当前位置:文档之家› 利用DC-DC非隔离式负载点(POL)电源模块来简化设计

利用DC-DC非隔离式负载点(POL)电源模块来简化设计

利用DC-DC非隔离式负载点(POL)电源模块来简化设计

利用DC-DC 非隔离式负载点(POL)电源模块来简化设

采用FPGA、DSP或微处理器设计是设计的关键部分,也最花费时间。系统级设计人员可以通过将主要精力集中于系统设计而受益匪浅,他们还需要

解决诸如产品上市时间、实现小型化尺寸的问题。使用最新一代DC-DC非隔

离式负载点(POL)电源模块可以为他们带来重要优势。

这些模块具有高度的集成和密度,先进的封装技术可以发挥高功率密度

的优势,整体性能十分可靠甚至可以满足最苛刻的电源管理要求。使用电源模

块意味着需要最少的外部元件,因此设计人员可以迅速实现复杂的电源管理设计,并专注于核心设计。即使是在设计周期的中后期电源需求出现了变化时,

电源模块也可以应对自如。

在介绍电源模块优点的具体细节之前,让我们来看看设计方面的问题。

在采用一个分立式(非模块)解决方案时,设计师必须考虑几个问题。所有的问

题都可能延缓设计进程,拖延产品推向市场的时间。例如,选择合适的PWM

控制器、FET驱动器、功率FET、电感器,以满足代表第一阶段的具体电源要求,这通常是一个漫长的分立式电源设计周期。在选定了这些主要功率器件之后,设计人员必须开发一个补偿电路,其依据是将要在一个给定的系统中使用

的各种负载的输出电压规格。这可能非常单调和乏味,还要花很多时间往往还

需要返工。除了补偿电路设计,还需要选择功率级、驱动器、功率FET和电感器,以满足功率效率的目标。这可能需要根据不同的应用需求进行反复的元件

选择。

在设计分立式电源之后,布板工作以及噪声和散热要求方面的问题增加

了设计周期的复杂性。总之,这是一个繁琐的过程。

DC-DC电源模块常见应用问题分析与解决

DC-DC电源模块常见应用问题分析与解决 微功率DC-DC电源模块以高集成度、高可靠性、简化设计等多重优势,广泛应用于电路设计中。虽然其应用电路简单,操作简单,但往往在应用时还是会遇到一些常见问题。针对此本文对电源模块常见的应用问题以及如何排除故障进行一次详细的分析。 微功率DC-DC电源模块以高集成度、高可靠性、简化设计等多重优势,受到很多电子设计者的青睐。电源模块虽然应用电路简单,操作简单,但往往在应用时还是会遇到一些常见问题。针对此本文对电源模块常见的应用问题以及如何排除故障进行详细的分析,希望对设计者的电源模块选型时有所帮助。 常见问题一:输出纹波噪声偏大 原因1:模块在使用时,负载为动态负载,使得模块输出电压峰峰值变大,但注意这不是纹波噪声。 当负载电流如果进行周期性突变时,模块输出电压的峰峰值会变大。这是一个瞬态量,但有时会被误以为是纹波噪声。所以当使用一个电源模块给多个电路单元供电时,对于有周期性负载变化的电路,前级需要增加π型滤波,减小这部分电路的瞬态变化对其他电路的干扰。 例如,下图中电路B由于负载大小的变化,使得输入电压波动。为了减小电路B对电路A的干扰,建议在电路B的输入端增加π型滤波。 图 1 电路链接框图 原因2:示波器地线问题 在测试电源输出的纹波噪声时,示波器的地线夹和地线、模块输出引脚形成一个环路,类似于天线接收器,会引入其他噪声。如果测试的环境干扰大,这种噪声也会由示波器引入,影响纹波噪声测试的结果。 且平常我们购买的示波器探头的地与示波器内部的大地线相连,这种情况对工频干扰的抗扰能力弱,容易引入干扰噪声。所以在使用中最好保证示波器探头浮地处理(隔离开示波器的电源地,或者直接使用电池供电的示波器),减少引入的干扰。如果测量对象的供电电源也是浮地,这样更好,这样就不会导致电路特性的改变,使模块输出噪声增大。 问题二:模块启动后,输出电压偏低 原因1:输入端有防反接电路

隔离与非隔离电源的特性对比

隔离与非隔离电源的特性对比 如果拿CPU比喻为电子系统的大脑,那么电源就相当于电子系统的心脏。随着对电路设计中电源要求越来越高,隔离电源模块应运而生,而对隔离电源你又了解多少? 随着电子行业的发展,对电源的要求越来越高,体积更小,可靠性更高,电源模块作为集成器件应运而生。其具有隔离作用,抗干扰能力强,自带保护功能,便于后期系统集成等优点被越来越广泛的应用。 但是在选择合适的模块时,经常会碰到一个参数“隔离电压”,隔离电压越高,模块的价格就越贵,那么就会好奇了,什么是隔离电压,该选择什么等级的合适呢? 电源的隔离耐压在GB-4943国标中又叫抗电强度,这个GB-4943标准就是我们常说的信息类设备的安全标准,就是为了防止人员受到物理和电气伤害的国家标准,其中包括避免人受到电击伤害、物理伤害、爆炸等伤害。如下图1为隔离电源结构图。 图1 隔离电源结构图 作为模块电源的重要指标,标准中也规定了隔离耐压相关测试方法,简单的测试时一般采用等电位连接测试,连接示意图如下: 图2 隔离耐压测试示意图 测试方法: 将耐压计的电压设为规定的耐压值,电流设为规定的漏电流值,时间设为规定的测试时间值;

