当前位置:文档之家› 高中物理20世纪理论物理学发展的主旋律

高中物理20世纪理论物理学发展的主旋律

高中物理20世纪理论物理学发展的主旋律
高中物理20世纪理论物理学发展的主旋律

20世纪理论物理学发展的主旋律

--杨振宁

我们知道交响乐有所谓的主旋律,整个交响乐就是经过几个不同而又相关的主旋律纠缠和发展出来的。我们以这个眼光来分析20世纪物理学的发展,就会发现也有三个主要的旋律,那就是量子化、对称、相位因子。

我们如果回顾20世纪人类的历史,就会发现其中有着惊人的进步。20世纪人类发现了一种新能源,比“火能’还要强很多倍的核能,这是人类历史上一个非常重大的事清;20世纪人类还学会了控制电子的行动,从而制造出了半导体,由半导体而发明出了计算机,大大提升了人类的生产力。这些技术的影响,我们今天已经看到了;而对这个世纪以至下一个世纪的影响,我们今天是没有办法估计的。

人类在20世纪还发现了研究极小结构的方法。从20世纪初就发现了X光衍射,这一发现,大大地增加了人类研究极小结构的能力,从而发现了第一个生命遗传的基因物质―DNA的双螺旋结构而双螺旋结构引导出来了今天的分子生物学和生物工程技术。这项发展,对于21世纪乃至将来人类的影响,也是今天没有办法估计的。

在20世纪,人类还第一次摆脱了地球的引力,登上了月球……

这些发展,还有许许多多别的进步,都标志着20世纪是人类有史以来发展最快的一个世纪。

这些进展之所以能够在20 世纪发生,是因为物理学于20世纪在基本的结构和更深的层面上都有了新的跨越,人类对于时间、空间、运动、能量以及力量的观念有了革命睦的变化。我上面讲的那些与我们的生活有着密切关系的巨大进展,正是基于人类对这五项基本的认识的革命性变化。

物理学的主旋律之一:量子化

20世纪物理学发展这个“交响乐”的三个主旋律是:量子化、对称、相位因子。其中第一个主旋律就是量子化。

把量子化引入物理学,是1900年普朗克的一篇文章。在1900年以前,物理学上测量出来的东西、讨论的数目都是连续的,1尺长、2尺长或者1.5尺长,是一个连续的变数。可是到了19世纪末20世纪初,普朗克大胆地提出了一种全新的量子观点,这个观点影响了整个20世纪物理学的发展,以及所有用到物理学的发展而引导出来的实际的结果。

不过普朗克并没有完全了解到量子化观点的意义。过了5年以后,一个年轻的物理学家爱因斯坦把普朗克的见解向前推进了一步。爱因斯坦提出了光子的概念,说光的传播不是一个连续的过程,在那以前大家都认为光是一个连续的波,而爱因斯坦则认为光是由一个一个的光子传播过来的。这又是一个革命性的见

解,但在当时没有完全地被大家了解。

又过了8年,玻尔写了一篇文章,把普朗克的观念引申到了原子的结构上。这篇文章的关键性意义在于它使人们对周期表的结构跟简单的原子结构有了一个初步的认识,并在这个认识里面放进了量子的因素。

可以说,这三篇文章是人类关于量子化最早的文章这些文章发表以后,有过很多讨论。1913—1925年,是物理学史上一个非常动荡的时代,因为他们三位提出来的见解中,有许多很复杂的以前不被人们所了解的观念,经他们一说,人们就有了一种恍然大悟的感觉;可是从另一面看,又有许许多多新的现象是他们的见解所不能够解释的,甚至可以反证他们的想法是错误的。

由于这一切是从光的领域发端,从爱因斯坦到玻尔,研究的主体方向都是光子学,而那个时期德国的光子学做得最好,因此这方面的文章多半发表在德国。在这十几年里面,产生了很多很多新的正确的见解,也产生了很多很多新的然而是错误的见解。

这一段历史很不容易写。很多年以后(1953年),奥本海默描述了那十几年。他说那是一个在实验里耐心工作的时代,有许多关键性的实验和大胆的见解,有许多错误的尝试和不成熟的假设;那是一个真挚通信与匆忙会议的时代,有许多激烈的辩论和无情的批评,充满了巧妙的数学性的方法。对于那些参与者,那是一个创新的时代,从宇宙结构的新认识中,他们感受到了激奋,也体验到了恐惧。这段历史恐怕永远也不会被完整地记录下来。要写这段历史,需要有非凡的笔力,由于涉及到的知识距离日常生活是那么的遥远,实在很难想象有任何诗人或史家能够胜任。

奥本海默的这一段有诗意的描述,讲清楚了那十几年物理学一方面紊乱、一方面诞生革命性见解的情形。通过那十几年的努力,1925年由年轻的玻尔、年轻的海森伯和比他们稍微年长一点的薛定谔一起,提出来了量子力学的概念。然后在1925—1927年,对于量子力学的意义做了深入的讨论,最后发展出来了量子力学。在此以后的70年直至今天,量子力学对物理学的发展仍然具有革命性的影响。所以说,量子力学是20世纪物理学主旋律之一,这是没有任何疑问的。

物理学的第二个主旋律:对称

20世纪物理学的第二个主旋律是对称。

对称这个观念,在人类的历史上,不是到20世纪才有的。在不同的文化里面,在不同的哲学的讨论里面,对称的观念很早很早就有了。在中国的历史上,古希腊的历史上、古罗马的历史上,都有很多这方面的讨论。这些讨论对于近代科学的发展时候,对于开普勒,对于牛顿,都有很重要的影响。可是,这些影响同20世纪由于人们逐渐对对称有了了解所产生的影响相比是徽不足道的。

