当前位置:文档之家› 高等数学第10章选择题

高等数学第10章选择题

高等数学第10章选择题
高等数学第10章选择题

第十章 选择题

1.设L 是曲线2x y =上点()0,0与点()1,1之间的一段弧,则?=L

ds y ( )

A. ()dx x ?+1

0221 B. dx x x ?+1

0212

C.

()dx x x ?

+1

2

21 D.dx x ?+1

21

2.设曲线上半圆弧为422=+y x L ,则ds x L

?= ( )

A.π

B. 1

C.0

D. π4

3.设L 为圆)0(222>=+a a y x 的边界,把曲线积分ds y x L

?+22化为定积分时的正确

结果是 ( )

A.?0

22πθd a B. ?

πθ20

2d a C. ?πθ20d a D. ?0

2πθd a

4.设L 为2

3

0,0≤

≤=y x x ,则?L ds 4的值为( ).

A.04x ,

B.,6

C.06x

D.0

5.设L 为直线0y y =上从点),0(0y A 到点),3(0y B 的有向直线段,则?L

dy 2=( )

A.6;

B. 06y ;

C.0

D.1

6.曲线 L 为2x y = 上从()0,0 到 ()1,1 的一段弧,则=?L

ydy ( )

A. 21-

B. 32

C. 21

D. 3

1

7.曲线 L 为x y =2上从点()0,0到点()1,1一段弧,则 =?L

xdx ( )

A. 32

B.

21 C. 31 D. 2

1- 8.若L 是上半椭圆???==,sin ,

cos t b y t a x 取顺时针方向,则?-L xdy ydx 的值为( )

A. 0;

B.

ab 2

π

; C.ab π D.ab 9.曲线L 为抛物线2x y =上从(0,0)到(1,1)的一段弧,计算dy x xydx L

?+22= ( )

A .1

B .3

C .0

D .8-

10.设曲线L 为抛物线x y =2上从(0,0)到(1,1)的一段弧,则dy x xydx L

?+22= ( )

A. 0

B. 1

C. 3

1 D. 3 11.下列曲线积分哪一个积分与路线有关( ) (A) ?+L

ydx xdy (B) ?+L

dx x y ydy x

22

(C)

dy xy y x dx y xy L

)36()6(2232-+-? (D)?+L

xydy xydx cos sin

12.下列曲线积分哪一个积分与路线有关( )

(A) ?+L

ydx xdy (B) ydy xdx L

+?

(C)

?-L

ydx xdy (D) ydy xdx L

-? 13.下列曲线积分哪一个积分与路线无关( ) (A) dy y x dx xy L

22332?

- (B)

?

+L

dx x y ydy x 22

(C)

?+L

dx y

dy x 2

2

(D)

?-L

ydx xdy

14.曲线的边界的为圆122=+y x L 正向,则曲线积分=-?L

xdy ydx ( )

A .π2- B. 0 C.π D.π2

15.设L 为三角形(0,0)、(3,0)和(3,2)的正向边界,则

?-+++-L

dy x y dx y x )635()42(= ( )

A.6

B.-6

C.12

D.-12 16.设L 是区域10,10≤≤≤≤y x 的边界正向,则

dy y x dx xy x )()(2

23?

+++= ( ) A.2 B.-2 C.2

1-

D.21

17.曲线L 是区域11,11≤≤-≤≤-y x 的边界正向,则?

+-L

y x xdy

ydx 2

2=( )

A. 0

B. π

C. 2π

D. - 2π

18.∑是锥面1022≤≤+=z y x z 在之间部分的外侧表面, 则??∑

zdxdy = ( )

A. π32-;

B.π

C.0

D. π3

2

19.若∑为球面2222R z y x =++的外侧,则 ??∑

zdxdy y x 22等于( )

A. ??--xy

D dxdy y x R y x 22222; B. 2??--xy

D dxdy y x R y x 22222;

C. 0

D. 4??--xy

D dxdy y x R y x 22222

20.设曲面 )0,0,0(1:≥≥≥=++∑z y x z y x ,则??∑

-dS y x )(= ( )

A.