●操作耐压计开始测试,开始加压,在规定的测试时间内,模块应无击穿,无飞 弧现象。 注意在测试时焊接电源模块要选取合适的温度,避免反复焊接,损坏电源模块。 那么隔离电源与非隔离电源比较有什么的优缺点呢? 表 1 隔离电源与非隔离电源优缺点 通过了解隔离与非隔离电源的优缺点可知,它们各有优势,对于一些常用的嵌入式供电选择,我们可遵循以下判断条件: ●系统前级的电源,为提高抗干扰性能,保证可靠性,一般用隔离电源; ●电路板内的IC或部分电路供电,从性价比和体积出发,优先选用非隔离的方案; ●对于远程工业通信的供电,为有效降低地电势差和导线耦合干扰的影响,一般用隔 离电源为每个通信节点单独供电; ●对于采用电池供电,对续航力要求严苛的场合,采用非隔离供电; ●对安全有要求的场合,如需接市电的AC-DC,或医疗用的电源,为保证人身的安 全,必须用隔离电源,有些场合还必须用加强隔离的电源。 一般场合使用对模块电源隔离电压要求不是很高,但是更高的隔离电压可以保证模块电源具有更小的漏电流,更高的安全性和可靠性,并且EMC特性也更好一些,因此目前业界普遍的隔离电压水平为1500VDC以上。

串口隔离模块

串口隔离模块 DATA-8205 串口隔离模块 概述: 串口隔离模块主要用于对工业设备的RS232/RS485通信接口的隔离保护,通过模块内部电路的电气隔离,可有效避免地线回路电压、浪涌、感应雷击、静电、热插拔、电磁干扰等因素造成的设备损坏。 设备特点: ◆工业级电磁隔离,能够提供高达2500Vrms的隔离电压。 ◆完整的保护方案能使RS-232/RS-485设备安装于任何复杂的工业环境而免除静电、雷击、电磁和浪涌对设备的干扰或损坏。 ◆用户可自主设定隔离串口类型。 ◆全透明通信,无须调试、即插即用。 ◆通信波特率自适应。 ◆体积小巧,安装方便。 产品型号DATA-8205 符合标准EIA/TIA RS-232C、RS-485国际标准 工作方式自定义串口类型 波特率300bps ~ 57600bps自适应 信号隔离2500V 电源隔离非隔离 传输介质双绞线或屏蔽线 工作电源9 ~ 30VDC宽压输入 响应时间≤ 10nm 安装方式DIN导轨安装(35mm) 适用环境即插即用 工作环境-40℃到 85℃,相对湿度为5%到95% 外壳材质工程塑料 外型尺寸100x25.4x74mm

串口隔离模块 DATA-8301 串口隔离模块 概述 串口隔离模块是工业级电流信号隔离分配器,采用磁隔离技术保证隔离器的隔离功能:输入、输出、电源之间全隔离,能够屏蔽现场各种干扰信号和有害信号,同时保证输出信号不衰减,提供高精度信号。采集现场各类一次传感器或其他仪表输出的直流信号后,经隔离、抗干扰处理后输出,使得检测和控制回路信号的安全性和抗干扰能力大大增强,提高系统可靠性。 设备特点: ◆采用高精度采集芯片,精度高。 ◆兼容性强,可接入各种4~20mA输出的变送器及仪表。 ◆具备两路电流输入、两路隔离电流输出,可为变送器和仪表提供DC 12V/24V供电电源。 ◆体积小巧,标准DIN35导轨安装,节省空间、安装简便。 产品型号DATA-8301 工作电压:10V~30V DC 负载能力:0~250Ω 消耗功率:≤2W 工作精度:±0.2% 隔离耐压:1500VDC 绝缘电阻:>100MΩ 响应时间:200μS 电磁兼容:IEC61000-4-4:1995

