当前位置:文档之家› 数列通项公式求解及用放缩法和数学归纳法证明数

数列通项公式求解及用放缩法和数学归纳法证明数

数列通项公式求解及用放缩法和数学归纳法证明数
数列通项公式求解及用放缩法和数学归纳法证明数

数列通项公式求解及用放缩法和数学归纳法证明数列不等式

递推式求数列通项公式常见类型及解法一、型

}中,已知,求通项公式。

例1. 在数列{a

n

解:已知递推式化为,即,

所以。将以上个式子相加,得

所以。

二、型

例2. 求数列的通项公式。

解:当,

当,所以。

三、型

例3. 在数列中,,求。

解法1:设,对比,得。

于是,得,以3为公比的等比数列。

所以有。

解法2:又已知递推式,得

上述两式相减,得,因此,数列是以

为首项,以3为公比的等比数列。

所以,所以。

四、型

例4. 设数列

,求通项公式。

解:设,则,,

所以,

即。

设这时,所以。

}是以3为首项,以为公比的等比数列,所以有。

由于{b

n

由此得:。

说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。

五、型

例5. 已知b≠0,b≠±1,,写出用n和b表示a

的通项公式。

n

解:将已知递推式两边乘以,得,又设,于是,原递推式化为,仿类型三,可解得,故。

说明:对于递推式,可两边除以,得,引入辅助数列,然后可归结为类型三。

六、型

例6. 已知数列,求。

解:在两边减去。

所以为首项,以。

所以

令上式,再把这个等式累加,得

。所以。

说明:可以变形为,就是

,则可从,解得,于是

是公比为的等比数列,这样就转化为前面的类型五。

求数列通项公式方法例题

一、公式法(定义法)

根据等差数列、等比数列的定义求通项

1、数列满足=8,(),求数列的通项公式;

2、已知数列满足,求数列的通项公式;

3、已知数列满足且(),求数列的通项公式;

4、已知数列满足,,求数列

的通项公式。

二、累加法

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

高二数学必修5数列通项公式的求法归纳

数列通项公式的求法 一、定义法 直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目. 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公 式. 解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123 a a a =,即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………① ∵255a S = ∴211)4(2 455d a d a +=??+…………② 由①②得:531=a ,53=d ∴n n a n 5 353)1(53=?-+=】 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。 二、公式法 若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-2111n S S n S a n n n 求解。 例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。 解:由1121111=?-==a a S a 当2≥n 时,有 ,)1(2)(211n n n n n n a a S S a -?+-=-=-- 1122(1),n n n a a --∴=+?- ,)1(22221----?+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+?-+?-++?-L ].)1(2[323])2(1[2)1(2)] 2()2()2[()1(21211211--------+=----=-++-+--+=n n n n n n n n n Λ 经验证11=a 也满足上式,所以])1(2[3 212---+=n n n a 点评:利用公式???≥???????-=????????????????=-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一. 观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,1716 4,1093,542,211 (3) ,5 2 ,21,32 ,1(4) ,5 4 ,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=n n a (2);1 2 2 ++=n n n a n (3);12 += n a n (4)1 )1(1+? -=+n n a n n .点评:关键是找出各项与项数n 的关系。 二、公式法 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式; 解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d , ∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2, ∴2 213)2(q q b b -==q 2 ,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·q n -1=4·(-2)n -1 例 3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 解析:设等差数列的公差位d ,由已知???==+??+12348)()(3 333a d a a d a , 解得 ?? ?±==2 4 3d a ,又 {} n a 是递减数列, ∴ 2 -=d , 8 1=a ,∴ =--+=)2)(1(8n a n 102+-n ,故选(D)。 例 4. 已知等比数列 {}n a 的首项11=a ,公比10<

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

最新数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

数列通项公式的求法(类型总结)

构造法在数列中的应用——数列通项公式的求法 一、形如)(1 n f a a n n +=+(其中f (n )不是常数函数)型数列(累加法) 一般地,对于形如)(1 n f a a n n +=+(其中f (n )不是常数函数)类的通项公式,且 )()2()1(n f f f +++ 的和比较好求,我们可以采用此方法来求n a 。 即:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥; 〖例1〗.(2015江苏理数11).数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列 }1 { n a 的前10项和为 。 二、形如 n 1 n a a +=f (n )(f (n )为可求积的数列)型数列(累乘法) 一般地对于形如“已知a 1,且 n 1 n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。即:1 2 112 1 n n n n n a a a a a a a a ---= ??? ?(2)n ≥; 〖例2〗.在数列{n a }中,1a =1, (n+1)·1+n a =n·n a ,求n a 的表达式。 〖练1〗.在数列{an}中,a1=1,(n+2)?an+1=(n+1)?an ,则an= 〖练2〗.数列{}n a 中,2 11=a ,前n 项的和n n a n S 2=,求1+n a .