π3

2

; B.1 C.2 D. 0 21.设曲面∑是抛物面422=+=z y x z 被平面所截得部分的下侧,则??∑

zdxdy =( )

A.π2

B.π

C.π-

D.π2-.

22. 若∑为)(222y x z +-=在xoy 面上方部分的曲面 , 则??∑

dS 等于( )

A.???+r rdr r d 0

220

41πθ B.?

??+2

220

41rdr r d πθ

C.?

??+2

220

41rdr r d πθ D. ??20

20

rdr d π

θ

23.设∑为球面)0(2222≥=++z a z y x ,1∑为∑在第一卦限中的部分,则有( )

式正确.

A.????∑∑

=1

4xdS xdS ; B. ????∑∑

=1

4xdS ydS ;

C.????∑∑

=1

4xdS zdS . D.????∑∑

=1

4xyzdS xyzdS

24. 设曲面∑是22y x z +=与平面1=z 所围成区域表面的外侧.

??∑

++dxdy z ydzdx xdydz 2

= ( ) A. ???Ω

dxdydz 2 B. ???Ω

dxdydz 3

C. ???Ω

zdxdydz 2 D.???Ω

+dxdydz z )22(

25. 设曲面∑为柱面122=+y x 及平面3,0==z z 所围成的空间闭区域Ω的整个边

界曲面的外侧,则=-+-??∑

xdydz z y dxdy y x )()(( )

A. ???Ω

-dxdydz z y )( B. ???Ω

-dxdydz z y )2(

C. ???Ω

-dxdydz y x )( D.???Ω

ydxdydz

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

高等数学课后习题答案第六章

习题6-2 1.求图6-21中各画斜线部分的面积: (1) 解 画斜线部分在x 轴上的投影区间为[0,1]. 所求的面积为 6 1]2132[)(1022310=-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0,1]. 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A , 解法二 画斜线部分在y 轴上的投影区间为[1,e ]. 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e . (3) 解画斜线部分在x 轴上的投影区间为[-3,1]. 所求的面积为

3 32]2)3[(1 32=--=?-dx x x A . (4) 解画斜线部分在x 轴上的投影区间为[-1,3]. 所求的面积为 3 32|)313()32(31323 12=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1)221 x y =与x 2+y 2=8(两部分都要计算); 解: 3 88282)218(22 0220220220221--=--=--=????dx x dx x dx x dx x x A 3 4238cos 16402+=-=?ππ tdt . 3 46)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2;

解: 所求的面积为 ?-=-=2 12ln 2 3)1(dx x x A . (3) y =e x ,y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1 021)(e e dx e e A x x . (4)y =ln x ,y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3.求抛物线y =-x 2+4x -3及其在点(0,-3)和(3,0)处的切线所围成的图形的面积. 解:

高等数学经济数学习题集含答案

《高等数学(经济数学1)》课程习题 集 西南科技大学成人、网络教育学院版权所有 习题 【说明】:本课程《高等数学(经济数学1)》(编号为01014)共有单选题,填空题1,计算题等多种试题类型,其中,本习题集中有[]等试题类型未进入。 一、单选题 1.幂函数、指数函数、对数函数、三角函数和反三角函数统称() A 、函数 B 、初等函数 C 、基本初等函数 D 、复合函数 2.设,0 ,0 ,)(???≥+<=x x a x e x f x 当a=()时,)(x f 在),(+∞∞-上连续 A 、0 B 、1 C 、2 D 、3 3.由函数2x u e y u ==,复合而成的函数为() A 、2 x e y =B 、2 x e x =C 、2 x xe y =D 、x e y = 4.函数f(x)的定义域为[1,3],则函数f(lnx)的定义域为() A 、],[3e e B 、]3,[e C 、[1,3] D 、],1[3e 5.函数x y x y z 2222-+=的间断点是()A 、{} 02),(2=-x y y x B 、2 1 =x C 、0=x D 、2=y 6.不等式15<-x 的区间表示法是()A 、(-4,6)B 、(4,6)C 、(5,6)D 、(-4,8) 7.求323 lim 3 x x x →-=-()A 、3B 、2C 、5D 、-5 8.求=++→43lim 20 x x x () A 、1 B 、2 C 、3 D 、4 9.若f(x)的定义域为[0,1],则 )(2x f 的定义域为()

