当前位置:文档之家› 差动放大器实验报告

差动放大器实验报告

差动放大器实验报告
差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告

1、实验时间

10月31日(周五)17:50-21:00

2、实验地点

实验楼902

3、实验目的

1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法)

2. 加深对差动放大器性能及特点的理解

3. 学习差动放大电路静态工作点的测量

4. 学习差动放大器主要性能指标的测试方法

5. 熟悉恒流源的恒流特性

6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力

7. 练习使用电路仿真软件,辅助分析设计实际应用电路

8. 培养实际工作中分析问题、解决问题的能力

4、实验仪器

数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线

5、电路原理

1. 基本差动放大器

图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。

部分模拟图如下

1.直流分析数据

2.直流分析仿真数据

3.交流分析数据

4.交流分析仿真数据

2.4.2. 具有平衡电位器的差动放大器

图是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。

1.直流分析数据

2.直流分析仿真数据

3.交流分析数据

4.交流分析仿真数据

2.4.

3. 具有恒流源的差动放大器

图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。

1.直流分析数据

2.直流分析仿真数据

3.交流分析数据

4.交流分析仿真数据

图3.1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻E R ,可以进一步提高差动放大器抑制共模信号的能力。

1、差动电路的输入输出方式

根据输入信号和输出信号的不同方式可以有四种连接方式,即 :

(l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在

2s V 上 ), 输出取自1o V 、2o V 两端。

(4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在

2s V 上 ), 输出取自1o V 或2o V 到地。

连接方式不同 , 电路的性能参数不同。差动放大器当输入差模信号时,差模电压放大倍数d A υ的大小与输出方式有关,而与输入方式无关。

2、静态分析(工作点的估算)

静态时差动放大器的输入端不加信号。 (A )典型电路

EE BE

E E

V V I R -≈

(认为120s s V V ==)

121

2

C C E I I I ==

(B)恒流源电路

2

1

2

33

3

()CC EE BE

C E E R V V V R R I I R +-+≈≈ 1131

2

C C C I I I ==

CC EE 3、动态分析(交流参数指标计算) (1) 差模电压放大倍数

当差动放大器的射极电阻E R 足够大,或采用恒流源电路时,差模电压放大倍数d A υ由输出端方式决定,而与输入方式无关。

双端输入一双端输出时: E R =∞,P R 在中心位置,差动放大器的差模电压增益为

1(1)2

o C

ud i

B be P

V R A V R r R ββ=

=-

+++ ])1([2P be B i R r R R β+++= C o R R 2=

双端输入-单端输出时,电压增益为

111

2

o ud ud i V A A V =

= 221

2

o ud ud i V A A V =

=- ])1([2P be B i R r R R β+++= C o R R =

(2) 共模电压放大倍数

对于共模信号,设差动放大器的两个输入端同时加上大小相等 , 极性相同的两个信号

即12ic i i V V V ==

单端输出时,共模电压增益

11212(1)(2)

2

oc C C uc uc ic E

B be P E V R R

A A V R R r R R ββ-==

=≈-++++

]22

1

)(1([2E P be B i R R r R R ++++=β

C o R R =

共模电压增益c A υ<1,共模信号得到了抑制。

双端输出时,在电路完全对称的理想情况下,输出电压12oc oc V V =, 共模增益为

0oc

uc ic

V A V =

= 上式说明,双端输出时,差动电路对零点漂移,电源电压的波动等干扰信号有很强的抑制能力。实际上由于元件不可能完全对称,因此c A υ也不会绝对等于零。

(3) 共模抑制比CMRR

为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 ud CMR uc A K A = 或 ()20ud CMR uc

A

K Log dB A = 6、实验步骤

特别注意:搭建和调整电路过程中不能带电作业 1. 检查实验仪器设备

2. 检测元器件和导线,排除具有接触不良和断路的导线。

3. 检查实验电路图

4. 搭建实验电路直流通路,测量静态工作点并记录调试过程。

5. 搭建完整实验电路,接入信号源,测量交流参数。

6. 按照对放大器性能指标的要求对电路元器件作相应的调整

7、实验内容

根据差动放大器的工作原理,合理选择元器件,用NPN 型三极管设计出以下几种指定的差动放大电路,以求满足相应的性能指标要求:

A. 具有发射极调零电阻的基本差动放大电路

输入信号:正弦波交流信号,有效值: 100mV ;频率:1kHz 。

?供电电压:+12V,-12V

?输出端带有10kΩ的负载

?单端输出差模增益:不小于30 ?单端输出共模增益:不大于1/2 ?输入与输出反相

?保证信号不失真放大。

实验结果

1.U CC =12V U EE =-12V R L =∞

2.U CC =12V U EE =-12V R L =5k

(双入双出)