三、形如1n n a pa q +=+型数列 构造的思路有两种: (1)是待定系数法构造,设1()n n a m p a m ++=+,展开整理1n n a pa pm m +=+-,比 较系数有 pm m b -=,所以1b m p =-,所以1 n b a p +-是等比数列,公比为p ,首项为 11 b a p + -。(2)是用作差法直接构造,1n n a pa q +=+,1n n a pa q -=+,两式相减有11()n n n n a a p a a +--=-,所以1n n a a +-是公比为p 的等比数列。 〖例3〗、已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式. 〖例4〗、在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。 四、形如 C Bn Aa a n n ++=+1型数列, 一 般地,对于型如C Bn Aa a n n ++=+1型数列可化为 ])1([21211λλλλ+-+=+++n a A n a n n 的形式来求通项。 〖例5〗、设数列{}n a 中,111,321n n a a a n +==++,求{}n a 的通项公式。

高中数学数列通项公式的求法详解

数列通项公式的求法及数列求和方法详解 专题一:数列通项公式的求法 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17 16 4,1093,542,211(3) ,5 2 ,21,32 , 1(4) ,5 4 ,43,3 2 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+?-=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和 { b n }的通项公式; 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

(完整版)数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立, ②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果

① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立; (4)双重归纳法 设 是一个含有两上独立自然数 的命题. ① 与 对任意自然数 成立; ②若由 和 成立,能推出 成立; 根据(1)、(2)可断定, 对一切自然数 均成立. 3.应用数学归纳法的技巧 (1)起点前移:有些命题对一切大于等于1的正整数正整数n 都成立,但命题本身对0=n 也成立,而且验证起来比验证1=n 时容易,

数列通项公式的求法集锦

数列通项公式的求法集锦 非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。 一、累加法 形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。 解:∵111n a ==时, 213243121 23.......1n n n a a a a a a a a n -≥-=?? -=? ? -=??? -=-??时, 这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222 n n n a -+= (n N * ∈). 例2.在数列{n a }中,1a =1,12n n n a a +-= (n N * ∈),求n a 。 解:n=1时, 1a =1212323431 122 22.......2n n n n a a a a a a a a --≥-=?? -=? ? -=????-=? 时, 以上n-1个等式累加得 2 1 122 (2) n n a a --=+++=12(12)12 n ---=22n -,故12221n n n a a =-+=- 且11a =也满 足该式 ∴21n n a =- (n N * ∈)。 二、累乘法 形如 1 ()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

高中数学归纳法证明题

高中数学归纳法证明题 高中数学归纳法证明题 1/2+2/2^2+3/2^3+......+n/2^n=2-n+2/2^n. 1/2+2/2^2+3/2^3+......+n/2^n=2-(n+2)/2^n. 1、当n=1时候, 左边=1/2; 右边=2-3/2=1/2 左边=右边,成立。 2、设n=k时候,有: 1/2+2/2^2+3/2^3+......+k/2^k=2-(k+2)/2^k成立, 则当n=k+1时候:有: 1/2+2/2^2+3/2^3+.....+k/2^k+(k+1)/2^(k+1) =2-(k+2)/2^k+(k+1)/2^(k+1) =2-[2(k+2)-(k+1)]/2^(k+1) =2-(k+3)/2^(k+1) =2-[(k+1)+2]/2^(k+1) 我觉得不是所有的猜想都非要用数学归纳法. 比如a1=2,a(n+1)/an=2,这显然是个等比数列 如果我直接猜想an=2^n,代入检验正确,而且对所有的n都成立,这时候干嘛还用数学归纳法啊.可是考试如果直接这样猜想是不得分的,必须要用数学归纳法证明.

结果带入递推公式验证是对n属于正整数成立. 用数学归纳法,无论n=1,还是n=k的假设,n=k+1都需要带入递推公式验证,不是多此一举吗.我又不是一个一个验证,是对n这个变量 进行验证,已经对n属于正整数成立了.怎么说就是错误的. 这说明你一眼能看出答案,是个本领。 然而,考试是要有过程的,这个本领属于你自己,不属于其他人,比如你是股票牛人,直接看出哪支会涨哪支会跌,但是不说出为什么,恐怕也不会令人信服。 比如你的问题,你猜想之后,代入检验,验证成功说明假设正确,这是个极端错误的数学问题,请记住:不是验证了一组答案通过, 就说明答案是唯一的!比如x+y=2.我们都知道这是由无数组解的方程。但是我猜想x=y=1,验证成功,于是得到答案,你觉得对吗?所 以你的证明方法是严格错误的! 说说你的这道题,最简单的一道数列题,当然可以一下看出答案,而且你的答案是正确的。但是证明起来就不是那么容易了,答案不 是看出来的,是算出来的。你的解法就是告诉大家,所有的答案都 是看出来,然后代入证明的。假设看不出来怎么办?那就无所适从, 永远也解不出来了!这就是你的做法带来的.答案,你想想呢?你的这 种做法有什么值得推广的? OK,了解! 数学归纳法使被证明了的,证明数学猜想的严密方法,这是毋庸置疑的。在n=1时成立;假设n=k成立,则n=k+1成立。这两个结论 确保了n属于N时成立,这是严密的。 你的例题太简单,直接用等比数列的定义就可以得到答案(首项 和公比均已知),不能说明你的证明方法有误。我的本意是:任何一 种证明方法,其本身是需要严格证明的,数学归纳法是经过严格证 明的;而你的证明方法:猜想带入条件,满足条件即得到猜想正确的 结论。未经证明,(即使它很严密,我说即使)它不被别人认可。事 实上,你的证明方法(猜想带入所有条件均成立)只能得到“必要”