A 、[-1,1] B 、(-1,1) C 、[0,1] D 、[-1,0] 10.求=+-→t e t t 1lim 2()A 、21(1)e -+B 、211(1)2e +C 、)11(212+-e D 、11 (1)2e -+ 11.求0sin lim x x x ω→=()A 、0B 、1C 、2ωD 、ω 12.求=-∞→x x x )1 1(lim ()A 、e 1B 、1C 、0D 、e 13.求=-+→x x x 11lim ()A 、1 B 、12C 、13D 、1 4 14.已知x x x f +-= 11)(,求)0(f =()A 、1 B 、2C 、3D 、4 15.求29)(x x f -=的定义域()A 、[-1,1]B 、(-1,1)C 、[-3,3]D 、(-3,3) 16.求函数y =的定义域()A 、[1,2]B 、(1,2)C 、[-1,2]D 、(-1,2) 17.判断函数53)(2+=x x f 的奇偶性()A 、奇函数B 、偶函数C 、奇偶函数D 、非奇非偶函数 18.求13+=x y 的反函数()A 、113y x = +B 、113y x =-C 、13 x y += D 、31 -=x y 19.求极限lim )x x →+∞的结果是()A 、0B 、1 2 C 、∞ D 、不存在 20.极限01lim 23x x →+的结果是()。A 、0B 、不存在C 、15D 、1 2 21.设x x y sin ?=,则y '=() A 、)cos 2sin ( x x x x +B 、)sin 2cos (x x x x +C 、)cos 2sin (x x x x -D 、)sin 2cos (x x x x - 22.设4)52(+=x y ,则y '=()A 、34(25)x +B 、3)52(8+x C 、44(25)x +D 、48(25)x + 23.设t e t y sin =则y ''=()A 、2sin t e t --B 、2sin t e t -C 、2cos t e t -D 、t e t cos 2-- 24.=--→1 1lim 3 1x x x ()A 、1B 、2C 、3D 、4 25.设)()2)(1()(n x x x x x f ---=K ,则)()1(x f n +=()A 、)!1(+n B 、1n +C 、0D 、1 26.曲线x y sin 2 += π 在0=x 处的切线轴与x 正向的夹角为:() A 、 2πB 、3πC 、4 πD 、5π

高等数学2第十一章答案

习题11-1 对弧长的曲线积分 1.计算下列对弧长的曲线积分: (1)22()n L x y ds +??,其中L 为圆周cos x a t =,sin y a t = (02)t π≤≤; (2)L xds ??,其中L 为由直线y x =及抛物线2 y x =所围成的区域的整个边界; (3)L ??,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的 扇形的整个边界; (4) 2x yzds Γ ? ,其中Γ为折线ABCD ,这里A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、 (1,0,2)、(1,3,2); (5)2L y ds ? ,其中L 为摆线的一拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤. 2.有一段铁丝成半圆形y =,其上任一点处的线密度的大小等于该点的纵坐标,求其质量。 解 曲线L 的参数方程为()cos ,sin 0x a y a ???π==≤≤ ds ad ??= = 依题意(),x y y ρ=,所求质量220 sin 2L M yds a d a π??= ==?? 习题11-2 对坐标的曲线积分 1.计算下列对坐标的曲线积分: (1)22()L x y dx -? ,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧; (2)22 ()()L x y dx x y dy x y +--+??,其中L 为圆周222 x y a +=(按逆时针方向绕行);

