当前位置:文档之家› (课标专用)天津市高考数学二轮复习题型练8大题专项(六)函数与导数综合问题

(课标专用)天津市高考数学二轮复习题型练8大题专项(六)函数与导数综合问题

(课标专用)天津市高考数学二轮复习题型练8大题专项(六)函数与导数综合问题
(课标专用)天津市高考数学二轮复习题型练8大题专项(六)函数与导数综合问题

(课标专用)天津市高考数学二轮复习题型练8大题专项(六)函数

与导数综合问题

题型练第62页

1.设函数f(x)=[ax2-(4a+1)x+4a+3]e x.

(1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;

(2)若f(x)在x=2处取得极小值,求a的取值范围.

解:(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,

所以f'(x)=[2ax-(4a+1)]e x+[ax2-(4a+1)x+4a+3]e x=[ax2-(2a+1)x+2]e x(x∈R).

f'(1)=(1-a)e.

由题设知f'(1)=0,即(1-a)e=0,解得a=1.

此时f(1)=3e≠0,所以a的值为1.

(2)由(1)得f'(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.

若a>,则当x∈时,f'(x)<0;

当x∈(2,+∞)时,f'(x)>0.

所以f(x)在x=2处取得极小值.

若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0,

所以f'(x)>0.

所以2不是f(x)的极小值点.

综上可知,a的取值范围是.

2.已知f(x)=ax-ln(-x),x∈[-e,0),其中e是自然对数的底数,a∈R.

(1)当a=-1时,证明:f(x)+.

(2)是否存在实数a,使f(x)的最小值为3?如果存在,求出a的值;如果不存在,请说明理由.

(1)证明由题意可知,所证不等式为f(x)>,x∈[-e,0).

因为f'(x)=-1-=-,

所以当-e≤x<-1时,f'(x)<0,此时f(x)单调递减;

当-10,此时f(x)单调递增.

所以f(x)在区间[-e,0)内有唯一极小值f(-1)=1,

即f(x)在区间[-e,0)内的最小值为1;

令h(x)=,x∈[-e,0),

则h'(x)=,

当-e≤x<0时,h'(x)≤0,故h(x)在区间[-e,0)内单调递减,

所以h(x)max=h(-e)==1=f(x)min.

所以当a=-1时,f(x)+.

(2)解假设存在实数a,使f(x)=ax-ln(-x)的最小值为3,f'(x)=a-,x∈[-e,0).

①若a≥-,由于x∈[-e,0),则f'(x)=a-≥0,

所以函数f(x)=ax-ln(-x)在区间[-e,0)内是增函数,

所以f(x)min=f(-e)=-a e-1=3,

解得a=-<-,与a≥-矛盾,舍去.

②若a<-,则当-e≤x<时,f'(x)=a-<0,

此时f(x)=ax-ln(-x)是减函数,

0,

此时f(x)=ax-ln(-x)是增函数,

所以f(x)min=f=1-ln=3,解得a=-e2.

综上①②知,存在实数a=-e2,使f(x)的最小值为3.

3.已知函数f(x)=x3+ax2+b(a,b∈R).

(1)试讨论f(x)的单调性;

(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值.

解:(1)f'(x)=3x2+2ax,

令f'(x)=0,解得x1=0,x2=-.

当a=0时,因为f'(x)=3x2>0(x≠0),

所以函数f(x)在区间(-∞,+∞)内单调递增;

当a>0时,x∈∪(0,+∞)时,f'(x)>0,x∈时,f'(x)<0,

所以函数f(x)在区间,(0,+∞)内单调递增,在区间内单调递减;

当a<0时,x∈(-∞,0)∪时,f'(x)>0,x∈时,f'(x)<0,

所以函数f(x)在区间(-∞,0),内单调递增,在区间内单调递减.

(2)由(1)知,函数f(x)的两个极值为f(0)=b,f a3+b,

则函数f(x)有三个零点等价于f(0)·f=b<0,从而

又b=c-a,所以当a>0时,a3-a+c>0或当a<0时,a3-a+c<0.