(双入单出)

(单入双出)

(单入单出)

B. 发射极接有恒流源的差动放大电路

?输入信号:正弦波交流信号,有效值: 100mV;频率:1kHz。

?供电电压:+12V,-12V

?输出端带有10kΩ的负载

?单端输出差模增益:不小于30

?单端输出共模增益:接近于零

?输入与输出同相

?保证信号不失真放大。

实验结果

1.U CC =12V U EE =-12V R L =∞

(双入双出)

(双入单出)

(单入双出)

(单入单出)

2.U CC =12V U EE =-12V R L =5k

(双入双出)

(双入单出)

(单入双出)

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 2.4.2. 具有平衡电位器的差动放大器 分析容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 1.13mA 6.4V 7.1V 双出 A m 100.43-? 1.13mA 6.4V 7.1V 单出 A m 100.43-? 1.13mA 3.2V 3.9V 分析容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 1.12mA 6.4V 7.1V 双出 A m 109.83-? 1.12mA 6.4V 7.1V 单出 A m 100.93-? 1.10mA 3.2V 4.0V 分析容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 -93.3 15k Ω 10k Ω ∞ 单出 -46.7 15k Ω 5k Ω 184.2 分析容 u A i R o R CMR K 空载 -179.4 15k Ω 10k Ω ∞ 双出 -90.1 15k Ω 10k Ω ∞ 单出 -45.5 15k Ω 5k Ω 189.4

3 简单差动放大器的仿真实验

国家集成电路人才培养基地 培训资料(3) 简单差动放大器实验 2006-X-XX

西安交通大学国家集成电路人才培养基地 简单差动放大器实验 本实验包括对简单差动放大器进行DC扫描、AC分析,并学习根据输出波形确定相位裕度、输入输出共模范围、共模增益、共模抑制比(CMRR)以及电源抑制比(PSRR)。 1. 启动cadence 启动电脑,进入solaris9系统,打开终端Teminal,输入cds.setup后按回车,再输入icfb&按回车,candence启动成功。在自己的Library中新建一个cellview,命名为amp。 2. 电路图输入 按下图输入简单差动放大器电路图,其中的元件参数我们在下一步中设置,图中用到的元件(vdc, pmos4,nmos4,vdd,gnd,cap)都在analogLib库中能找到。 图2.1 简单差动放大器电路图 第1页,共14页

简单差动放大器实验 3. 计算、设置元件参数 根据放大倍数,功耗,输出摆幅等要求确定各个mos管的宽长比(W/L)和栅压。由于我们实验时间有限,请同学们直接按下面的步骤设置好元件值(选中元件后按q键调出如下的元件属性设置框): M0,M1,M2:于Model name 栏输入n18,于Width栏输入4u,于Lenth栏输入700n,最后点击ok。 图3.1 M0、M1、M2管的参数设置 M3,M4:于Model name 栏输入p18,于Width栏输入10u,于Lenth栏输入3u,最后点击ok。 图3.2 M3、M4管参数设置 第2页,共14页

西安交通大学国家集成电路人才培养基地 第3页,共14页 直流电压源V0,V1的值分别设为1.8,0.6。设置完毕后点击工具栏上的进行保存。 4. 仿真 4.1 DC 扫描及输入输出共模范围 在菜单栏依次选择Tools →Analog Environment ,弹出如图4.1所示的Simulation 窗口: 点击Setup →Model Libraries 在弹出的对话框中设好Model Library 。点击 Browse …按钮,选择/cad/smic018_tech/Process_technology/Mixed-Signal/SPICE_Model/ms018_v1p6_spe.lib ,在Section(opt.)中填入tt ,点Add ,再点ok 退出。 图4.1 Simulation 窗口 图4.2 添加Model Library

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 双出 A m 100.43-? 单出 A m 100.43-? 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 双出 A m 109.83-? 单出 A m 100.93-? 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω 分析内容 u A i R o R CMR K 空载 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

差动放大电路_实验报告

实验五差动放大电路 (本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~) 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 R P用来调节T1、T2管的静态工作点, V i=0时, V O=0。R E为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。 差分放大器实验电路图 三、实验设备与器件 1、±12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。 四、实验内容 1、典型差动放大器性能测试 开关K拨向左边构成典型差动放大器。 1) 测量静态工作点 ①调节放大器零点

信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压V O ,调节调零电位器R P ,使V O =0。 ②测量静态工作点 再记下下表。 2) 测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 3) 测量共模电压放大倍数 理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点: E3 BE EE CC 212 E3 C3R V )V (V R R R I I -++≈≈=1.153mA I c Q =I c 3/2=0.577mA, I b Q =I c /β=0.577/100=5.77uA U CEQ =V cc-I c R c+U BEQ =12-0.577*10+0.7=6.93V 双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨) P be B C i O d β)R (12 1 r R βR △V △V A +++- ===-33.71 A c 双 =0.

