值问题.本专题原创编写单动点形成的最值问题模拟题. 在中考压轴题中,单动点形成的最值问题的重点和难点在于应用数形结合的思想准确地进行分类和选择正确的解题方法. 原创模拟预测题1.如图,已知直线3 34y x = -与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB .则△PAB 面积的最大值是( ) A .8 B .12 C .21 2 D .172 【答案】C . 【解析】 试题分析:∵直线334y x = -与x 轴、y 轴分别交于A 、B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,﹣3),34120x y --=,即OA=4,OB=3,由勾股定理得:AB=5,∴ 点C (0,1)到直线34120x y --=223041234?-?-+16 5,∴圆C 上点到直线 334y x =-的最大距离是1615+=215,∴△PAB 面积的最大值是121525??=212,故选C . 考点:圆的综合题;最值问题;动点型. 原创模拟预测题2.菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB=60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP+BP 最短时,点P 的坐标为 .

【答案】(233-,23-). 【解析】 考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题;动点型;压轴题;综合题. 原创模拟预测题3.如图,已知抛物线 2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式; (2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.

立体几何动态问题专题

立体几何的动态问题 立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。 动点轨迹问题 空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。很少有题目会脱离这三个方向。(注意:阿波罗尼斯圆,圆锥曲线第二定义) 1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB =30°,则点P的轨迹是( ) A.直线 B.抛物线C.椭圆 D.双曲线的一支 式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α内有一动点满足∠=π 6 ,若动 点C的轨迹为椭圆,则θ的取值范围为________. 3.(2015春?龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题: ①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线; ②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆; ③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆; ④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线; ⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线. 其中真命题的个数为() A.4 B.3 C.2 D.1

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

几何图形中的动态问题

几何图形中的动态问题 ★1.如图,在矩形ABCD中,点E在BC边上,动点P 以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从点A出发经x(x>0)秒后,△ABP的面积是y. (1)若AB=8cm,BE=6cm,当点P在线段AE上时,求y关于x的函数表达式; (2)已知点E是BC的中点,当点P在线段ED上时,y=12 5x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式. 第1题图 解:(1)∵四边形ABCD是矩形,∴∠ABE=90°, 又∵AB=8cm,BE=6cm,

∴AE=AB2+BE2=82+62=10厘米,如解图①,过点B作BH⊥AE于点H, 第1题解图① ∵S△ABE=1 2AE·BH=1 2AB·BE, ∴BH=24 5cm,又∵AP=2x, ∴y=1 2AP·BH=24 5x(0

∴AE =DE , ∵y =12 5x (P 在ED 上), y =32-4x (P 在AD 上), 当点P 运动至点D 时,可联立得,?????y =125x y =32-4x , 解得x =5, ∴AE +ED =2x =10, ∴AE =ED =5cm , 当点P 运动一周回到点A 时,y =0, ∴y =32-4x =0, 解得x =8, ∴AE +DE +AD =16, ∴AD =BC =6cm ,∴BE =3cm , 在Rt △ABE 中, AB = AE 2-BE 2=4cm , 如解图②,过点B 作BN ⊥AE 于N ,则BN =12 5cm ,

立体几何中的动点问题

立体几何中的动点问题 1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C 2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ?的面积为()x f ,则()x f 的图象大致是A

3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C 4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π 5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命 题: ①三棱锥PC D A 1-的体积不变; ②//1P A 平面1ACD ; ③1BC DP ⊥; ④平面⊥1PDB 平面1ACD ; 其中正确的命题序号是_______①②④

6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______22 7、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C .A 双曲线的一支(一部分) .B 圆弧(一部分) .C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系 设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t 则N M ,中点?? ? ??2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )

热点专题8 动态几何问题(解析版)

热点专题8动点几何问题 考向1图形的运动与最值 1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.