设g(a)=a3-a+c,因为函数f(x)有三个零点时,a的取值范围恰好是(-∞,-3)∪

,

则在(-∞,-3)内g(a)<0,且在内g(a)>0均恒成立,从而g(-3)=c-1≤0,且

g=c-1≥0,因此c=1.

此时,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a],

因函数有三个零点,则x2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0,

解得a∈(-∞,-3)∪.

综上c=1.

4.(2019全国Ⅱ,理20)已知函数f(x)=ln x-.

(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;

(2)设x0是f(x)的一个零点,证明曲线y=ln x在点A(x0,ln x0)处的切线也是曲线y=e x的切线. (1)解f(x)的定义域为(0,1)∪(1,+∞).

因为f'(x)=>0,所以f(x)在区间(0,1),(1,+∞)内单调递增.

因为f(e)=1-<0,f(e2)=2->0,

所以f(x)在区间(1,+∞)内有唯一零点x1,即f(x1)=0.

又0<<1,f=-ln x1+=-f(x1)=0,

故f(x)在区间(0,1)内有唯一零点.

综上,f(x)有且仅有两个零点.

(2)证明因为,故点B-ln x0,在曲线y=e x上.

由题设知f(x0)=0,即ln x0=,

故直线AB的斜率k=.

曲线y=e x在点B-ln x0,处切线的斜率是,曲线y=ln x在点A(x0,ln x0)处切线的斜率也是,所以曲线y=ln x在点A(x0,ln x0)处的切线也是曲线y=e x的切线.

5.(2019山东烟台一模)已知函数f(x)=e x-2ax+3a2e-x(a∈R),其中e=2.718 28…为自然对数的底数.

(1)讨论f(x)的单调性;

(2)当x∈(0,+∞)时,e x(x-a)+3a2e-x-x2-a2+10>f(x)恒成立,求a的取值范围.

解:(1)由题意可知,f'(x)=e x-2a-3a2e-x=.

当a=0时,f'(x)=e x>0,此时f(x)在R上单调递增;

当a>0时,令f'(x)=0,

解得x=ln(3a),

当x∈(-∞,ln(3a))时,f'(x)<0,f(x)单调递减;

当x∈(ln(3a),+∞)时,f'(x)>0,f(x)单调递增;

当a<0时,令f'(x)=0,

解得x=ln(-a),

当x∈(-∞,ln(-a))时,f'(x)<0,f(x)单调递减;

当x∈(ln(-a),+∞)时,f'(x)>0,f(x)单调递增;

综上可知,当a=0时,f(x)在R上单调递增;

当a>0时,x∈(-∞,ln(3a))时,f(x)单调递减,

x∈(ln(3a),+∞)时,f(x)单调递增;

当a<0时,x∈(-∞,ln(-a))时,f(x)单调递减,x∈(ln(-a),+∞)时,f(x)单调递增.

(2)由e x(x-a)+3a2e-x-x2-a2+10>f(x),

可得,e x(x-a-1)-x2+2ax-a2+10>0,

令g(x)=e x(x-a-1)-x2+2ax-a2+10,

只需在x∈(0,+∞)时使g(x)min>0即可.

g'(x)=e x(x-a-1)+e x-2x+2a=(e x-2)(x-a),

①当a≤0时,x-a>0.当0

当x>ln2时,g'(x)>0,

所以g(x)在区间(0,ln2)内是减函数,在区间(ln2,+∞)内是增函数,

只需g(ln2)=-a2+(2ln2-2)a-(ln2)2+2ln2+8>0,

解得ln2-4

②当0

在区间(a,ln2)内是减函数,在区间(ln2,+∞)内是增函数,

解得0

③当a=ln2时,g'(x)≥0,g(x)在区间(0,+∞)内是增函数,

而g(0)=9-ln2-(ln2)2>0成立;

④当a>ln2时,g(x)在区间(0,ln2)内是增函数,在区间(ln2,a)内是减函数,在区间(a,+∞)内是增

函数,

解得ln2

综上可知,a的取值范围为(ln2-4,ln10).