武汉大学差动放大电路实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年12 月14 日实验名称差动放大电路实验台号实验时数3小时姓名学号年级2013班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 一、实验目的 1 、熟悉差动放大器工作原理 2、掌握差动放大器的基本测试方法 实验内容 1.计算下列差动放大器的静态工作点和电压放大 倍数电路图见5.1 信号源已替代 5.1 在图5.1的基础上画出单端输入时和共模输入时的电路图 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用表 4.TPE-A3模拟电路实验箱 3、实验步骤: 1、将电路图5.1接线 2、测量静态工作点 3、测量差模电压放大倍数 4、测量共模电压放大倍数 5、在实验台上组成单端输入的差动电路进行下列实验

三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等) 实验内容及数据记录 1、将电路图5.1接线 2、测量静态工作点 ①调零 将放大器输入端V11、V12接地,接通直流电源,调节调零电位器R P,使V O=0。 ②测量静态工作点:测量V1,V2,V3各极各地电压, 并填入表5.1中。 5.1 对地 电压 Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 测量值 6.29 6.31 -0.74 0 0 - 7.77 -0.61 -0.61 - 8.39 3)测量差模电压放大倍数 在两个输入端各自加入直流电压信号,按有5.2要求测量并记录,由测量得到的数据计算出单端和输出的电压放大倍数。接入到V11t和V12,调节Dc信号源,使其输出为0.1和-0.1. (须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 4) 测量共模电压放大倍数 将输入端b1和b2 短接,接到信号源的输入端,信号源另一端接地。DC信号先后接OUT1和OUT2 测量有关数据后填入表5.32.,由测量得到的数据计算出单端和双端输出的电压放大倍数,并进一步计算出共模抑制比。 5.2 差模输入共模输入抑制 比测量值计算值测量值计算值计算 值Uc1 Uc2 Uo双Ad1 Ad2 Ad双Uc1 Uc2 Uco双Ac1 Ac2 Ac双CMRR +0.1V 10.08 2.55 7.46 -16. 8616.8 6-33. 71 6.29 6.31 -0.02 0.00 5 0.00 5 0 186.5 -0.1V 6.29 6.31 -0.02 0.00 50.00 5 0 186.5

差动放大电路实验

差动放大电路实验报告 严宇杰141242069 匡亚明学院 1.实验目的 (1)进一步熟悉差动放大器的工作原理; (2)掌握测量差动放大器的方法。 2.实验仪器 双踪示波器、信号发生器、数字多用表、交流毫伏表。 3.预习内容 (1)差动放大器的工作原理性能。 (2)根据图3.1画出单端输入、双端输出的差动放大器电路图。 4.实验内容 实验电路如图3.1。它是具有恒流源的差动放大电路。在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。对于共模信号,若 Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。从而使差动放大器有较强的抑制共模干扰的能力。调零电位器 R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0. 差动放大器常被用作前置放大器。前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。于是人们希望只放大差模信号,不放大共模

实验八_差分放大器实验报告

差分放大电路 实验报告 姓名:黄宝玲 班级:计科1403 学号:201408010320 实验摘要(关键信息) 实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。 实验内容与规划: 1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。 2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2) 3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。 4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。 5、计算共模抑制比Kcm R 。 最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。 实验环境(仪器用品等) 1.仪器:示波器(DPO 2012B 100MHZ 1GS/s) 直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A) 台式万用表(UT805A) 模拟电路实验箱(LTE-AC-03B)。 2、所用功能区:单管、多管、负反馈放大电路。 实验原理和实验电路 1、实验原理: 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。 概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。 A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。 差模信号Vid :即差模输入的两个输入信号之差。 B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。 共模信号Vic :即共模输入的两个输入信号的算数平均值。 C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 = D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 = E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。 =20lg| |(dB ) =| | 2、实验电路: SW1 SW-SPDT Q1 NPN Q2 NPN Q3 NPN R1 510 R2 510 R3 10k R4 10k R5 10k R6 10k R7 10k R8 5.1K R9 68K R10 36K RV1 100 R9(1) R10(2) A B C D AM FM + -