20 世纪发现对称的重要影响的第一个工作是爱因斯坦在1905年做的。1905

年,爱因斯坦在德国(物理学纪事》杂志上发表《论动体的电动力学》论文,提出了狭义相对论。爱因斯坦发表这篇论文的时候并没有用“对称”这个名词。这篇论文里面有很多公式,爱因斯坦并没有认识到这些公式与对称有何关系。两年以后,有个数学家写了一篇文章,指出爱因斯坦的狭义相对论里的那许多公式,用数学的眼光看起来是一个对称的结构。爱因斯坦看了这篇文章以后,才第一次了解到,从数学的角度来看,他所讲的狭义相对论的基本意义就是对称的观念。这个观念后来对于20世纪物理学的发展有决定性的影响。所以说,对称是20 世纪物理学的第二个主旋律是非常正确的

物理学的第三个主旋律:相位因子

相位因子这个观念相比较而言不是那么容易掌握的。这个观念是1918年由一个名叫Weyl 的数学家提出来的。他为什么要提出这个观念呢?原因是爱因斯坦在1916年发表了广义相对论,从某种意义上来说这是1905年狭义相对论的推广。爱因斯坦提出的广义相对论所讨论的是宇宙间一个力量的来源,这个力量就是万有引力。万有引力是牛顿在17世纪最早提出来的,可是爱因斯坦在1916年广义相对论里面说,这个万有引力的本质不是牛顿所讲的,而是一个有集合意义的现象。这是项非常美妙的工作,是爱因斯坦一生又一个重大的贡献。爱因斯坦紧跟着说,有了广义相对论,我们就可以把人类所了解的一个力量,也就是万有引力的来源集合化。然后他说,我们还有另外一个指导物理世界的力量,就是电磁学,电磁学和化学的力量有着同一个来源。

爱因斯坦认为我们当前所要做的一件事情,就是把电磁学集合化,然后跟已经集合化的万有引力结合在一起,这就变成统一场了。这个观念是爱因斯坦终生的理想。今天物理学所要做的最基本的事情,还是要向这个统一场论进军。

这里所说的集合观念来自前面提到过的数学家Weyl 。Weyl比爱因斯坦年轻16岁,那时候他已经是个有名的数学家了,他很喜欢对物理学做一些哲学的探讨。爱因斯坦这篇文章出来以后,他就说要响应爱因斯坦的见解,他引进一个集合的观念,这个集合的观念可以解释电磁学。他的集合观念就是引进了一个因子,他把它叫做相位因子,我把它翻译成拉长因子,把一个东西拉长缩短的拉长。又过了4年,薛定愕在写出“薛定谔方程”以前4年,注意到了Weyl的这篇文章。然后他写了一篇文章,他说他现在发现了一个“Remarkable Pro-porty”一个非常值得惊异的性质,这是个什么性质呢?我想在座的很多同学都会记得,中学物理学里讲了,比如说氢气的电子有一个轨道,这个轨道是量子化的,这是玻尔在1913 年第一个讲出来的。1922年,玻尔的这个轨道就被薛定愕拿过来,围绕着这个轨道来研究拉长因子是多少。他算出来以后,发现拉长因子里面是子指数,他说这件事情具有很奇怪的值得注意的性质。

从今天的眼光看来,薛定谔这篇文章最特殊的一点,不是他所讲的那个特别的性质,而是在他文章的末尾讲了这么一句话,也可以说是一个附加的注解,他说假如你把相位因子改变一下,用另外一种方式写出来的话,那么拉长因子就等于l。这个观念当时很显然是被薛定谔发现了,但他不懂得这是什么意思,也役有再发展下去。为什么没有发展下去?原因是他还是相信拉长因子是一个实数,

不是一个虚数,所以这句话他只是简单地讲了一下,就不再讲了,这篇文章也就到此为止了。

在今天看起来,薛定谔当时是犯了一个很大的错误。假如他当时能对这一点进行仔细研究的话,那他就会在1922年发现量子力学,而不是要等到3年以后由玻尔、4年以后由他自己才发展出来量子力学。确实当时要在基本物理学里边要让大家接受一个虚数是不容易的,更不是薛定谔所喜欢接受的。可是,假如我们接受了这一点,把这个虚数加上去,那么我们就会发现:由于你加上去个虚数,这个拉长因子就不再是拉长因子,而变成了相位因子。相位因子是一个复数,从拉长因子到相位因子只是加了一个“-l”的平方根,这个变化在今天看来是有决定性影响的。

在这以前,物理学里边所讨论的数,都是普通的数也就是实数,可以是l,也可以是15,还可以是π等等。这些都是实数,那么虚数呢?从名字就可以看出来它是虚的。这个虚数由数学家引进来的原因,是因为在解二次方程式的时候,如果不用虚数的话,有些方程式是没有办法解的,而用了虚数就可以解,这是数学家所做的物理学家做的事情跟现实有关系,所以不觉得应该把“-1”的平方根引进到物理学里来,这也正是薛定愕当时并投有认识到的,他当时已经找到了极为重要的一点,可是他又退缩了。过了几年以后,等到了量子力学被发现以后,好几个人包括薛定谔自己才认识到,原来物理学里头不仅要用实数,而且要用虚数;既然用了虚数,就不要再讨论拉长因子,而要讨论相位因子了。把虚数放进去以后,就变成了现在这个样子,这是物理学发展史上一个极为重要的转折点