数列通项公式前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列 {}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及 前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 变式练习:

1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和21 2n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 变式练习: 1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 2.已知数列: 求通项公式 类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。 变式练习:

《用数学归纳法证明不等式》参考教(学)案

课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512, …… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n<b n,即n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关 系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│ 当n=k+1时,

数学归纳法证明整除

数学归纳法证明整除 数学归纳法证明整除数学归纳法 当n=1 的时候 上面的式子 = 3^4-8-9=64 成立 假设当n=k 的时候 3^(2k+2)-8k-9能够被64整除 当n=k+1 式子= 3^(2k+4)-8k-17 =9[3^(2k+2) -8k-9] +64k+64 因为 3^(2k+2)-8k-9能够被64整除 ∴ 9[3^(2k+2) -8k-9] +64k+64 能够被64整除 n=k+1 时,成立 根据上面的由数学归纳法 3的2n+2次方-8n-9(n属于N*)能被64整除。 2 当n=1时 3^4-8-9=81-17=64 能被4整除·····(特殊性) 设当n=k时,仍然成立。 当n=k+1时,·····················(一般性) 3^(2(k+1)+2)-8(k+1)-9=3^(2K+2+2)-8K-17

=9*3^(2K+2)-72K+64K-81+64=9(3^(2k+2)-8k-9)+64k+64 因为3^(2k+2)-8k-9能被64整除 不用写了吧·· 正确请采纳 数学归纳法 当n=1 的时候 上面的式子 = 3^4-8-9=64 成立 假设当n=k (k>=1) 3^(2k+2)-8k-9能够被64整除 当n=k+1(k>=1) 式子= 3^(2k+4)-8k-17 =9[3^(2k+2) -8k-9] +64k+64 由9[3^(2k+2) -8k-9] +64k+64-(3^(2k+2)-8k-9)可以被64整出n=k+1 时,成立 根据上面的由数学归纳法 3的2n+2次方-8n-9(n属于N*)能被64整 3.证明:对于任意自然数n (3n+1)*7^n-1能被9整除 数学归纳法 (1)当n=1时 (3*1+1)*7-1=27能被9整除 (2)假设当n=k时 (3k+1)*7^k-1能被9整除 则当n=k+1时 [3(k+1)+1]*7^(k+1)-1=[21k+28]*7^k-1

求数列通项公式的十种方法

1. 观察法(求出a1、a2、a3,然后找规律) 即归纳推理,就是观察数列特征,找出各项共同的构成规律,然后利用数学归纳法加以证明即可。 例1.设11=a ,)(222 1*+∈++-= N n b a a a n n n ,若1=b ,求32,a a 及数列}{n a 的通项公式. 解:由题意可知:11111+-==a , 112212212 12+-==++-=a a a , 113121222223+-=+=++-=a a a . 因此猜想11+-=n a n . 下面用数学归纳法证明上式. (1)当n =1时,结论显然成立. (2)假设当n =k 时结论成立,即11+-=k a k . (3)则11)1(11)1(11)1(12222 1+-+=++-=++-=++-=+k k a a a a k k k k , 即当n =k +1时结论也成立. 由(1)、(2)可知,对于一切正整数n ,都有)(11* ∈+-=N n n a n .(最后一句总结很重要) 2.定义法(已知数列为等差或者等比) 直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目。 例2.已知等差数列{}n a 满足1210a a +=,432a a -=,求{}n a 的通项公式。 解:设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =. 又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+(1,2,)n = .

3.公式法 若已知数列的前n 项和与的关系,求数列的通项可用公式 求解。(一定要讨论n=1,n≥2) 例3.设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式。 解:(Ⅰ)由 233n n S =+ 可得:当1=n 时, 111(33)32 a S == +=, 当2≥n 时,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥ 而 11133a -=≠, 所以 13,1,3, 1.n n n a n -=?=?>? 4.累加法 当递推公式为)(1n f a a n n +=+时,通常解法是把原递推公式转化为。 例4.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列{a n }的前10项和为 解:由题意得: 112211)()()(a a a a a a a a n n n n n +-++-+-=--- 12)1(+++-+= n n 2 )1(+=n n 5.累乘法 当递推公式为)(1n f a a n n =+时,通常解法是把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 n s n a {}n a n a 1()n n a a f n +-=

相关主题
文本预览
相关文档 最新文档