模电实验五 差动放大器

实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图5-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 当开关K拨向右边时,构成具有恒流源的差动放大器。它用晶体管恒流

源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 12 E3C3R U )U (U R R R I I -++≈ ≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -== 当输入共模信号时,若为单端输出,则有 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-===

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

差动放大器实验报告_0

差动放大器实验报告 篇一:差动放大器实验报告 东莞理工学院实验报告 系(院)、专业班级:电气自动化(2)班姓名:吴捷学号:202041310202日期:2020.12.28成绩: 篇二:差动放大器实验报告 2.6 差动放大器 2.6.1 实验目的 1.加深对差动放大器性能及特点的理解。 2.学习差动放大器主要性能指标的测试方法 2.6.2 实验原理 1.实验电路 图2-6-1差动放大电路实验电路图 实验电路如图2-6-1所示。当开关K拨向左边时,构成典型的差动放大器。调零电位器 用来调节、 管的静态工作点,使得输入信号 。 为两管共用的发射极电阻,它对差 时,双端输出电压 模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有 较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。当开关K拨向右边时,构成具有恒流源的差动放大器。它用晶体管恒流源代替发射极电阻,可以进一步提高差动放大器抑制共模信号的能力。 2.差动放大器主要性能指标(1)静态工作点 典型电路:(认为) 恒流源电路:

(2)差模电压放大倍数 当差动放大器的射极电阻足够大,或采用恒流源电路时,差模电 压放大倍数 由输出端决定,而与输入方式无关。 双端输出时,若 在中心位置 单端输出时 式中出电压。 和分别为输入差模信号时晶体管、集电极的差模输 (3)共模电压放大倍数 双端输出时 不会绝对等于零。 实际上由于元件不可能完全对称,因此 单端输出时 式中压。 (4)共模抑制比 为了表征差动放大器对有用信号(差模信号)的放大能力和对无用信号(共模信号)的抑制能力,通常用一个综合指标来衡量,即共模抑制比 和 为输入共模信号时晶体管、集电极的共模输出电 或 (dB) 2.6.3 实验内容和步骤 1.典型差动放大器性能测试 按图2-6-1连接实验电路,开关K拨向左边构成典型差动放大器。(1)测量静态工作点 ①调零:将放大器输入端A、B与地短接,接通直流电源,用万用表测量输出

实验五差分放大器

实验五 差分放大器 3学时 一、实验目的 1.学习调整差分放大器的静态工作点。 2.加深对差分放大器性能及特点的理解。 3.学习差分放大器主要性能指标的测试方法。 二、预习要求 1.复习差分放大器的工作原理和性能分析方法。 2.画出完整正确的实验电路。 3.了解差分放大器的调整方法及放大倍数、共模抑制比的测量方法。 4.明确实验内容,画出测量记录表。 三、实验电路及原理 差分放大器是基本放大电路之一,由于它具有抑制零点漂移的优异性能,因此得到广泛的应用,并成为集成电路中重要的基本单元电路,常作为集成运算放大器的输入级。 差分放大电路常见的形式有三种:基本形式、长尾式和恒流源式。 1.基本形式差分放大电路 (1)电路组成 将两个电路结构、参数均相同的单管放大电路组合在一起,就成为差分放大电路的基本形式,如图5.1所示。输入电压1I u 和 2I u 分别加在两管的基极,输出电压等于两管的集电极电压之差。 在理想情况下,电路中左右两部分三极管的特性和电阻的参数均完全相同,则当输入电压等于零时,21CQ CQ U U =,故输出电压0=o U 。如果温度升高使1CQ I 增大,1CQ U 减小,则2CQ I 也将增大,

2 CQ U也将减小,而且两管变化的幅度相等,结果1T和2T输出端的零点漂移将互相抵消。 CC 2 图5.1 差分放大电路的基本形式 加上输入信号以后: (2)差模输入电压和共模输入电压 差分放大电路有两个输入端,可以分别加上两个输入电压 1I u 和 2I u。如果两个输入电压大小相等。而且极性相反,这样的输入电压称为差模输入电压,如图5.2所示,差模输入电压用符号Id u表示;如果两个输入信号不仅大小相等,而且极性也相同,这样的输入电压称为共模输入电压,如图5.3所示,共模输入电压 用符号 Ic u表示。 图5.2 差模输入电压 实际上,在差分放大电路的两个输入端加上任意大小、任意 极性的输入电压 1I u和2I u,我们可以将它们认为是某个差模输入 电压与某个共模输入电压的组合,其中差模输入电压 Id u和共模输