由此往后,到了1929年,玻尔写了另外一篇重要的论文。这篇文章的题目叫做《电磁学的规范对称性》换句话说,19世纪电磁学发展的重要标志是麦克斯韦方程,麦克斯韦方程与今天无线电的发展、电视的发展,以及网络、x光、激光的发展都有着极其密切的关系。可是麦克斯韦方程结构跟虚数没有关系,是实数。今天看来是不够深刻的。深刻的了解应该是要引进虚数,引进虚数以后,再引进一个对称的观念就叫做规范对称性。规范对称性与相位因子有着密切的关系。对称和不对称是物理学的基本结构

从1929年开始,三个主旋律都被引进到物理学,量子化、对称和相位因子都已经是20 世纪物理学的主旋律了。

从1925-1970年,对称的观念渐渐变成为一个主题旋律。对称的观念是1905-1907年由爱因斯坦引进的,可是最初它对于物理学的重要性并没有被大家所认识,1925年以后才逐渐受到重视,直到1970年。1925年量子力学发展起来以后,为了了解原子的结构,有一些数学修养比较高的物理学家就把数学里面非常美妙的一个观念叫做群论引人到物理学里。这个引人,对20年代、30年代、40年代分子物理学、原子物理学乃至以后的原子核物理学都起了决定性的作用。渐渐地大家对群论的重要性、对称的重要性有了明晰的认识,也了解到对称这个观念在物理学里跟所谓的不变性这个观念有着密切的关系。

1956-1958年是一个新的发展阶段。这是因为在1954到1956年做出来了一

些新的实验,这些实验跟当时的两组实验按旧的观念是不能相容的。最后发现之所以不能相容,是因为那个时候大家对对称的观念有一个错误的观念,这个错误的观念是由吴健雄和她的4位合作者通过一个著名的实验来纠正的。她们证明,在弱相互作用下,左右是不对称的,是不守恒的。这个实验在1956年底1957年初做出来以后,震惊了整个物理学界,大家终于发现,原来对称跟不对称是物理学的基本结构。

受这个影响,海森伯和泡利从1957年开始合作。因为1957年初,吴健雄她们的实验做出来以后,整个物理学界大家都在研究对称跟不对称的现象。海森伯和泡利那时是五十几岁的样子,他们当时感到1925年以前那几年的现象在物理学界又要出现了,只是这一次是围绕着对称这一观念,而不是围绕原子结构的观念了他们所要做的事清,是要写出一个公式,他们给它起了一个名字,叫做世界公式,他们认为有了这个公式,整个基本物理学一切的疑难都可以得到解释。

很多年以后,在海森伯的晚年,在70年代他逝世前儿年的一篇自传性的文章里,他讲了这么一句话“我从来没有见到泡利如此为物理所激动”。这是句分量很重的话,因为1924-1930年间是量子力学获得快速发展的时候,也是海森伯跟泡利的工作出成果的时候,他们整天都很激动。

吴健雄进行的对称不守恒实验在物理学界所引起的震动,与刚才所讲的这三个主旋律是有密切关系的。在今天看来,有长远影响的是路线积分。路线积分可以写成一个公式,这个公式与刚才所讲的三个主旋律都有极为重要的关系,从这个公式就可以看出,它是把相位因子跟量子化直接连在一起了。相位因子的单位,应该是普朗克常数,她把量子力学跟经典力学的关系变成数据化的一个了解,所以她的这个积分,包括我在内的很多人都认为是极为重要的有关键性的一个想法。

规范对称这个主旋律在1929 年就引进到物理学里去了,规范对称拥有了下面这样一个重要性,也就是说,用规范对称可以了解电磁学的结构,可以了解为什么麦克斯韦方程是麦克斯韦方程。规范对称的数学公式里原来只是一个数目,后来推广到方阵,这个推广是在1954 年做出来的。为什么要做这件事情呢?为什么要把本来规范对称里面的观念推广一下,使它从一个数目变成一个方阵呢?动机有三点:

第一点,是因为那时候发现了很多新的从前不知道的粒子,暂时叫做“奇异粒子”。这些粒子发现多了以后就出现了一个问题:它们彼此之问的相互作用力是什么?有没有一个统一的观念能够解释它们应该有什么样的相互作用力。这是第一个动机。

第二个动机,在19世纪就有了。由于有电荷守恒的观念,一个正电子如果被消灭掉了,它的电荷就给了另外一个正电子,这个电荷不会从1突然变成0。因为这个关系,就有电了磁场,就有了麦克斯韦方程,所以能量守恒引来了引力场。这样就发生了一个问题,假如说有别的守恒的原理,岂不就要引出一个别的什么场?在那个时候,有另外一个守恒定律,叫做同位线守恒,既然有同位线守

恒,也是一个守恒定律,是不是也要相应地产生一个同位线场?这是第二个动机。

第三个动机,是因为守恒这个观念跟相位不变之间有个密切的关系,这个我不能给大家介绍得更清楚。这个观念里头有一条,可以把它从整体化变成局部化,变成局部化以后,更符合当时物理学的精神。

总而言之,有了这三个不同的动机,不管你从哪个动机开始,最后得出来的结果都是一样的,这就产生了非阿贝尔规范场,从而把1929年规范不变的观念推广了。与规范不变的观念不一样的地方是它比较复杂,可是它们的美妙之处是一样的。