【解析】如图, 过点P作PE⊙BD交AB的延长线于E, ⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB, ⊙, ⊙AB=4, ⊙AE=AB+BE=4+BE, ⊙, ⊙BE最大时,最大, ⊙四边形ABCD是矩形, ⊙BC=AD=3,CD=AB=4, 过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线, ⊙⊙GME=90°, 在Rt⊙BCD中,BD==5, ⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC, ⊙⊙BHC⊙⊙BCD,

⊙, ⊙, ⊙BH=,CH=, ⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA, ⊙⊙BHG⊙⊙BAD, ⊙=, ⊙, ⊙HG=,BG=, 在Rt⊙GME中,GM=EG?sin⊙AEP=EG×=EG, 而BE=GE﹣BG=GE﹣, ⊙GE最大时,BE最大, ⊙GM最大时,BE最大, ⊙GM=HG+HM=+HM, 即:HM最大时,BE最大, 延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=, 过点P'作P'F⊙BD交AB的延长线于F, ⊙BE最大时,点E落在点F处,

即:BE 最大=BF , 在Rt⊙GP 'F 中,FG ====, ⊙BF =FG ﹣BG =8, ⊙ 最大值为1+=3, 故答案为:3. 2. (2019 江苏省无锡市)如图,在ABC ?中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ?面积的最大值为 . 【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .

中考数学几何图形中的动点问题专题训练

中考数学几何图形中的动点问题专题训练 (58分) 一、选择题(每题6分,共18分) 1. 如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩 形ABCD ,则点P 到A ,B 两点距离之和P A +PB 的最小值为( D ) A.29 B.34 C.5 2 D. 41 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △P AB =13S 矩形ABCD ,得12×5h =13×5×3, 解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时P A +PB 最小,根据勾股定理求得最小值为52+42=41,选D. 2.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩形边上一动点P 沿A →B →C →D 的路径移动.设点P 经过 的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的函数 关系的图象是 ( D ) 【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP =x ,∴y =x 2+a 2;② 当 图6-1-2

2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =???x 2+a 2(0≤x ≤2a ), x 2-6ax +13a 2(2a

初二动态几何问题之令狐文艳创作

初二动态几何问题 令狐文艳 一、动态几何问题涉及的几种情况 动态几何问题就其运动对象而言,有: 1、点动(有单动点型、多动点型). 2、线动(主要有线平移型、旋转型)。线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解. 3、形动(就其运动形式而言,有平移、旋转、翻折、滚动) 二、解决动态几何问题的基本思考策略与分析方法: 动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点: 1、把握运动变化的形式及过程; 2、思考运动初始状态时几何元素的关系,以及可求出的几何量; 3、动中取静:(最重要的一点) 要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量;

4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式; 5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型; (某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解) 6、是否以及怎么分类讨论: 将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决,7、确定变化分界点: 若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的范围分类求解。 例:如图,有一边长为5cm的正方形ABCD和等腰三角形△RQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线ι上,当C、Q两点重合时开始,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2. .解答下列问题:(1)当t=3秒时,求S的值;

高考数学专题复习破解立体几何中的动态问题

破解立体几何中的动态问题 动态问题需要极高的空间想像能力与化归处理能力,在各省市的高考选择与填空中出现有较高的频次。动态立体几何指的是求由点、线、面的变化引起的相关变量的取值范围或最值问题。就变化起因大致可分为以下三类:一是移动;二是翻折;三是旋转。就所求变量可分为:一是相关线、面、体的测度;二是角度;三是距离。 1.简化图形——“大道至简” 从复杂的图形中分化出最简的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,从混沌中找出秩序是问题解决的关键。 例1(2006年浙江省数学高考理科试题第14题)正四面体ABCD 的 棱长为1,棱 α平面//AB (如图1),则四面体上的所有点在平面α 内的 射影构成的图形面积的取值范围是_______。 去掉与问题无关的面,将四面体看成是以AB 为棱的二面角C AB D --(二面角大小一定) ,用纸折出这个二面角,不妨将 AB 置于平面α 内,将二面角绕 AB 转动一周,观察点,C D 在平面α 上的 射影,可以发现点,C D 在平面α上的射影始终在 AB 的射影的中垂线上, 当//CD α平面时,四边形 ABCD 面积最大12 (如图3) ,当CD α⊥平面时(此时点)(D C 到AB 的距离即为异面直线AB 与CD 的距离) ,四边形'(')ABC D 面积最小4 (如图4),转动过程中D C ,在平面α上的射影从D C ,变化至''' ',D C 。 例2.(2017年台州市高三模拟试题)如图,在棱长为2正四面体A BCD -中,E 、F 分别为直线AB 、 图1 D C B A ααA B C D 图3 A 图4 α C B 图5 D " C "C'(D') D C B A