一款高效率数字模块电源的设计研究_方超

图1基于UCD3138的数字电源硬件电路系统框图 本文以TI 公司的针对隔离式DC /DC 电源专用控制芯片 UCD3138作为研究对象,介绍了其数字控制特点,并以其为控制核心设计了一款36V~72V 直流输入,12V 直流输出,满载30A ,带同步整流的数字控制DC /DC 全桥变换器,峰值效率可达94%以上。 1UCD3138数字控制器的主要特点 UCD3138是TI 公司最新推出的隔离电源专用的数字控制 芯片,采用了将环路补偿控制与监控通信分离的优化硬件架构,解决了控制系统与通信系统抢用MCU 资源的矛盾。 UCD3138的内核上含有三个独立的数字控制环路外设,也被称为数字电源外设(DPP ),每个DPP 执行一个高速数字控制环路,此环路由一个专用的差分模数转换器(EADC )、一个基于双极点双零点数字补偿器PID 和具有250ps 脉宽分辨率的DPWM 输出组成。它们相互协作产生PWM 波输出,工作时无需微控制器参与,节省了MCU 的资源。 实时监控、配置外设与通信管理是由31.25MHz 、32位ARM7TDMI-S 精简指令微控制器实现的。它支持整合数字电源设计图形用户界面(GUI )。用户可利用GUI 开发界面,通过PMBUS 总线,与UCD3138互联,监控电源工作状态,配置外设寄存器,即可调整控制环路的PID 参数,也可调整输出电压,开关 频率等相应的寄存器,故可在降低成本与功耗的同时简化开发。 该控制器还包含12位、267ksps 、14通道的通用ADC ,定时器,中断控制,JTAG 调试和PMBus (电源业界的通讯标准)以及UART 通信端口。 UCD3138有40引脚和64引脚两个版本,功能差异不大, 只是功能外设的数量上有些增减,综合本设计的需求,本文选用 40引脚,6mm *6mm 大小的UCD3138RHA 作为主控芯片。2数字电源系统设计 本文的设计目标为36V~72V 直流输入,12V 直流输出,满载30A ,开关频率200kHz 带同步整流的数字控制DC /DC 全桥变换器。基于UCD3138的数字电源硬件电路系统框图如图1 所示,可分为功率回路和控制系统两部分。 2.1功率回路设计 主功率回路是全桥PWM DC /DC 变换器,主要由全桥式 逆变器、高频变压器、输出同步整流器和直流滤波器组成,属于一种直流-交流-直流变换器。综合考虑输入输出电压范围,变压器的匝比选为5:2:2。 (1)输出滤波电感设计 输出滤波电感的取值主要取决于输出电流纹波△I O ,一般取为最大输出电流的20%,故L 的取值应满足: L ≥U in N D (1-2D )T S △I O 其中,U in 为输入电压,N 为变压器原副边匝比,D 为占空比,T S 为功率管开关周期。最终择优选取L=2.2。 (2)输出电容设计 输出电容的容值主要影响到输出电压纹波△U O ,纹波大小应低于输出电压的0.5%,故C 应满足:C ≥LI O △I O O 式中,U O 、I O 分别为电源的输出电压、输出电流。同时,为降低输出电压中的低频和高频谐波,输出电容采用4个220μF 钽电容,6个47μF 瓷介电容并联。 (3)主功率管和同步整流管的选择 依据输入、输出电压、电流及开关频率等因素,在预留安全 一款高效率数字模块电源的设计研究 方 超 张 强 谢君甫(中航工业雷华电子技术研究所,江苏无锡214063) Digitally Controlled High Efficiency Modular Power Supply 摘要:数字控制的模块电源具有高效率、高功率密度等诸多优点,是当前电源技术的研究热点。分析了TI 公司最新推出的隔离型电源专用数字控制芯片UCD3138的特点,并以其为控制环路核心,设计了一款带同步整流的数字控制全桥DC / DC 变换器。最后搭建模块电源样机,验证了设计的有效性,电源峰值效率可达94%以上。 关键词:UCD3138,DC-DC 变换器,数字控制,同步整流 Abstract :This paper analys the features of highly integrated digital controller UCD3138for isolated power launched by TI recently.A digital controlled full-bridge DC /DC converter with synchronous rectifier based on UCD3138is designed.The real prototype is fabricated,and the experimental results verified the rationality of design method.High efficiency up to 94%can be obtained. Keywords :UCD3138,DC-DC converter,digital control,synchronous rectification 一款高效率数字模块电源的设计研究 148

电源模块设计分析

电源模块设计分析 电源模块是可以直接贴装在印刷电路板上的电源供应器(参看图1),其特点是可为专用集成电路(ASIC)、数字信号处理器(DSP)、微处理器、存储器、现场可编程门阵列(FP GA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点(POL) 电源供应系统或使用点电源供应系统(PUPS)。由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。本文将深入探讨这些问题,并分别提出相关的解决方案。 图1,电源供应器 采用电源模块的优点 目前不同的供应商在市场上推出多种不同的电源模块,而不同产品的输入电压、输出功率、功能及拓扑结构等都各不相同。采用电源模块可以节省开发时间,使产品可以更快推出市场,因此电源模块比集成式的解决方案优胜。电源模块还有以下多个优点: ● 每一模块可以分别加以严格测试,以确保其高度可靠,其中包括通电测试,以便剔除不合规格的产品。相较之下,集成式的解决方案便较难测试,因为整个供电系统与电路上的其他功能系统紧密联系一起。 ● 不同的供应商可以按照现有的技术标准设计同一大小的模块,为设计电源供应器的工程师提供多种不同的选择。 ● 每一模块的设计及测试都按照标准性能的规定进行,有助减少采用新技术所承受的风险。 ● 若采用集成式的解决方案,一旦电源供应系统出现问题,便需要将整块主机板更换;若采用模块式的设计,只要将问题模块更换便可,这样有助节省成本及开发时间。

容易被忽略的电源模块设计问题 虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题: ● 输出噪音的测量; ● 磁力系统的设计; ● 同步降压转换器的击穿现象; ● 印刷电路板的可靠性。 这些问题会将在下文中一一加以讨论,同时还会介绍多种可解决这些问题的简单技术。 输出噪音的测量技术 所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可以采用图2 所示的Tektronix 探针探头(一般称为冷喷嘴探头),以确保测量数字准确可靠,而且符合预测。这种测量技术也确保接地环路可减至最小。 图2,测量输出噪音数字 进行测量时我们也要将测量仪表可能会出现传播延迟这个因素计算在内。大部分电流探头的传播延迟都大于电压探头。因此必须同时显示电压及电流波形的测量便无法确保测量数字的准确度,除非利用人手将不同的延迟加以均衡。 电流探头也会将电感输入电路之内。典型的电流探头会输入600nH 的电感。对于高频的电路设计来说,由于电路可承受的电感不能超过1mH,因此,经由探头输入的电感会影响di/dt 电流测量的准确性,甚至令测量数字出现很大的误差。若电感器已饱和,则可采用