非阿贝尔规范场比较复杂的地方具有重要的影响。非阿贝尔规范场给出的宇宙结构非常对称,因为它是从对称的观念推演过来的。可是宇宙实际上并不那么对称,宇宙有很多不对称的现象,所以问题就是在于对称的理论怎么跟不对称的现实结合在一起。一直研究了2。多年,在这20多年里引进了几个观念,其中一个叫做对称破缺。这个观念大概讲起来就是用一个很妙的办法,可以把一个非常对称的理论跟一个实验得出来的不太对称的现实连合在一起。这个办法不是由一个人发现的,而是由好多人发现的。渐渐引进去以后,就把非阿贝尔规范场与现实完全连合到一起,这是一个非常成功的方向

另外在1971-1972年的时候,有两个荷兰人指出,通过非常复杂的数学演算,证明非阿贝尔规范场可以重整化,1999年,他们正是由于这项工作获得了诺贝尔奖从20世纪70年代初开始,大家了解到非阿贝尔规范场对于基本粒子的结构是正确的方程式。到了20世纪70年代末,又发现对于原子核的结构也是可以用非阿贝尔规范场解释的。

这些成就主导了这30年里整个基本粒子物理学的发展。20世纪70年代末,我综合了这些成果,认为整个发展的方向叫做对称支配相互作用,换句话说,就是宇宙之间物理现象里头的力量,相互作用的泉源是对称的。因为规范不变原理就是一种对称的精神,所以所有这些力量的结构都是由对称所左右。这个观念直到今天讲起来仍然是正确的。

现在所有新的进展,都还是沿着这条路子走下去的。因为对于这些观念有所认识,所以对于非阿贝尔规范场的结构也有了更深入的认识,这就是20世纪70年代发展起来的一个新的了解:原来那个对称相位因子在数学里头是一个很美妙的理论,是数学家已经发展的一个观念,这个观念在数学里面是个拓扑性的观念,而拓扑显然是一个集合的观念。因为这个关系,所以近年来集合学、拓扑学跟物理学产生了密切的联系。刚才我所讲的也可以说是20世纪基本物理学的简史,用通俗的语言把其中最重要最基本的观念以及彼此的关系给大家描述了一下。回过头来看,其实跟爱因斯坦所想要做的事是极为密切地联合在一起的。

从一九一几年开始到1933年,爱因斯坦坚持他继续向统一场论推进。尤其在1933年,他有一个演讲叫《理论物理的方法》,其中讲了几句话,这几句话与我们今天所了解的20世纪物理学的精神以及21世纪物理学发展的方向还是有着

密切的关系。

他有一句话是说:“理论物理之公理基础不能自实际经验提炼出来,而是要创想出来”。爱因斯坦在1905年的工作,或者薛定愕在1925-1926年的工作,或者玻尔关于规范场的观念,这些开始都不是直接从实验来的,而是一个数学的结构,所以这符合爱因斯坦所说的到“理论物理之公理基础不能自实际经验提炼出来,而是要创想出来”。

然后他又说:“创想的泉源来自数学。从某种意义上来讲,我认为纯思索可以了解世界像古人所认为的那样”。这句话当然值得斟酌。假如一个人不与纯粹的世界、现实的世界发生关系,光坐在那儿想,他不可能想出来今天我们所了解的物理世界的结构。所以爱因斯坦的这句话我们要做解释,他是说你应对现实的世界要有更多的了解。

可是,最后这个结果却不是从一个实验、一个实验的数据得出来的,而是要有一个数学的东西促使你创想出来,再把这个结果与实验的结果验证一下,这才可能得到大的发展。他是想要把物理集合化,这一点是完全正确的。他逝世50多年来,基本物理学已经有了好几次集合化可是还没有解决问题。爱因斯坦想把引力场跟其他的相互作用整个地统一起来,这个最后的目标至今还没有实现,这也正是我们大家今天还在努力的方向。

课程标准高中物理教科书(人教版)

课程标准高中物理教科书(人教版) 必修1、必修2编写思想 人民教育出版社物理室张大昌 自2003年初以来,编者以《普通高中物理课程标准(实验)》为依据,编写了全套《普通高中课程标准实验教科书?物理》。本文结合共同必修《必修1》和《必修2》两本书,谈一谈编者在落实新课程理念时的想法和所做的努力,希望能与老师、学生们交流,也希望更多地听到大家的意见。 一、循序渐进,步步登高 任何教学活动都要使学生学会所教的内容,对于高中物理课程来说,就是要学会物理学的内容,否则无论知识与技能还是过程与方法、情感态度价值观的教育都无从谈起。落实三维课程目标的前提是学懂物理学! 要学懂物理学,有很多应该注意的事情,但有极其重要的一条,那就是循序渐进。一个5米高的峭壁,没有专门的工具、没有经过专门训练的人难以攀登,而泰山高1 524米,一般的人都能爬上去,这是因为泰山路上开凿了所有健康人都能接受的台阶。 教学也是这样。凡是教学中的难点,一般说来都是新内容与学生已有的认知之间存在较大的落差。正确分析这个落差,搭好合适的“台阶”,正是教学艺术性之所在。教科书的作用之一是做好教师的助手。编者在分析难点,帮助教师搭设教学台阶这方面做了很多工作。 1. 矢量的教学 编者是通过以下几个阶段来引导学生学习的。