(3)(1)xdx ydy x y dz Γ +++-? ,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线; (4) dx dy ydz Γ -+??,其中Γ为有向闭折线ABCA ,这里A 、B 、C 依次为点(1,0,0)、 (0,1,0)、(0,0,1); 2.计算 ()()L x y dx y x dy ++-?,其中L 是: (1)抛物线2 y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段; (3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线; (4)曲线2 21x t t =++,2 1y t =+上从点(1,1)到点(4,2)的一段弧。 3.把对坐标的曲线积分 (,)(,)L P x y dx Q x y dy +? 化成对弧长的曲线积分,其中L 为: (1)在xOy 面内沿直线从点(0,0)到点(1,1); (2)沿抛物线2 y x =从点(0,0)到点(1,1); (3)沿上半圆周2 22x y x +=从点(0,0)到点(1,1). 4.设Γ为曲线x t =,2 y t =,3 z t =上相应于t 从0变到1的曲线弧,把对坐标的曲线积分 L Pdx Qdy Rdz ++? 化成对弧长的曲线积分。 习题11-3 格林公式及其应用 1. 利用曲线积分,求星形线3 cos x a t =,3 sin y a t =所围成的图形的面积。

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

高等数学课后习题答案第六章

习题6-2 1. 求图6-21 中各画斜线部分的面积: (1) 解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 6 1]2132[)(1022310 =-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A , 解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e . (3) 解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3 32 ]2)3[(1 32=--=?-dx x x A . (4) 解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 3 32 |)313()32(3132312=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 22 1 x y =与x 2+y 2=8(两部分都要计算); 解: 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A 34238cos 16402+=-=?ππ tdt . 3 4 6)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2;

解: 所求的面积为 ?-=-= 2 12ln 2 3)1(dx x x A . (3) y =e x , y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1021 )(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高等数学习题集[附答案及解析]

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+=x x y 在),(+∞-∞内是有界的。

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

高等数学II练习册-第10章答案.

习题10-1 二重积分的概念与性质 1.根据二重积分的性质,比较下列积分的大小: (1)2()D x y d σ+??与3 ()D x y d σ+?? ,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成; (2) ln()D x y d σ+??与2 [ln()]D x y d σ+??,其中D 是三角形闭区域,三顶点分别为(1,0), (1,1),(2,0); 2.利用二重积分的性质估计下列积分的值: (1)22 sin sin D I x yd σ= ??,其中{(,)|0,0}D x y x y ππ=≤≤≤≤; (2)22 (49)D I x y d σ= ++?? ,其中22{(,)|4}D x y x y =+≤ . (3) .D I = ,其中{(,)|01,02}D x y x y =≤≤≤≤ 解 () ,f x y = Q 2,在D 上(),f x y 的最大值

()1 4M x y = ==,最小值()11,25m x y ==== 故0.40.5I ≤≤ 习题10-2 二重积分的计算法 1.计算下列二重积分: (1) 22 ()D x y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤; (2) cos()D x x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三角形闭区域。 2.画出积分区域,并计算下列二重积分: (1) x y D e d σ+??,其中{(,)|||1}D x y x y =+≤

(2) 2 2()D x y x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。 3.化二重积分(,)D I f x y d σ= ??为二次积分(分别列出对两个变量先后次序不同的两个二次 积分),其中积分区域D 是: (1)由直线y x =及抛物线2 4y x =所围成的闭区域; (2)由直线y x =,2x =及双曲线1 (0)y x x = >所围成的闭区域。

高等数学I(专科类)测试题

考试科目:《高等数学》高起专 一.选择题 (每题4分,共20分) 1. 函数 y = 的定义域是 ( ). (a) (2,6)- (b) (2,6] (c)[2,6) (d)[2,6]- 2. 设11f x x =-(), 则(())f f x = ( ) (a) 1x x - (b) 12x - (c) 1x - (d) 1x x - 3. 10 lim(12)x x x →- (a) e (b) 1 (c) 2e - (d) ∞ 4. 2 20lim (2) x x sin x → (a) 12 (b) 13 (c) 1 (d) 14 5. 在 0x → 时, sin x x - 是关于 x 的 ( ) (a) 低阶无穷小量 (b) 等价无穷小量 (c) 高阶无穷小量 (d) 同阶但不等价无穷小量 二.填空题(每题4分,共28分) 6. 设2(1)3f x x x -=++, 则 ()f x =___________. 7. 函数()f x = 的定义域是__________ 8. 若(31)1x f x +=+, 则()f x =__________ . 9. 2sin(2)lim 2 x x x →--=_____. 10. 设1,0,()5,0,1tan ,0x x f x x x x -? , 则 0lim ()x f x +→=_______.