实验三 差动放大器

肇 庆 学 院 学院 课实验报告 年级 班 组 实验日期 姓名 老师评定 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 实验题目 差动放大器 一、实验目的: 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理与内容: 图3-1是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0)

E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时,P be B C i O d β)R (12 1r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -== 当输入共模信号时,若为单端输出,则有 若为双端输出,在理想情况下: 0△U △U A i O C == 实际上由于元件不可能完全对称,因此A C 也不会绝对等于零。 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 c d A A CMRR = 或()dB A A 20Log CMRR c d = 差动放大器的输入信号可采用直流信号也可采用交流信号。本实验由函数信号发 生器提供频率f =1KHZ 的正弦信号作为输入信号。 三、实验设备与器件 1、±12V 直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3,要求把 T 1、T 2管特性参数一致, (或9011×3) 电阻器、电容器若干。 E C E P be B C i C1C2 C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-===

实验一 差动放大器实验

实验一差动放大器实验 一、实验目的 1.加深对差动放大器性能的理解。 2.学习差动放大器的主要性能指标的测试方法。 二、实验原理 图1-1是差动放大器的实验电路图。它由两个元件参数相同的基本共射放大电路组成。 当开关K拨向左边时,构成典型的差动放大器。当开关K拨向右边时,构成恒流的差动放大器。调零电位器Rp用来调节T1,T2管的静态工作点。 图1-1 差动放大器实验电路图 当开关K拨向右边时,构成具有恒流源的差动放大器。它用晶体管恒流源代替发射极电阻Re,可以进一步提高差动放大器抑制共模信号的能力。 1.静态工作点的估算 典型电路: 恒流源电路: 2.差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E足够大,或采用恒流源电路时,差模电压放大倍数A d由输出端方式决定,而与输入方式无关。 双端输出:R E=∞,W电位器在中心位置时,

当输入共模信号时,若为单端输出,则有 若为双端输出,在理想情况下 ,实际上由于元件不可能完全对称,因此Ac也不会绝对等于零。 3.共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 差动放大器的输入信号可以用直流信号也可以用交流信号。 三、实验设备 1、HKCK-1型测控电路综合实验平台 2、万用表、函数信号发生器、数字示波器 四、实验内容及步骤 1、接通HKCK-1挂箱上的电源并用直流电压表表观测平台上的直流电压输出是否正常,挂箱的指示灯是否正常,如果不正常,则需要检测。只有电压正常以后,方可进行下一步实验。 2.典型差动放大器性能测试 把差动放大器单元的开关拨向左边构成典型差动放大器。 (1)放大器调零 放大器输入端的“+”、“一”两端与地短接,用万用表直流电压档观测输出电压Uo,调节调零电位器101,使U o=0。调节要仔细,力求准确。(注意:本挂件的所有单元共地)。 (2)测量差模电压放大倍数 将函数信号发生器的信号加入本单元的U i端的“+”与地之间,使之输出频率为1KHz 左右的正弦波信号,幅值为100mV,用示波器观测输入、输出波形,在U o输出波形无失真的情况下,测量U i,U O+,U O一,U o对地之间电压,记入表1-2中,并观察U i,U o+,U o-之间的相位关系。 (3)测量共模电压放大倍数 将放大器的输入端“+”端和“一”端短接,信号源接输入端“+”端和地之间,构成共模输入方式,调节功率信号发生器,使之输出信号f=lKHz,1V P-P的正弦信号,用示波器观测输入、输出波形,在输出电压无失真的情况下,测量U O+、U O一的值,记入表1-2,并观察U i,U o+,U o-之间的相位关系。

差动放大电路实验报告

差动放大电路实验报告

差动放大电路实验 实 验 报 告 班级:电信工1班 姓名:XXX 学号:XXXXXXXXX 地点:XXXXXXX 日期:2015.10.29

一、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 二、实验仪器及备用元器件 (1)实验仪器 序 号 名称型号备注 1.数字示波 器 Agilent DSO-X 具有函数信 号发生器