48V50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计 高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。 要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。 1设计要求和具体电路设计 通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工 作中遇到的实际情况,提出该模块设计的硬指标如下: 1) 电网允许的电压波动范围 单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。 2) 直流输出电压,电流 输出电压:标称-48V,调节范围:浮充,43~56?5V;均充,45~58V。 输出电流:额定值:50A。 3) 保护和告警性能 ①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。 ②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。 ③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数 模块的效率不低于88%,功率因数不低于0.99。 5) 其他指标 模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准。 由于模块的输出功率不大,可采用如下的基本方案来设计主电路: 1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数; 2) 采用双正激变换电路拓扑形式,工作可靠性高; 3) 主开关管采用 V MOSFET,逆变开关频率取为50 kHz; 4) 采用复合隔离的逆变压器,一只变压器双端工作; 5) 采用倍流整流电路,便于绕制变压器。 依照上述方案,即可设计出主电路的基本形式如图1。 图1 48V/50A整流模块DC/DC主电路基本形式 以下即可按照模块设计的要求来确定主电路中各元器件的基本参数。 1) 输出整流管的选择 输出整流二极管的工作波形如图2所示。

隔离电源模块的5个作用

隔离电源模块的5个作用 在工业控制设备中,有时候要求两个系统之间的电源地线隔离,如隔离地线噪声、隔离高共模电压等,采用带变压器的直流变换器,将两个电源之间隔开,使他们相互独立,从而实现以上目的!每个隔离电源模块单独供电,防止一个模块因受高压放电或其他原因导致损坏后殃及其他模块。这样做的目的可以保证每个模块独立工作,不受干扰。 隔离电源模块的5个作用 一、隔离 ●安全隔离:强电弱电隔离IGBT隔离驱动\浪涌隔离保护\雷电隔离保护(如人体接触的 医疗电子设备的隔离保护); ●噪声隔离:(模拟电路与数字电路隔离、强弱信号隔离); ●接地环路消除:远程信号传输\分布式电源供电系统。 二、保护 短路保护、过压保护、欠压保护、过流保护、其它保护。 三、电压变换 四、稳压交流 ●市电供电\远程直流供电\分布式电源供电系统\电池供电。 五、降噪 ●有源滤波。 ●而隔离器是一种采用线性光耦隔离原理,将输入信号进行转换输出。输入,输出和工作 电源三者相互隔离,特别适合与需要电隔离的设备仪表配用。隔离器又名信号隔离器,是工业控制系统中重要组成部分。主要是用来减弱冲击和振动传输的。 隔离电源模块使用环境

●净化电源 原来的配电系统中装置有一些机械设备、高频设备、火花机等一类的负载,这些负载往往对电源进行一些调制干扰。一些对电源质量要求比较高的设备(如精密仪器等)就要求使用隔离电源的办法。 ●安全电源 发电厂送出来的三相电源中的中性点是接在地上的,低压侧的零线实际上也是接地的,这样,如果人体接触火线和地面,就等于和配电系统成了回路很危险,为了安全在一些特定场合就用到隔离电源。 ●RS232、RS485/422、CAN-bus等隔离通讯接口 医学、手持、便携仪表、运算放大器电源 ●大功率IGBT驱动 ●纯数字电路、模拟前端隔离电路 一般低频模拟电路 自控装置

电源电路设计模块图

电源电路单元 前面介绍了电路图中的元器件的作用和符号。一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。 按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。 一、电源电路的功能和组成 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 ( 1 )半波整流 半波整流电路只需一个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电

隔离电源模块B_S-1W_2W系列数据手册

B_S-1W/2W 系列 https://www.doczj.com/doc/ab9178916.html, REV:2.11 2011/07/19 1 1W / 2W ,效率高达82%,超低纹波,隔离非稳压单路输出,DC-DC 模块 产品特性 ? 开关型、效率高达82% ? 超低纹波噪声 ? 隔离电压1000V ? 超小型,国际标准引脚 ? 符合UL94-V0阻燃标准 ? MTBF > 350万小时 ? 自然空气冷却,无需散热片 ? 工作温度:-40℃~+85℃ 产品概述 TEN-POWER 的BxxxxS-1W/2W 系列产品是专门针对线路板上分布式电源系统中需要产生一组与输入电源高隔离电源的应用场合而设计的。该产品适用: ● 输入电压变化≤±10% ● 隔离电压 ≤1000VDC ; ● 纯数字电路,一般低频模拟电路。 输出特性表 项目 工作条件 Min Type Max 单位 输出功率 0.2 --- 2 W 线性调节率 输入标称电压±1% --- --- ±1.3 % 负载调整率 20%到100%负载(B0505S-2W ) --- --- 10 20%到100%负载(其他型号) --- --- 8 纹波+噪声 20MHz 带宽,输出无外接电容, --- --- 70 mVp-p 输出短路保护 --- --- 0.5 S 温度漂移 100%负载 --- --- 0.03 %/℃ 开关频率 100%的负载,输入电压范围 60 80 120 KHz