11. 4lim(1)x x x →∞-=_____. 12. 3232lim 35 x x x x x →∞+--+=_____. 三.解答题(满分52分) 13. 求 45lim()46 x x x x →∞--. 14. 求 0x →. 15. 求 2sin lim 24cos x x x x x →∞-+. 16. 求 2lim x →-. 17. 求 123lim 24 n n n +→∞-+. 18. 设函数22cos ,0()2,0ln(14)a x x x f x x x x +-≤??=?>?+? , 在 0x = 处极限存在, 求 a 的值。 19. 若 33lim 12 x x ax b →-=++, 试确定常数 ,a b 的值。 附:参考答案: 一.选择题 (每题4分,共20分) 1)a 2)d 3)c 4)a 5)c 二.填空题(每题4分,共28分) 6)2 35x x ++ 7)12x -<<

高数第六章总习题答案

复习题A 、判断正误 1、若a b b c 且b 0 ,则a c ; ( ) 解析 a b b c = b (a c) =0 时, 不能判定b 0或a c . 例如a i , b j , k ,有 a b b c 0 , 但a c . c M * 2、 右a b b c 且 b 0 ,则 a c ; ( ) 解析 此结论不一定成立.例如 a i ,b j , c (i j), 则 b i j k ,b c j [ (i j)] k , a b b c , 但a c . 3、若 a c 0 ,则a 0或c 0 ; ( ) 两个相互垂直的非零向量点积也为零. 解析 二、选择题: 当a 与b 满足(D )时,有a b 解析只有当a 与b 方向相同时,才有 a + b=a+b . 解析 对于曲面z 1 x 2 2 y 2,垂直于z 轴的平面截曲面是椭圆, 垂直于x 轴或y 轴 的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面. 4、 a 解析 b b a . 这是叉积运算规律中的反交换律. (A) a b ; (B ) a b (为常数); (C) // b ; (D) a||b . (A)中a , b 夹角不为0, (B), (C )中a , b 方向可以相同,也可以相反. 2、下列平面方程中,方程(C ) 过y 轴; (A) x y z 1 ; (B) x (C) x z 0; (D) 解析平面方程Ax By Cz 0若过 y 轴,则B D 0,故选C. 3、在空间直角坐标系中,方程 1 x 2 2y 2所表示的曲面是(B ); (A )椭球面; (B ) 椭圆抛物面; (C) 椭圆柱面; (D ) 单叶双曲面.

(完整版)《高等数学(下册)》第八章练习题及答案

《高等数学(下册)》第八章练习题 一、填空题 1.________________ )sin(==dz xy z 则, 设 2.设),cos(2y x z =,则 =??)2 ,1(π x z 3.函数22)(6y x y x z ---=的极值点为 4.设xy e z =,则=dz 5.设 y z ln z x =,则 =?zx z 二、选择题 ) 2 0( D. )0 2( C. )0 0( B. )2 2( A.) (33) ( 12233,,,,的极小值点为,函数、y x y x y x f --+= 2、),(y x f 在点),(00y x 处偏导数),(),(0000y x f y x f y x ''、存在是),(y x f 在该点连续的( ). (a)充分条件, (b)必要条件, (c)充要条件, (d)既非充分条件又非必要条件。 3、设)2ln(),(x y x y x f + =,则=())1,1(-' x f . (A ),31 (B ),31- (C ),65 (D ).65- 三、计算题 方程。处的切线方程与法平面,,在点求曲线、)1 2 1( 2 13 2 ???==x z x y 2、设),(y x z z =是由方程0),(=--z y z x F 确定的隐函数,F 具有一阶连续偏导数,且,0≠'+'v u F F 其中,,z y v z x u -=-=求 .,y z x z ???? 3、求曲面3222-=+-z xz y x 在点)1,2,1(处的切平面及法线方程。 4、设,2 22 z y x e u ++=而y x z sin 2=,求 x u ??. 5、求曲线t z e y e x t t ===-,,,对应于0=t 点处的切线和法平面方程。 6、求函数)4(2y x y x z --=在闭域4,0,0≤+≥≥y x y x 上的最大值及最小值。