(2)实验备用器件 三、 实验概述 差动放大电路是构成多级直接耦合放大电路的基本单元电路,由典型的工作点稳定电路演变而来。为进一步减小零点漂移问题而使用了对称晶体管电路,以牺牲一个晶体管放大倍数为代价获取了低零漂的效果。它还具有良好的低频特性,可以放大变化缓慢的信号,由于不存在电容,2002A 2. 数字万用表 可以测试β 3. 模拟实验板 ±12V 直流 电源 序号 名称 说明 备注 1. 三极管 差分对 管/组合 管 需要选对管(β相近) 2. 电阻 若干 3. 电容 若干 4. 连接线

可以不失真的放大各类非正弦信号如方波、三角波等等。差动放大电路有四种接法:双端输入单端输出、双端输入双端输出、单端输入双端输出、单端输入单端输出。 由于差动电路分析一般基于理想化(不考虑元件参数不对称),因而很难作出完全分析。为了进一步抑制零漂,提高共模抑制比,可以用恒流源电路来代替一般电路中的Re,它的等效电阻极大,从而在低电压下实现了很高的零漂抑制和共模抑制比。 四、电路原理 2. 具有平衡电位器的差动放大器 1.直流分析、仿真、实验数据 2.交流分析、仿真、实验数据

差动放大器实验报告

肇庆学院 实验报告 学生姓名:胡耿升学号: 201324123116 指导老师:麻幼学 实验时间:2015/5/23 小组成员: 苏桢妍实验成绩: 一、实验名称:差动放大器 二、实验目的 1.加深对差动放大器性能及特点的理解。 2.学习差动放大器主要性能指标的测试方法 三、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P用来调节T1、T2管的静态工作点,使得输入信号Ui=0时,双端输出电压U O=0。RE为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、 差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻RE 足够大,或采用恒流源电路时,差模电压放大倍数Ad 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, p be B c o d R 12 1 r R R -Ui U A )(ββ+++=??= 单端输出 d i 1C d1A 21 U U A =??= d i 2C d2A 2 1 -U U A =??= 当输入共模信号时,若为单端输出,则有 E C E P be B C 2 C 1 C 2C C1R 2R -R 2R 2 11r R R -U U A A ≈++++=??= =) )((ββ 若为双端输出,在理想情况下 0U U A i o C =??= 实际上由于元件不可能完全对称,因此A C 也不会绝对等于零。

实验四差动放大器

实验四差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图6-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放大 电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来 调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图6-1 差动放大器实验电路 当开关K拨向右边时,构成具有恒流源的差动放大器。它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算

典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 1r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -== 当输入共模信号时,若为单端输出,则有 若为双端输出,在理想情况下 0△U △U A i O C == 实际上由于元件不可能完全对称,因此A C 也不会绝对等于零。 3、 共模抑制比CMRR E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-===

实验四-差分放大器

实验四-差分放大器

实验四差分放大器 实验目的: 1.掌握差分放大器偏置电路的分析和设计方法; 2.掌握差分放大器差模增益和共模增益特性,熟悉共模抑制概念; 3.掌握差分放大器差模传输特性。 实验内容: 一、实验预习 根据图4-1所示电路,计算该电路的性能参数。已知晶体管的导通电压V BE(on)=0.55, β=500,|V A|=150 V,试求该电路中晶体管的静态电流I CQ,节点1和2的直流电压V1、V2,晶体管跨导g m,差模输入阻抗R id,差模电压增益A v d,共模电压增益A v c和共模抑制比K CMR,请写出详细的计算过程,并完成表4-1。

图4-1. 差分放大器实验电路 表4-1: I CQ (mA ) V 1(V ) V 2(V ) g m (mS ) R id (k Ω) A v d A v c K CMR 二、仿真实验 1. 在Multisim 中设计差分放大器,电路结构和参数如图4-1所示,进行直流工作点分析( DC 分析),得到电路的工作点电流和电压,完成表4-2,并与计算结果对照。 表4-2: I CQ (mA ) V 1(V ) V 2(V ) V 3(V ) V 5(V ) V 6(V ) 仿真设置:Simulate → Analyses → DC Operating Point ,设置需要输出的电压或者电

流。 2. 在图4-1所示电路中,固定输入信号频率为10kHz,输入不同信号幅度时,测量电路的差模增益。采用Agilent示波器(Agilent Oscilloscope)观察输出波形,测量输出电压的峰峰值(peak-peak),通过“差模输出电压峰峰值/差模输入电压峰峰值”计算差模增益A v d,用频谱仪器观测节点1的基波功率和谐波功率,并完成表4-3。 表4-3: 1 10 20 输入 信号 单端 幅度 (mV) A v d 基波 功率 P1 (dBm) 二次

相关主题
文本预览
相关文档 最新文档