立体几何动点问题

1 A 1.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=2 2 , 则下列结论中错误 ..的个数是( ) (1) AC⊥BE. (2) 若P为AA1上的一点,则P到平面BEF的距离为2 2 . (3) 三棱锥A-BEF的体积为定值. (4) 在空间与DD1,AC,B1C1都相交的直线有无数条. (5) 过CC1的中点与直线AC1所成角为40?并且与平面BEF所成角为50?的直线有2条. A.0 B.1 C.2 D.3 2.如图,正方体的棱长为1,线段上有两个动点 ,且 2 2 = EF,则下列结论中错误 ..的是() A.B.∥平面 C.三棱锥的体积为定值 D.△AEF与△BEF的面积相等 3.关于图中的正方体1 1 1 1 D C B A ABCD-,下列说法正确的有 ___________________. ①P点在线段BD上运动,棱锥1 1 D AB P-体积不变; ②P点在线段BD上运动,二面角 A D B P- - 1 1不变; ③一个平面 α截此正方体,如果截面是三角形,则必为锐角三角形; ④一个平面 α截此正方体,如果截面是四边形,则必为平行四边形; ⑤平面 α截正方体得到一个六边形(如图所示),则截面α在平面 1 1 D AB 与平面1 BDC 间平行移动时此六边形周长先增大,后减小。 4、如图,正方体1111 ABCD A BC D - 的棱长为1,P为BC的中点,Q为线段1 CC 上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是___________(写 出所有正确命题的编号). ①当 1 2 CQ << 时,S为四边形; ②当 1 2 CQ= 时,S不为等腰梯形; ③当 3 4 CQ= 时,S与11 C D 的交点R满足 1 1 3 C R= ; 1 1 1 1 D C B A ABCD- 1 1 D B F E, BE AC⊥EF ABCD BEF A-

立体几何中的动态问题

立体几何中的动态问题 立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等;求解方法一般根据圆锥曲线的定义判断动点轨迹是什么样的曲线;利用空间向量的坐标运算求轨迹的长度等. 一、常见题目类型 (优质试题·金华十校高考模拟)在正方体ABCD -A 1B 1C 1D 1中,点 M 、N 分别是直线CD 、AB 上的动点,点P 是△A 1C 1D 内的动点(不包 括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3 ,则点P 的轨迹是( ) A .圆的一部分 B .椭圆的一部分 C .抛物线的一部分 D .双曲线的一部分 【解析】 把MN 平移到平面A 1B 1C 1D 1中,直线D 1P 与MN 所成角为 θ,直线D 1P 与MN 所成角的最小值是直线D 1P 与平面A 1B 1C 1D 1所成角, 即原问题转化为:直线D 1P 与平面A 1B 1C 1D 1所成角为π3 ,点P 在平面A 1B 1C 1D 1的投影为圆的一部分, 因为点P 是△A 1C 1D 内的动点(不包括边界), 所以点P 的轨迹是椭圆的一部分.故选B. 【答案】 B (优质试题·浙江名校协作体高三联考)已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB =1,AD =CD =2.ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( ) A.43 B.163 C.49π D.83 π 【解析】 根据题意,以D 为原点,分别以DA ,DC ,DE 所在直线为x ,y ,z 轴,建立空间直角坐标系Dxyz ,如图1所示,则B (2,1,0),C (0,2,0),设M (x ,0,z ),易知直线MB ,MC 与平面ADEF 所成的角分别为∠AMB ,∠DMC ,均为锐角,且∠AMB =∠DMC ,所 以sin ∠AMB =sin ∠DMC ?AB MB =CD MC ,即2MB =MC ,因此2(2-x )2+12+z 2=x 2+22+z 2,