(1)通过位移初步接触矢量 几十年来,我国高中物理教科书既有从力开始的,也有从运动学开始的;国外教科书也是这样。两种安排各有道理。课标教科书从运动学开始,目的之一是使矢量的教学能循序渐进。 在高中阶段,对矢量的认识要突出两点:方向性和加法法则。对于高一学生来说,两者都不容易。如果先学力,学了方向性后,几乎立即就要学习相加的法则,两个难点相距太近。因此,新教科书先学位移,通过位移初步接触矢量。在《必修1》第一章第2节说“像位移这样的物理量叫做矢量,它既有大小又有方向……”这里描述了矢量的一个特征,但不是下定义。 (2)通过思考与讨论?领悟?到矢量相加具有特殊的规律 《必修1》第一章第2节有个“思考与讨论”:一位同学从操场中心A出发,向北走了40 m,到达C点,然后又向东走了30 m,到达B点……你能通过这个实例总结出矢量相加的法则吗? 这里并不要求学生完整地得出平行四边形或三角形的法则,但一定要让学生思考。只要能够认识到最终的位移并不是把40 m与30 m相加就可以得到的,这就可以了。教学中要设法让学生心里存疑。新课程不是鼓励学生的探究精神吗?存疑就是教师预先埋伏下的问题,探究的开始。学生会不自觉地对这个问题做出或浅或深的猜想与假设……这对于后来的学习是很有意义的。 (3)通过实验探索矢量相加的法则 《必修1》第三章,学生通过实验了解了力相加的法则,为矢量的完整定义打下了基础。 (4)矢量的定义

高中物理概念力学

一、匀速直线运动 ①质点:有质量的点。[物理模型] ②概念:物体在任意相等的时间内位移相等的直线运动 ③公式:vt s (位移和速度是矢量,速度的方向与位移相同,但速度的大小与位移和速度无关,与其比值有关。位移:矢量,从起点到终点的距离大小且方向从起点指向终点。) ④速率:速度的大小 二、时间与时刻 ①时间:过程量。指一段时刻变化。如:第一秒,(第)二秒内等都是时间。 ②时刻:瞬间量。指一点时刻。如:(第)一秒末等。 三、瞬时速度、平均速度与平均速率 ①瞬时速度: ①概念:运动的物体在某一时刻或某一位移时的速度(是矢量)。

② ②平均速度: ①③平均速率: ①概念:路程与时间四、匀加速直线运动 ①概念:直线运动的物体,若在相等的时间内,速度变化量v ?都相等的运动 ②加速度: ①概念:在匀变速直线运动中,其速度的变化量v ?与发生这一变化所用时间t ?的比值。 ②符号与单位:a (m/s 2)v t 表示末速度,v 0表示初速度) ③方向:加速度是一个矢量,其方向与速度的变化量相同。在此,需要点明的是:若a 的值为正,则物体做加速运动,若a 的值为负,则物体做减速运动,若a 的值为零,则物体做匀速运动。 ③速度公式:at v v t ±=0(a>0)。由此可得,匀变速直线运动的v-t 图为一条倾斜直线。

a>0)。由此可得,匀变速直线运动的 s-t ⑤速度平方差公式:aS v v t 2202=- ⑥初速度为零的比例公式: ①n 秒末的速度比(或第n 秒末的瞬时速度):n v v n :1:1= ②n 秒内的位移比:21:1:n S S n = ③第n 秒内的位移比:)12(:1:1-=n S S n )(第)(第 ④第n 段位移的时间比 ⑤前n 段位移的时间比: ⑥第n 秒内的平均速度比⑦自由落体运动: ①概念:一个物体不受任何阻力,只在重力作用下而下落的运动。 ②重力加速度:使物体受到地球对其的吸引产生的力叫重力,由重力产生的加速度叫重力加速度。它是个常量,又称重力常数。其数值约为g=s 2,常在题目中取10m/s 2。 ③

高一物理必修一概念总结

物理必修一知识点 一、运动学的基本概念 1、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。 运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。 参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。 通常以地面为参考系。 2、质点: ①定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。 ②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物 体能否看成质点,要具体问题具体分析。 ③物体可被看做质点的几种情况: (1)平动的物体通常可视为质点. (2)有转动但相对平动而言可以忽略时,也可以把物体视为质点. (3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能 把物体看做质点,反之,则可以. [关键一点] (1)不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物 体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点. (2)质点并不是质量很小的点,要区别于几何学中的“点”. 3、时间和时刻: 时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。 4、位移和路程: 位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量; 路程是质点运动轨迹的长度,是标量。 5、速度: 用来描述质点运动快慢和方向的物理量,是矢量。 (1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为v x t ? = ? ,方向与位移的方向相同。 平均速度对变速运动只能作粗略的描述。 (2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。