B_S-1W/2W系列 1W / 2W,效率高达82%,超低纹波,隔离非稳压单路输出,DC-DC模块

B_S-1W/2W 系列 https://www.doczj.com/doc/ab9178916.html, REV:2.11 2011/07/19 3 1W / 2W ,效率高达82%,超低纹波,隔离非稳压单路输出,DC-DC 模块

电源模块EMC设计

电源模块EMC设计 想必大家对电源模块一点都不陌生,而EMC性能作为电源模块的重要指标,在选型时,你知道如何深入的了解各类电源模块的EMC性能吗?在应用时,又该怎样提升模块的EMC 防护能力?本文将为您解答。 众所周知,EMC是指电磁兼容测试,指设备所产生的电磁能量既不对其它设备产生干扰,也不受其他设备的电磁能量干扰的能力。隔离电源模块的EMC测试包含EMI(电磁干扰)测试和EMS(电磁抗扰度)测试两项,那么如何保证电源模块的EMC性能呢?本文将为大家揭晓。 1、EMC简介 EMI电磁干扰指被测设备对周围设备产生干扰的能力,主要包括传导骚扰CE、辐射骚扰RE。电源模块的EMS电磁抗扰度指由于在正常运行时,设备或系统能承受相应标准规定范围内的电磁能量干扰,根据国标根据国标GB/T 16821-2007 《通信用电源设备通用试验方法》中规定电源模块测试主要包括群脉冲抗扰度(EFT)、浪涌抗扰度(SURGE)、静电放电抗扰、辐射抗扰度等项目。 EMC的产生必须具备的三要素,干扰源、传输介质以及敏感设备,如下图1所示。三者缺一个都构不成EMC问题,那么电源模块的设计中仅需针对其中一个方面进行整改即可实现EMC防护,例如从干扰源进行根除、改善传输介质避免干扰传递或将敏感设备远离干扰源等方法。 图1 EMC三要素 2、EMC干扰防护第一式——电路设计 高功率密度、高转换效率的电源模块一般都是开关电源,在开关管开通、关断时,电压和电流都会被斩波,造成较大瞬态变化(di/dt、dv/dt),所以电源模块不论其使用什么样的拓扑结构,只要是开关电源,其都会产生一定程度的EMC干扰如图2所示。

5V电源电路设计(包括电路各模块的详解)

5v电源电路的设计 本设计是要设计一个+5V直流电源供电,这里没有直接的+5V电压,而直流电源的输入电压为220V的电网电压,在正常情况下,这一电网电压是远远的高于本设计所需的电压值,因而需要先使用变压器,将220V的电网电压降低后,再进行下一阶段的处理[4]。 变压器是这一电源电路起始部分,将220V的电网电压转变为本设计所需的较低的电压,就可以进行下一阶段的整流部分。一般规定v1为变压器的高压侧,v2为变压器的低压侧,v1侧的线圈要比v2侧的线圈要多,这样就可以将220V 的电网电压降低,如图1所示: 图1变压器 单相桥式整流电路,就是将交流电网电压转换为所需电压,整流电路由四只整流二极管组成。下面简单介绍一下单相桥式整流电路的工作原理,为简便起见,这里所选的二极管都是理想的二极管,二极管正向导通时电阻为零,反向导通时电阻无穷大。在v2的正半周,电流从变压器副边线圈的上端流出,经过二极管D1,再由二极管D4流回变压器,所以D1、D4正向导通,D2、D3反向截止,产生一个极性为上正下负的输出电压。在v2的负半周,其极性正好相反,电流从变压器副边线圈的下端流出,经过二极管D2,再由二极管D3流回变压器,所以D1、D4反向截止,D2、D3正向导通。桥式整流电路利用了二极管的单向导电性,利用四个二极管,是它们交替导通,从而负载上始终可以得到一个单方向的脉动电压[6]。单相桥式整流电路如图2所示:

图2单相桥式整流电路 本设计的滤波电路采用的是电解电容和二极管并联方式滤波,简单的讲就是电容两端电压升高时,电容充电,电压降低时,电容放电,让电压降低时的坡度变得平缓,从而起到滤波的作用。这里选用电解电容是因为电解电容单位体积的电容量非常大,能比其它种类的电容大几十到数百倍,并且其额定的容量可以做到非常大,价格比其它种类相比具有相当大的优势,因为其组成材料都是普通的工业材料,比如铝等等。电解电容并联二极管,有效防止了电压反相。滤波电路如图3所示: 图3滤波电路 三端稳压器MC78M05CT将输出电压稳定在+5V上,三端稳压器如图4所示:

隔离电源模块优势和方案

摘要: 当今所有的电子设备与系统均是由半导体器件组成的,众所周知,设备中的每个半导体器件都必须要有电压电流流过,方能正常工作,电源在整个设备或系统中是不可或缺的,举个形象的类比,这就犹如人的血液一样,没有血液就等于生命终止,并且电源的质量会直接影响整个设备与系统的品质,例如电压范围、工作温度范围、负载瞬态变化等诸多需要考量因素。 正文: 目前有部分工程师在设计产品时,电源的方案选择会有这么一种想法,会认为不就那几个物料,都知道物料型号,并且都知道它们的单价,电源模块的价格相对于物料的成本显得较为昂贵,这部分用户想通过分立器件自行搭建,自己DIY设计开发及生产产品使用,殊不知会遇到非常多的问题,性能如何做到最优、成本如何控制、品质如何保障等等。下面就让我从几点给你讲解,为什么要选择采购电源模块产品使用。 1、电路方案的选择 在产品性能需求稍微明了之后,那接下来就是开始设计开发了,首先要做的就是电路方案的选取了,下面为大家列举一些比较常见的“反面教材”。 比如设计开发一个市电交流输入转直流输出的,很多人的第一时间就想到采用工频变换电路方案,因为此方案比较简单,一个工频变压器,再加上个整流滤波就可以搞定,如下图1所示。这个方案虽极易搭建,但此方案也存在致命问题,使用此方案的产品的效率非常低,并且产品的体积会非常之大,在应用中还伴随着让人非常闹心的工频涡流声。 图1 线性电源方案 再比如要设计一个宽压输入的10W直流转直流隔离电源产品,在度娘上一搜索,一大推的设计方案可供选择,出于对成本的考虑,可能很多人会选择RCC电路方案。是的,此方案的确成本比较低,但此方案的产品在整个输入电压范围、工作温度范围、负载瞬态变化等条件下的稳定性均较差、效率低,并且在空载状态下会产生严重的纹波震荡问题,而在批量生产过程中产品的一致性也很难得到保证。 上文提到的两个例子仅仅是较为常见的情况,电路方案的选择是整个电源产品的基础,不但决定着产品的后续能否设计至性能最优,还将会直接影响着产品的品质可靠性能否有所保障以及成本是否最低。 2、性能参数的设计 电路方案确定之后,接下来就需要进行产品性能参数的设计,要对电路方案中的电子元器件进行参数设计、计算与结构物料选型,在这个环节必须从多方面进行权衡。 首先,权衡所有器件的参数范围以及极限条件下的工作情况。 参数的选择不能过于饱和,否则产品极易损坏,需要降额设计,但又不能预留过大,否则会提升产品成本,而且还不能仅仅针对某一个点的单纯设计,否则开发出的产品极有可能仅在某个特定条件或极小的范围条件下能正常或最优工作。 其次,要对产品的结构和工艺进行设计。 产品结构设计可保证产品的散热和可制造性最佳,从而保证产品品质,否则产品开发出来可能需要一个比较大的散热系统,导致整体的产品成本变得高昂。 工艺设计优化的目的是保证产品更易于生产,避免产品的生产难度非常大、不良率很高,甚至可能变成只有手

电源模块设计分析

电源模块设计分析 Khanna 作者: Ramesh 美国国家半导体首席应用技术工程师 图1:电源供应 电源模块是可以直接贴装在印刷电路板上的电源供应器 (参看图1),其特点是可为特殊应用集成电路(ASIC)、数字信号处理器 (DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点电源供应系统 (POL) 或使用点电源供应系统 (PUPS)。由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。下文将会审视这些问题,并分别提出相关的解决方案。 采用电源模块的优点 目前不同的供应商在市场上推出多种不同的电源模块,而不同产品的输入电压、输出功率、功能及拓扑结构等都各不相同。采用电源模块可以节省开发时间,使产品可以更快推出市场,因此电源模块比集成式的解决方案优胜。电源模块还有以下多个优点:

? 每一模块可以分别加以严格测试,以确保其高度可靠,其中包括通电测试,以便剔除不合规格的产品。相较之下,集成式的解决方案便较难测试,因为整个供电系统与电路上的其他功能系统紧密联系一起。 ? 不同的供应商可以按照现有的技术标准设计同一大小的模块,为设计电源供应器的工程师提供多种不同的选择。 ? 每一模块的设计及测试都按照标准性能的规定进行,有助减少采用新技术所承受的风险 ? 若采用集成式的解决方案,一旦电源供应系统出现问题,便需要将整块主机板更换;若采用模块式的设计,只要将问题模块更换便可,这样有助节省成本及开发时间 经常被忽略的电源模块设计问题 虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题: ? 输出噪音的测量 ? 磁力系统的设计 ? 同步降压转换器的击穿现象 ? 印刷电路板的可靠性 这些问题会在下文一一加以讨论,下文还会介绍多种可解决这些问题的简单技术。 输出噪音的测量技术 所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可以采用图 2 所示的 Tektronix 探针探头 (一般称为冷喷嘴探头),以确保测量数字准确可靠,而且符合预测。这种测量技术也确保接地环路可减至最小。

电源模块设计(DOC)

第十章直流稳压电源(6学时) 主要内容: 10.1 小功率整流滤波电路 10.2 串联反馈式稳压电路 基本要求: 10.1 掌握单相桥式整流电容滤波电路的工作原理及各项指标的计算 10.2 了解带放大器的串联反馈式稳压电路的稳压原理及输出电压的计算,三端 集成稳压电源的使用方法及应用 教学要点: 重点介绍单相桥式整流电容滤波电路的工作原理及各项指标的计算,介绍串联反馈式稳压电路及三端集成稳压电路的稳压原理 讲义摘要: 10.1 单相整流电路 一、引言 整流电路是将工频交流电转为具有直流电成分的脉动直流电。 滤波电路是将脉动直流中的交流成分滤除,减少交流成分,增加直流成分。 稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。 直流电源的方框图如图10.1.1所示。 如图10.1.1 二、单相桥式整流电路 1.工作原理 单相桥式整流电路是最基本的将交流转换为直流的电路,其电路如图10.1.2所示。 图10.1.2单相桥式整流电路 (a)整流电路 (b)波形图