立体几何中的动点轨迹问题讲解

立体几何中的动点轨迹问题讲解 这类问题在高考中并不常见,或者说在高考中出现得并不明显,但在用空间向量求二面角时偶尔会遇到一种题目,即需要用到的点并不是一个确定的点,而是在一个面上的动点,且这个点还满足一些特定的值或平面几何关系,此时需要根据条件确定出动点所在的轨迹,在每年高考前的模拟题中也会遇到这种题目,若在选填中,则一般位于压轴或次压轴位置,求几何体中动点的轨迹或者与轨迹求值相关的问题,在解析几何中满足条件的动点都会有特定的轨迹,动点绝不是乱点,在几何体中依旧如此。 这种题目做法和平面几何求轨迹方程类似,因为点在面内(非平面),所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型,这四种情况没有过于明显的界限,知道就好,下列题目中就不再分门别类的去叙述了。 立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别。 题目中可以找到与AM垂直且包含OP的平面,这样动点P的轨迹就知道了,从O点向底面作垂线,垂足为O',连接BO',可知AM⊥平面OO'B,即可得知P的轨迹。

但题目是在规则的正方体中,直线OP和AM为异面直线,两者成90°的特殊角度,根据射影法求异面直线的夹角方法,我们只需确定出OP在底面上的投影位置即可。 与上题类似,需要找到一个与BD1垂直且包含AP的平面,根据三垂线定理可知BD1⊥AC,BD1⊥AB1,所以BD1⊥平面ACB1,平面ACB1与有侧面的交线为B1C,所以点P的轨迹为线段B1C

初中数学动态几何问题的求解策略

考数学试题中动态几何问题的求解策略 近年来,随着九年义务教育课程标准的深入实施,动态几何已悄悄进入到中考数学试题中,而且要求越来越高,越来越突出探究能力的考查。编制好的动态几何的题已成为中考命题者努力追求的目标之一。下面谈谈中考数学中动态几何的一些解题策略。 例1:已知⊙O 的弦AB 的长等于⊙O 的半径,点C 在⊙O 上变化(不与A 、B )重合,求∠ACB 的大小 . 分析:点C 的变化是否影响∠ACB 的大小的变化呢?我们不妨将点C 改变一下,如何变化呢?可能在优弧AB 上,也可能在劣弧AB 上变化,显然这两者的结果不一样。那么,当点C 在优弧AB 上变化时,∠ACB 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,因此很自然地想到它的圆心角,连结AO 、BO ,则由于AB=OA=OB ,即三角形ABC 为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB= 2 1 ∠AOB=300, 当点C 在劣弧AB 上变化时,∠ACB 所对的弧是优弧AB ,它的大小为优弧AB 的一半,由∠AOB=600 得,优弧AB 的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500, 因此,本题的答案有两个,分别为300或1500. 反思:本题通过点C 在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C 的运动变化性而引起的分类讨论在解题中经常出现。 变式1:已知△ABC 是半径为2的圆内接三角形,若32=AB ,求∠C 的大小. 本题与例1的区别只是AB 与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB 中, 2 321 21sin = =∠OB AB AOB ,则06021=∠AOB ,即0 120=∠AOB , 从而当点C 在优弧AB 上变化时,∠C 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,即0 60=∠C ,