6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在

点(1,f(1))处的切线方程为y=a e(x-1).

(1)求b的值;

(2)若对任意x∈,f(x)与g(x)的图象有且只有两个交点,求a的取值范围.

解:(1)由f(x)=,得f'(x)=,

由题意得f'(1)=ab=a e.

∵a≠0,∴b=e.

(2)令h(x)=x[f(x)-g(x)]=x2-(a+e)x+a eln x,则任意x∈,f(x)与g(x)有且只有两个交点,等价于函数h(x)在区间有且只有两个零点.

由h(x)=x2-(a+e)x+a eln x,

得h'(x)=,

①当a≤时,由h'(x)>0得x>e;

由h'(x)<0得

此时h(x)在区间内单调递减,在区间(e,+∞)内单调递增.

因为h(e)=e2-(a+e)e+a elne=-e2<0,

h(e2)=e4-(a+e)e2+2a e=e(e-2)(e2-2a)≥e(e-2)·>0(或当x→+∞时,h(x)>0亦可), 所以要使得h(x)在区间内有且只有两个零点,

则只需h+a eln≥0,

即a≤.

②当

由h'(x)>0得e;

由h'(x)<0得a

此时h(x)在区间(a,e)内单调递减,在区间和(e,+∞)内单调递增.

此时h(a)=-a2-a e-a eln a<-a2-a e+a elne=-a2<0,

即h(x)在区间内至多只有一个零点,不合题意.

③当a>e时,由h'(x)>0得a,由h'(x)<0得e

此时h(x)在区间和(a,+∞)内单调递增,在区间(e,a)上单调递减,且h(e)=-e2<0,

即h(x)在区间内至多只有一个零点,不合题意.

综上所述,a的取值范围为.

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

第13讲 函数与导数之导数及其应用(学生版)

第13讲 函数与导数之导数及其应用 一. 基础知识回顾 1.函数的平均变化率:一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商 =Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数:(1)定义:函数y =f (x)在点x 0处的瞬时变化率 通 常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0)) 的 .导函数y =f ′(x )的值域即为 . 3.函数f (x )的导函数:如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开 区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作 . 4.基本初等函数的导数公式表(右表) 5.导数运算法则 (1)[f (x )±g (x )]′= ; (2)[f (x )g (x )]′= ; (3)????f (x )g (x )′= [g (x )≠0]. 5.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是 函数,f ′(x )>0的解集与定义域的交集的对应区间为 区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a , b )上是 函数,f ′(x )<0的解集与定义域的交集的对应区间为 区间(3)若在(a ,b )上, f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函数,若在 (a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函 数. 6.函数的极值:(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果 在x 0附近的左侧 ,右侧 ,那么f (x 0)是极大值;②如果在x 0附近的左侧 , 右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求方程 的根;③检查f ′(x )在方程 的根左右值的符号.如果左正右负,那么f (x )在这个根处 取得 ;如果左负右正,那么f (x )在这个根处取得 . 7.函数的最值:(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ] 上 ,那么它必有最大值和最小值.(2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步 骤:①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大 的一个是最大值,最小的一个是最小值. 二.典例精析 探究点一:导数的运算 例1:求下列函数的导数: (1)y =(1-x )? ???1+1x ; (2)y =ln x x ;(3)y =x e x ; (4)y =tan x .

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考数学函数与导数复习指导

2019高考数学函数与导数复习指导 函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分。一般为2个选择题或2个填空题,1个解答题,而且常考常新。 在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。 在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在: 1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。 5.涌现了一些函数新题型。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素 养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练

工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 8.求极值,函数单调性,应用题,与三角函数或向量结合。