在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.1.2(a)的电路图可知: 当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.1.2(b)。 2.参数计算 根据图10.1.2(b )可知,输出电压是单相脉动电压。通常用它的平均值与直流电压等效。 输出平均电压为 流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S 。 3.单相桥式整流电路的负载特性曲线 单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线 该曲线如图10.1.3所示。曲线的斜率代表了整流电路的内阻。 图10.1.3 负载特性曲线 三、单相半波整流电路 流过负载的平均电流为 L 2 L 2L 9.0π22R V R V I = =流过二极管的平均电流为 2 Rm ax 2V V =二极管所承受的最大反向电压 2 2π02L O 9.0π2 2d sin 2π1V V t t V V V ==?==ωωL 2L 2L D 45.0π22R V R V I I = ==) 4cos π154 2cos π34π2(22O +--=t t V v ωω67 .03 2π22π32422===V V S )(O O I f V =

1W 系列隔离电源模块

—————————————订购信息 ————————————————————————————————典型应用 图 1 DC/DC 应用电路示例 在一些对噪声和纹波敏感的电路中,可在DC/DC 输出端和输入端外加滤波电容,以减少纹波值。但输出滤波电容器的容值要适当,若电容太大,很可能会造成启动问题。其滤波电容的最大容值详见表1所示。为了获非常低的纹波值时,也可在DC/DC 转换器输入输出端联接一个“LC”滤波网络,这样滤波的效果更明显。同时应注意到电感值的大小及“LC”滤波网络其自身的频率应于DC/DC 频率错开,避免相互干扰如图 1 所示。 1W 系列隔离电源模块 广州致远电子有限公司 工业通讯网络事业部 https://www.doczj.com/doc/ab9178916.html, ———————————————概述 定压输入、非稳压输出隔离电源模块效率高、体积小、可靠性高、耐冲击、隔离特性好,温度范围宽。国际标准引脚方式,阻燃封装(UL94-V0),自然冷却,无需外加散热片,无需外加其他元器件可直接使用,并可直接焊接于PCB 板上。适用于由开关电源或其他稳压源供电,对输出电压及纹波要求不高,小电流隔离和DC-DC 电压变换的场合,如大功率IGBT 驱动、纯数字电路、一般低频模拟电路、RS232、RS485、CAN-bus 隔离通讯系统等,电路结构为开环系统。 ——————————————产品特性 z 效率高达80% z 小型SIP、DIP 封装 z 非稳压单输出 z 外壳及材料符合UL94V-0标准 z 工作温度-40~+85℃ z 隔离电压:(B)1000VDC、(F)3000VDC、6000VDC z 封装:SIP6、DIP14等与国际、国内同类型产 品PIN 对PIN 兼容 z 不适用于输入电压波动范围大于10%或对电 压精度要求特别高的场合。 ————————————产品应用 z RS232、RS485/422、CAN-bus 等隔离通讯接口 z 大功率IGBT 驱动 z 纯数字电路、模拟前端隔离电路 z 一般低频模拟电路 z 医学、手持、便携仪表 z 运算放大器电源 z 自控装置 型号 温度范围 封装 ZY0505BS-1W -40℃—+85℃ SIP-4Pin ZY0505BLD-1W -40℃—+85℃ DIP-14Pin *注:ZY0505BLD 引脚功能兼容TI 的DCP010505。

电源模块设计

§6.1 电源模块 电源是各种电子系统与设备的源动力,电源系统出故障,会使整个电子设备不能正常工作,因此电源性能的好坏直接影响到系统与设备工作质量和效率。在电子电路中,通常都需要电压稳定的直流电源供电,直流稳压电源是一种性能接近理想电压源的直流电源。 按调整元件工作状态直流稳压电源分为线性稳压电源和开关稳压电源两大类。小功率电源多用线性稳压电路,其中三端集成稳压器由于使用方便,应用越来越广泛。大功率电源多采用开关稳压电路,一般采用脉宽调制实现稳压。开关型稳压电路又分串联型和并联型,由于并联型开关稳压电路易实现多组电压输出和电源与负载间电气隔离,因而应用较广泛。 §6.1.1 稳压电源的性能指标 稳压电源的性能指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)、温度系数及负载稳定度。 1、稳压系数S:表示在负载电流与环境温度保持不变的情况下,由于输入电压Ui的变化而引起的输出电压的相对变化量与输入电压的相对变化量的比值,即:S=(△Uo/Uo)/(△Ui/Ui),S越小电源的稳定性越好,通常S约为10~10。 2、输出电阻Ro:又叫等效内阻,表示当输入电压和环境温度保持不变时,由于负载电流Io变化而引起的输出电压的变化量与负载