高等数学练习答案1-10

习题1-10 1. 证明方程x 5-3x =1至少有一个根介于1和2之间. 证明 设f (x )=x 5-3x -1, 则f (x )是闭区间[1, 2]上的连续函数. 因为f (1)=-3, f (2)=25, f (1)f (2)<0, 所以由零点定理, 在(1, 2)内至少有一点ξ (1<ξ<2), 使f (ξ)=0, 即x =ξ 是方程x 5-3x =1的介于1和2之间的根. 因此方程x 5-3x =1至少有一个根介于1和2之间. 2. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0. 若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根; 若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b . 3. 设函数f (x )对于闭区间[a , b ]上的任意两点x 、y , 恒有|f (x )-f (y )|≤L |x -y |, 其中L 为正常数, 且f (a )?f (b )<0. 证明: 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 证明 设x 0为(a , b )内任意一点. 因为 0||l i m |)()(|l i m 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(l i m 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

高等数学第六章参考答案

第六章参考答案 习题6.1 1. 在空间直角坐标系中,指出下列各点在哪个卦限? ()3,4,3A -4,()4,3B -; 3,43(),C --; 3()3,4,D --- 解 A 在第四卦限, B 在第二卦限, C 在第六卦限, D 在第七卦限. 2. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置: ()0,4,1A ;()1,0,3B ; ()0,2,0C ; 0,0(,1)D - 解 在xOy 面上的点的坐标为(,,0)x y ; 在yOz 面上, 的点的坐标为(0,,)y z ; 在zOx 面上, 的点的坐标为(,0,)x z . 在x 轴上的点的坐标为(,0,0)x ; 在y 轴上的点的坐标为(0,,0)y , 在z 轴上的点的坐标为(0,0,)z . A 在yOz 面上, B 在xOz 面上, C 在y 轴上, D 在z 轴上. 3. 求点(,,)x y z 关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标. 解 (1)点(,,)x y z 关于x O y 面的对称点为(,,)(,,)x y z x y z -; 点称点(,,)x y z 为 (,,)(,,)x y z x y z --; 点(,,)x y z 关于z 轴的对称点为(,,)x y z --. (3)点(,,)x y z 关于坐标原点的对称点为(,,)x y z ---. 4. 过()01,2,3M 分别作平行于x 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点? 解 过0M 且平行于x 轴的直线上点的坐标,其特点是,它们的纵坐标均为2,它们的竖坐标均为3。 过0M 且平行于xOy 面的平面上点的坐标,其特点是,它们的横坐标均为1. 5. 求点5,4 ( ,3)M -到各坐标轴的距离. 解 点M 到x 轴的距离就是点5,4( ,3)M -与点(5,0,0)之间的距离, 即

高等数学第六章习题

第六章定积分的应用 第二节定积分在几何上的应用1.求图中各阴影部分的面积: (1) (2) (3)

(4) . 2. 求由下列各曲线所围成的图形的面积: (1) 22 1x y =与x 2+y 2=8(两部分都要计算); (2)x y 1=与直线y =x 及x =2;

(3) y =e x , y =e -x 与直线x =1; (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. . 4. 求下列各题中平面图形的面积: (1)曲线2 4y x =及其在点(1,2)处的法线所围城的图形。.

(2).曲线3 32y x x =-+在x 轴上介于两极值点之间的曲边梯形。 5. 求由下列各曲线 所围成的图形的面积; (1)ρ=2a cos θ ; (2)x =a cos 3t , y =a sin 3t ;

(3)ρ=2a (2+cos θ ) . 6. 求下列各曲线所围成图形的公共部分的面积. (1)24cos ρρθ==及 (2)3cos 1cos ρθρθ==+及 (3)2cos 2ρθρθ= =及

7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2 x x y y x =和轴、向所围图形,绕轴及轴。 (2)22y x y 8x,x y ==和绕及轴。 (3)()22x y 516,x +-=绕轴。 (4)xy=1和y=4x 、x=2、y=0,绕。

相关主题
文本预览
相关文档 最新文档