2017年普通高中物理课程标准

(二)选修Z课程 l.《选修1一1》 本模块是选修模块。由“曲线运动与宇宙探索”“动量与碰撞现象” “机械振动与机械波”三个主题组成。 1.1曲线运动与宇宙探索 内容标准 1.1.1经历实验研究平抛运动的过程,能通过对实验数据的分析得 出平抛运动的规律。会用运动合成与分解的方法分析抛体运动。能体会将复杂运动分解为简单运动的物理思想。能关注并分析日常生活中的抛体运动。 例1分别以物体在水平方向和竖直方向的位移为横坐标和纵坐标,描绘做抛体运动物体的轨迹。 1. 1. 2会用线速度、角速度、周期描述匀速圆周运动。知道匀速圆周运动向心加速度的大小和方向。能用牛顿第二定律分析匀速圆周运动的向心力。了解生产生活中离心现象产生的原因。 例2探究为什么公路拐弯处路面有一定的倾斜度。 l.} 1. 3通过史实,了解万有引力定律的发现过程。知道万有引力定律。认识发现万有引力定律的重要意义。体会科学定律对人类探索未知世界的作用。 例3通过用万有引力定律发现海王星等事实,说明科学定律的作用。 例4了解重物下落与天体运动的多样性与统一性,知道万有引力定律对科学发展的重要作用。 1. 1. 4会计算人造卫星的环绕速度。知道第二宇宙速度和第三宇宙速度。 例5了解经典力学对航天技术发展的重大贡献。 1. 1. 5会用洛仑兹力定量分析带电粒子在匀强磁场中的圆周运动。了解电子束的磁偏转原理以及在科学技术中的应用。 例b观察阴极射线在磁场中的偏转。 例7了解质谱仪和回旋加速器的工作原理。 1. 1. 6初步了解广义相对论的几个主要观点以及主要观测证据。关注宇宙学研究的新进展。 活动建议 C} )通过查找资料,对比炮弹的实际弹道与理想抛物线的差异, 尝试做出解释。 C2)收集资料,探讨自行车拐弯时受到的向心力。 C3)观看有关人造地球卫星、航天飞机、空间站的录像片。 C4)收集我国和世界航天事业发展历史和前景的资料,写出调查 报告。 C5)阅读有关相对论的科普书刊,在同学中举办小型讨论会。 Cb)观看有关宇宙起源的科教电视片,了解宇宙的演化与发展。1. 2动量与碰撞现象 内容标准 1. 2. 1经历探究碰撞规律的实验过程,初步形成系统和守恒的概念。

高中物理概念大全

高中物理必“背”手册 一、物理学史篇 (一)力学 1.1638年,意大利物理学家伽利略用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因. 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向. 3.英国物理学家胡克对物理学的贡献:胡克定律; 4.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

5. 1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动. 6. 人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说. 7. 17世纪,德国天文学家开普勒提出开普勒三大定律; 8. 牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量(体现放大和转换的思想);; 9. 1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星.10. 20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体.(二)电磁学 1. 1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖. 2. 1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律--库仑定律.

高中物理概念的教学策略

龙源期刊网 https://www.doczj.com/doc/ab3887021.html, 高中物理概念的教学策略 作者:杨连书 来源:《天津教育·中》2019年第09期 物理简单的来说就是研究万物运行发展的规律和道理。初中的物理学习仅仅介绍了一些表面和浅显的物理知识,而随着学习程度的深入和年龄及理解能力的增长,高中阶段所研究的知识更为复杂和深入,主要从牛顿力学、能量與动量、电学、磁学四大方面出发来为学生讲述一个更为多样复杂、变幻莫测的万物世界。高中物理在高中学科中具有重要地位,教师在传授知识多的同时应当帮助同学们找到适合自身的学习方法,掌握正确的学习方式能取得事半功倍的效果,有效提升学生的逻辑思维和发散性思维能力。 在新课标改革下,教学更注意对于核心素养的培养。但是如今在物理教学过程中,很难将物理教学与核心素养的培养结合起来,这就需要教师进行大量的实践和研究来探讨出适合自己和学生的一种物理教学策略。本文就这种情况进行了比较全面的分析,力图解决如今高中物理教学所遇到的问题。 一、高中物理概念教学的困境 如今的高中物理概念教学面临着很多的问题,许多物理教师也走入了困境,最主要的问题是学生的兴趣问题,而学生如果对物理概念不理解、有疑问,就很难学好物理。其次就是高中学生的心理比较不容易把握,这一阶段的学生处在青春期,青春期的叛逆和迷茫感是不可避免的。新课改的进程不断加深,教育教学的改良重要性已经不需要过多赘述。而核心素养指导下的教学方式变革则不断促进教学观念的转化,不断推进学生学习主动性,完善教学方式和教学内容,养成学生学习能动性。因此教师在上课时,应该考虑到学生的这种情绪,对于叛逆的青少年以包容和鼓励,对于处在迷茫期的青少年进行引导和安慰。让他们意识到自身的价值和使命,对未来充满希望和奋斗目标。 相反如果在这一阶段,教师对学生没有做到鼓励和包容,而是贬低与漠视,那么就很可能走向另一极端。由此可以看出理解学生的心理是十分重要的,如果我们掌握好了学生的心理,那么对于以后的教学会取得事半功倍的效果。所以我们在教学中应采取鼓励方式,引导学生自行思考,使学生培养自己的物理思维,在教师的鼓励中说出自己的见解和方法,并逐渐对物理学习产生兴趣,在没有教师监督的情况下也可以自觉学习。 党的十九大报告中曾明确指出,应当全面贯彻落实党的教育方针,积极实行:“立德树人”的任务,不断推进素质教育发展,培养全面性人才。而核心素质是否能够得到稳定的培养,是素质教育能否取得成功的关键性因素之一。