立体几何的动态问题翻折问题

立体几何的动态问题之二 ———翻折问题 立体几何动态问题的基本类型: 点动问题;线动问题;面动问题;体动问题;多动问题等 一、面动问题(翻折问题): (一)学生用草稿纸演示翻折过程: (二)翻折问题的一线五结论 .DF AE ⊥一线:垂直于折痕的线即 五结论: 1)折线同侧的几何量和位置关系保持不变; 折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角; 3D DF ')在底面上的投影一定射线上; 二、翻折问题题目呈现: (一)翻折过程中的范围与最值问题 1、(2016年联考试题)平面四边形ABCD 中, , CD=CB= 且AD AB ⊥, 现将△ABD 沿对角线BD 翻折成'A BD ?,则在'A BD ?折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______ . 解:由题意知点A 运动的轨迹是以E 为圆心,EA 为半径的圆,当点A 运动到与圆相切的时候所称的角最大,所以tan 'A CB ∠= 【设计意图】加强对一线、五结论的应用,重点对学生容易犯的错误 1 2 进行分析,找出错误的原因。 2、2015年10月浙江省学业水平考试18).如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。现将△ABD 沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是 D A B E C D A B C 4) ''D H DH 点的轨迹是以为圆心,为半径的圆;5AD'E AE .)面绕 翻折形成两个同底的圆锥C

A.( ,)63 ππ B. (,]62 ππ C. ( ,]32 ππ D. 2( ,)3 3 ππ 分析:这是一道非常经典的学考试题,本题的解法非常多,很好的考查了空间立体几何线线角的求法。 方法一:特殊值法(可过F 作FH 平行BE,找两个极端情形) 方法二:定义法:利用余弦定理: 222254cos 243 FH FC CH FHC CH FH FC +-∠==- ,有344CH ≤≤ 11cos ,22CFH ?? ∴∠∈-???? 异面直线BE 与CF 所成角的取值范围是(,] 32ππ 方法三:向量基底法: 111 ()()222BE FC BA BD FC BA FC BF FA FC =+==+ 111cos ,cos ,,222BE FC FC FA ?? <>= <>∈-???? 方法四:建系: 3、(2015年浙江·理8)如图,已知ABC ?,D 是AB 的中点,沿直线CD 将ACD ?折成 A CD '?,所成二面角A CD B '--的平面角为α,则 ( B ) A. A DB α'∠≤ B. A DB α'∠≥ C. A CB α'∠≥ D. A CB α'∠≤ 方法一:特殊值 方法二:定义法作出二面角,在进行比较。 方法三:抓住问题的本质,借助圆锥利用几何解题。 4、 (14 年1月浙江省学业学考试题)如图在Rt △ABC 中,AC =1,BC =x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程 B

动态几何问题的解题技巧

动态几何问题的解题技巧 解这类问题的基本策略是: 1.动中觅静:这里的“静”就是问题中的不变量、不变关系 ........,动中觅静就是在运动变化中探索问题中的 不变性 .... 2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使 一般情形转化为特殊问题 ...........,从而找到“动”与“静”的关系. 3.以动制动:以动制动就是建立图形中两个变量的函数关系 .........,通过研究运动函数,用联系发展的观点来研究变动元素的关系. 总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化 的全过程,抓住变化中的不变,以不变应万变 .............。 这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想、数形结合思想、转化的思想等。 1、在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形。 (1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明; (2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长,直接写出结果);若不能请说明理由。

2、如图,等腰Rt △ABC(∠ACB =90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y , (1)求y 与x 之间的函数关系式; (2)当△ABC 与正方形DEFG 重合部分的面积为3 2 时,求CD 的长. 3、在平面直角坐标系中,直线1l 过点A(2,0)且与轴y 平行,直线2l 过点B(0,1)且与轴x 平行,直线1l 与 2l 相交于点P 。点E 为直线2l 上一点,反比例函数 0,0(>>= k x x k y 且k ≠2)的图象过点E 且与直线1l 相交于点F. (1)写出点E 、点F 的坐标(用k 的代数式 表示); (2)求 PF PE 的值; (3)连接OE 、OF 、EF , 若△OEF 为直角三角形,求k 的值。 备用图

初中数学几何的动点问题专题练习-附答案版

动点问题专题训练 1、如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为A B 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇? 2、直线364 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发, 同时到达A 点,运动停止.点Q 沿线段O A 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485 S = 时,求出点P 的坐标,并直接写出以点 O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

相关主题
文本预览
相关文档 最新文档