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

函数与导数专题复习

函数与导数专题复习 类型一 导数的定义 运算及几何意义 例1:已知函数)(x f 的导函数为)('x f ,且满足x xf x f ln )1(2)(' +=,则=)1('f ( ) A .-e B.-1 C.1 D.e 解:x f x f 1)1(2)(''+=,1)1(1)1(2)1('''-=∴+=f f f 【评析与探究】求值常用方程思想,利用求导寻求)('x f 的方程是求解本题的关键。 变式训练1 曲线33+-=x x y 在点(1,3)处的切线方程为 类型二 利用导数求解函数的单调性 例2:d cx bx x x f +++= 233 1)(何时有两个极值,何时无极值?)(x f 恒增的条件是什么? 解:,2)(2'c bx x x f ++=当0442>-=?c b 时, 即c b >2时,0)('=x f 有两个异根2,1x x ,由)('x f y =的图像知,在2,1x x 的左右两侧)('x f 异号,故2,1x x 是极值点,此时)(x f 有两个极值。 当c b =2时,0)('=x f 有实数根0x ,由)('x f y =的图像知,在0x 左右两侧)(' x f 同号,故0x 不是)(x f 的极值点 当c b <2时,0)(' =x f 无根,当然无极值点 综上所述,当时c b ≤2,)(x f 恒增。 【评析与探究】①此题恒增条件c b ≤2易掉“=”号,②c b =2 时,根0x 不是极值点也易错。 变式训练2 已知函数b x x g ax x x f +=+=232)(,)(,它们的图像在1=x 处有相同的切线 ⑴求函数)(x f 和)(x g 的解析式;

2019高考数学二轮复习第二编专题二函数与导数第2讲导数及其应用配套作业文

第2讲导数及其应用 配套作业 一、选择题 1.(2018·成都模拟)已知函数f (x )=x 3 -3ax +14 ,若x 轴为曲线y =f (x )的切线,则a 的值为() A.12B .-12 C .-34D. 14 答案 D 解析 f ′(x )=3x 2 -3a ,设切点坐标为(x 0,0),则 ??? ?? x30-3ax0+14=0,3x2 0-3a =0,解得????? x0=1 2,a =1 4, 故选D. 2.(2018·赣州一模)函数f (x )=12 x 2 -ln x 的递减区间为() A .(-∞,1) B .(0,1) C .(1,+∞) D.(0,+∞) 答案 B 解析 f (x )的定义域是(0,+∞), f ′(x )=x -1 x = x2-1 x , 令f ′(x )<0,解得0<x <1, 故函数f (x )在(0,1)上递减.故选B. 3.(2018·安徽示范高中二模)已知f (x )=ln x x ,则() A .f (2)>f (e)>f (3) B .f (3)>f (e)>f (2) C .f (3)>f (2)>f (e) D .f (e )>f (3)>f (2) 答案 D 解析 f (x )的定义域是(0,+∞), 因为f ′(x )=1-ln x x2 ,所以x ∈(0,e),f ′(x )>0; x ∈(e ,+∞),f ′(x )<0, 故x =e 时,f (x )max =f (e), 而f (2)=ln 22=ln 86,f (3)=ln 33=ln 9 6 , f (e)>f (3)>f (2).故选D. 4.(2018·安徽芜湖模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结 一、导数的概念和几何意义 1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为: 2121 ()() f x f x x x --。 2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ?无限趋近于0时,比值00()()f x x f x y x x +?-?=??无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ?=+?-;(2)求平均变化率:00()()f x x f x x +?-?;(3)取极限,当x ?无限趋近与0时,00()() f x x f x x +?-?无限趋近与一个常数A ,则 0()f x A '=. 4. 导数的几何意义: 函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。 当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。 5. 导数的物理意义: 质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。 二、导数的运算 1. 常见函数的导数: (1)()kx b k '+=(k , b 为常数); (2)0C '=(C 为常数); (3)()1x '=; (4)2()2x x '=; (5)32()3x x '=; (6)211()x x '=-; (7 )'; (8)1()ααx αx -'=(α为常数);

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

高中数学导数及其应用

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数, 这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2021届高三数学之函数与导数(文理通用)专题04 函数与导数之零点问题

专题04 函数与导数之零点问题 一.考情分析 零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面: ①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的. 许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点. 二.经验分享 1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法: (1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断. (2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题. (3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点. 2.导数研究函数图象交点及零点问题 利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;

相关主题
文本预览
相关文档 最新文档