高中物理基本概念填空

高中物理基本概念填空请勿外传 第一章描述运动物理量 1.质点用来代替物体的有的点叫做质点,研究一个物体的运动时,如果物体的和对问题的影响可以忽略,就可以看做质点. 2.参考系和坐标系(1)为了研究物体的运动而假定的物体, 叫做参考系.对同一物体的运动,所选择的参考系不同,对它的运动的描述就会.通常以为参考系来研究物体的运动.(2)为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系.中学物理中常用的坐标系有直线坐标系和平面直角坐标系,可分别用来研究物体沿直线的运动和在平面内的运动. 3.时刻和时间时隔(1)时刻指的是某一瞬间,在时间轴上用来表示,对应的是位置、速度、动能等状态量.(2)时间间隔是两个时刻之间的间隔,在时间轴上用来表示,对应的是位移、路程、功等过程量. 4.位移和路程(1)位移描述物体的变化,用从运动的指向的有向线段表示,是矢量.(2)路程是物体运动的长度,是标量. 一、匀变速直线运动 1.定义:沿着一条直线,且不变的运动. 匀加速直线运动:a与v ,匀减速直线运动:a与v 二、匀变速直线运动的规律1.三个基本公式速度公式:位移公式:位移速度关系式: 2.两个推论(1)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的,还等于的瞬时速度.。平均速度公式:= = (2)连续相等的相邻时间间隔T内的位移差等于,即s2-s1=s3-s2=……=sn-s(n-1)= . 3.初速度为零的匀加速直线运动的特殊规律(1)在1T末,2T末,3T末,……nT末的瞬时速度之比为v1∶v2∶v3∶……∶vn= . (2)在1T内,2T内,3T内,……,nT内的位移之比为s1∶s2∶s3∶……∶sn= . (3)在第1个T内,第2个T内,第3个T内,……,第n 个T内的位移之比为sⅠ∶sⅡ∶sⅢ∶……∶sn= . (4)从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶……∶tn= . 三、自由落体运动和竖直上抛运动1.自由落体运动(1)特点:初速度v0=0,加速度为重力加速度g的运动. (2)基本规律:速度公式v= ,位移公式s= 2.竖直上抛运动规律: (1)特点:加速度为g,上升阶段做运动,下降阶段做运动. (2)基本规律速度公式:v= 位移公式:s= 上升的最大高度:H= 一、直线运动的s-t图象 1.图象的物理意义:反映了物体做直线运动的变化的规律. 2.图线斜率的意义:(1)图线上某点切线的斜率大小表示物体. (2)图线上某点切线的斜率正负表示物体. 二、直线运动的v-t图象 1.图象的物理意义:反映了做直线运动的物体变化的规律. 2.图线斜率的意义(1)图线上某点切线的斜率大小表示物体. (2)图线上某点切线的斜率正负表示. 3.两种特殊的v-t图象(1)若v-t图象是与横轴平行的直线,说明物体做. (2)若v-t图象是一条倾斜的直线,说明物体做. 4.图象与坐标轴围成的“面积”的意义 (1)图象与坐标轴围成的面积表示. - 1 –熟练掌握物理概念是物理高考获胜的法宝之一,请同学们经常反复背物理概念并理解之。

2017年高中物理课程标准解读

普通高中课程标准(2017年版)解读专辑编者按:2018年1月,教育部 印发了语文等14门学科的普通高中课程标准(2017年版),并将于今年秋季 开始执行。普通高中课程标准(2017年版)在文本结构、内容及其实施要求等 方面进行了哪些改进和完善?其主要的变化有哪些?这些变化基于什么样的 教育现实展开,凝结着修订组什么样的教育思考?这些变化又将对今后的高中 各科教学产生什么样的影响?为了更好地促进读者深入理解普通高中课程标(2017年版),我刊约请包括课标修订组负责人、核心成员等在内的专家学者 对各学科课标进行了分析解读。 实现物理课程功能促成学生素养发展 ———《普通高中物理课程标准(2017年版)》问题探讨 《普通高中物理课程标准(2017年版)》修订组负责人/廖伯琴 莆田第一中学/陈国文 2017年版”)。整体上看,高中课标2017年版进一步强化了物理学科的育人功能,思想性、科学性、时代性、整体性均明显增强。高中课标2017年版公 布后,莆田第一中学陈国文老师第一时间研读、梳理出一线教师关注的若干问题。以下是陈国文老师与廖伯琴教授的对话整理。 问题1:高中课标2017年版有哪些亮点? 按照教育部统一部署,高中物理课程标准修订组对2003年由教育部颁布的《普 通高中物理课程标准(实验)》(以下统称“高中课标实验版”)进行修订, 总体讲,修订后的高中课程标准有以下变化。 一是凝练物理学科核心素养,凸显物理课程的育人功能。根据国际比较、国内调研,以及关于物理课程功能的探索等,修订组经过认真研究、反复讨论,凝练出的高中物理学科核心素养,主要包含“物理观念”“科学思维”“实验探究”“科学态度与责任”四个方面,其中“物理观念”含有物质观念、运动与相互作用观念及能量观念;“科学思维”含有模型建构、科学推理、科学论证、质疑创新要素;“科学探究”含有问题、证据、解释、交流要素;“科学态度与责任”含有科学本质、科学态度、社会责任要素。 二是优化高中课程结构,注重课程基础性、系统性与选择性。本次修订既注重课程的基础性,为全体学生发展、国民科学素养提升设计必修课程,又注重课程的系统性与选择性,为国家物理人才的培养、学生有个性的发展设计选择性必修和选修课程。高中物理必修课程由必修1、必修2和必修3构成,是全体学生必须学习的课程,学生学完必修课程可参加学业水平合格性考试;选择性必修课程由选择性必修1、选择性必修2和选择性必修3构成,是学生根据个人需求与升学要 求选择学习的课程,对那些拟参加物理学科学业水平等级性考试的学生则是必须学习的课程;选修课程由选修1、选修2和选修3构成,分别侧重物理学与社会 发展、物理学与技术应用及近代物理学初步等方面的内容,由学校或地方自主开