电流的变化量的比值,即Ro=△Uo/△Io ,可见如果Ro 越小,则说明输出电压的变化越小,通常输出电阻可小到1欧,甚至0.01欧。 3、纹波系数ξ:输出直流电压中的交流分量叫纹波电压,纹波电压占输出直流电压的百分比称之为纹波系数,即ξ=[(U-)/Uo]×100%,显然,ξ越小越好。通常稳压电源的纹波电压只有几毫伏,甚至小于1毫伏。 4、电压温度系数T K :当环境温度变化时,引起的输出电压的变化量与温度变化量的比值,即T U K T ΔΔ=/0,良好的稳压电源,应在环境温度变化时,有效地抑制输出电压的漂移,保持输出电压稳定。 5、负载稳定度I S :又称负载调整率,指在输入电压不变的情况下,负载电流的变化而引起的输出电压的变化率,通常用输出电压的相对变化量与负载电流变化量之比来表示,即%1000 0×ΔΔ=I U U S I ,显然,I S 越小稳压电源的性能越好。 §6.1.2 线性稳压电源 线性稳压电源指调整管工作在线性状态下的直流稳压电源,是比较早使用的一类直流稳压电源。其特点是:输出电压比输入电压低;反应速度快,输出纹波较小;工作产生的噪声低;效率较低;发热量大(尤其是大功率电源),间接地给系统增加热噪声。 如图6-1所示,线性稳压电源由变压、整流、滤波和稳压三个部分组成。变压是将输入的220V 的交流电变成所需大小的交流电;整流指把大小、方向都变化的交流电变成单向脉动的直流电;滤波指滤除脉动直流电中的交流成分,使得输出波形平滑;稳压指输入电压

DC-DC隔离电源设计电路原理图

紧凑型全桥DC-DC隔离电源设计电路原理图 新型电力电子器件IGBT作为功率变换器的核心器件,其驱动和保护电路对变换器的可靠运行至关重要。集成驱动是一个具有完整功能的独立驱动板,具有安装方便、驱动高效、保护可靠等优点,是目前大、中功率IGBT驱动和保护的最佳方式。集成驱动一般包括板上DC-DC隔离电源、PWM信号隔离、功率放大、故障保护等4个功能电路,各功能电路之间互相配合,完成IGBT的驱动及保护。输入电源为板上原边各功能电路提供电源,两路DC-DC隔离电源输出分别驱动上、下半桥开关管,同时为IGBT侧故障检测和保护电路提供电源,因此集成驱动板上电源是所有电路工作的前提和基础。 文中的半桥IGBT集成驱动板需要两组隔离的正负电压输出,作为IGBT的驱动及保护电路电源。由IGBT的驱动特点可知,其负载特性类似于容性负载,要达到可靠、快速的开通或关断,就要求电源具有很好拉/灌电流能力,即良好的动态特性。半桥IGBT由上、下两路开关管组成,型号相同,导通、关断的驱动电压、电流特性一致,作为双路隔离DC-DC电源的负载,其负载特性是稳定的。因此可以设计两路隔离电源,按照所要驱动的最大负载设计,不需要进行反馈控制。实际设计时必须依据选用的IGBT开关管参数和工作频率,核算驱动板电源功率是否满足,若不满足,则需重新选用开关管。 1IGBT半桥集成驱动板电源设计 1.1IGBT半桥集成驱动板电源特点 电力电子变换拓扑中,以半桥IGBT为基本单元进行的拓扑设计最为广泛,相应地对其有效驱动和可靠保护由半桥IGBT集成驱动板实现。半桥IGBT集成驱动板自身必须具备两路DC-DC隔离电源,该电源要求占用PCB面积小、体积紧凑、可靠性高,并且两组电源副边完全隔离。在大功率半桥IGBT集成驱动单元的项目中,针对驱动单元需要高效、可靠的隔离电源,设计了一种电源变压器原边控制拓扑,即两组隔离电源变压器原边共用一组全桥控制的思路,提高了电源功率密度和效率,节省了功率开关数量。全桥开关管巧妙搭配,无需隔离驱动,减少了占用集成驱动板上的PCB面积。 由于上下半桥的两个单元IGBT性能参数一致、同体封装,对半桥IGBT集成驱动板上两路驱动表现出的负载特性完全一致,因此在IGBT半桥集成驱动板的电源设计中,两组隔离的DC-DC电源原边完全可以共用一组控制电路。IGBT半桥集成驱动板一般镶嵌在IGBT功率模块上,它对驱动板要求有两个:第一是半桥集成驱动板对PCB面积、体积要求很高,要求尽可能小的PCB面积和体积;第二因为驱动IGBT需要的功率较大,对板上电源的功率密度、效率要求也较高。 1.2原边共用全桥控制的DC-DC电源设计 设计采用全桥电路控制DC-DC电源变压器,两个变压器原边共用一个全桥开关。正常模式下两个全桥变换拓扑需要两组全桥开关,同时全桥开关的脉冲驱动电路也为两组共8路PWM脉冲。采用共用全桥拓扑节省了控制电路和全桥开关,简化了DC-DC隔离电源电路。由于该电源是给半桥IGBT驱动电路供电,负载稳定且可计算,因此全桥DC-DC电源采用开环控制,满足最大功率需求即可。电路原理如图1所示,该电源由4部分组成:4路PWM 脉冲产生电路、全桥驱动开关、电源变压器及其副边整流滤波电路。DC-DC电源输入为单+15V电源,输出为两组隔离的+15V和-10V双电源,采用负电源是为可靠地关断IGBT。

相关主题
文本预览
相关文档 最新文档