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

谈高中物理概念教学

谈高中物理概念教学-教师教育论文 谈高中物理概念教学 文/邓宝贞 【摘要】物理概念不仅是物理基础理论知识的一个重要组成部分,也是学生通过逻辑推理方法,构建知识体系的基本元素,学生学习物理知识的过程,就是要不断地建立物理概念,弄清物理规律。概念是物理中一个很重要的环节。学生只有理解并掌握了概念才能在这个基础上去解决一些实际问题。物理概念教学的效果如何,直接关系到学生对于物理知识的认知程度,进而影响到学生整体知识网络的构建与拓展,可以说学好物理概念是学好物理的关键。 关键词概念教学;高中物理;方法 一、影响高中物理概念学习的主要因素 1.教材因素。初中物理教材与高中教材相比较,对知识和思维能力的要求都有一个较大的跨越,存在一个较大的台阶。高中物理教材所讲述的知识不仅要求采用观察、实验,更多的要求具备分析归纳和综合等抽象思维能力,要求能熟练的应用数学知识解决物理问题。对于多个研究对象、多个状态、多个过程的复杂的问题,从物理现象到构建物理模型,从物理模型到数学化的描述,建立一系列的方程,学生接受难度大。初中、高中物理教材对知识的表述也有很大差别。初中物理教材文字叙述比较浅显通俗,学生容易看懂和理解,而高中物理教材对物理概念和规律的表述严谨简捷。 对物理问题的分析、推理、论述科学严密,学生不易读懂、阅读难度大。另外,高中教材与所需数学知识的衔接不当,也对学生的物理学习造成了困难。如学生尚未学到极限的概念,在学习瞬时速度时就难以理解;高一新生没有三角函数知

识,就不能灵活处理力的合成与分解;没有函数图像的知识,用图像法研究各种问题就会比较困难。由于学科之间的横向联系的失调,也加大了高一物理学习难度,使高一学生成绩分化。 2.学生因素。高中物理概念有些是从直观的实验直接得出的,有些概念则需要学生从已有的物理概念出发,或从建立的理想模型出发,通过观察、分析、归纳和推理建立起来。虽然高中学生具有一定的认知能力及逻辑思维能力,但由于他们物理基础知识有限,物理思维方法不足,个别高中学生由于在以往的学习过程中形成了被动接受知识的习惯,积极主动思考问题的能力较差,不善于将陌生、复杂、困难的问题转化为熟悉、简单、容易的问题,不善于将实际问题转化为物理问题,不善于根据具体问题灵活选择方法,学习物理概念时习惯于机械记忆,盲目练习,往往被个别表面现象所迷惑,形成一些片面的、肤浅的概念。主要表现在解决物理问题时对于隐含条件的分析,临界状的把握,多过程的衔接等分析不完整,顾此失彼,答案不全面,条理不清楚。如个别学生不理解加速度及电阻率的概念,造成“加速度大速度就大;电阻率大电阻一定大”的错误认识。3.教师因素。教师在教学过程中,往往将大量的时间用于备课做题,缺乏分析研究学生的现有知识状况、接受知识的能力,对于学生的知识能力有时估计过高,自己常常觉得有些物理概念很简单,学生自己一看就懂,没有必要花费时间去探讨、挖掘物理概念的内涵和外延,造成学生在最初就没有真正理解有些概念,致使学生不易建立各个物理概念之间的联系。 二、高中物理概念的常用方法 1.给学生营造概念氛围。创设概念教学的情境是物理概念教学的必经环节。物理概念一般比较抽象,对于缺乏理性认识的中学生来说,接受起来有一定的难度,

高中物理基本概念

高中物理基本概念、定理、定律、公式(表达式)总表 配套教材 一、质点的运动----直线运动 1)匀变速直线运动 1.加速度a=(V t-V o)/t 以V o为正方向,a与V o同向(加速)a>0;反向则a<0 2.末速度V t=V o+at 3. 位移S=V o t+at2/2=V平=tV t/2t 4. 有用推论V t2 -V o2=2as 5.平均速度V平=S/t (定义式) 6.中间时刻速度 V t/2=V平=(V t+V o)/2 中间位置速度V s/2=[(V o2 +V t2)/2] 1/2 7. 实验用推论ΔS=aT2ΔS为相邻连续相等时间(T)内位移之差 8. 主要物理量及单位:初速度(V o):m/s 加速度(a):m/s2末速度(V t):m/s 时间(t):秒(s) 位移(S):米(m)路程: 米(m)速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。 (2)物体速度大,加速度不一定大。 (3)a=(V t-V o)/t只是量度式,不是决定式。 (4)其它相关内容:质点、位移和路程、速度与速率、s--t图、v--t图 2) 自由落体 1.初速度V o=0 2.末速度V t=gt 3.下落高度h=gt2/2 4.推论V t2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小;地球两极最大;在高山处比平地小。 3)* 竖直上抛 1.位移S=V o t- gt2/2 2.末速度V t= V o- gt (g=9.8≈10m/s2 ) 3.有用推论V t2 -V o2=-2gS 4.上升最大高度H m=V o2/2g (抛出点算起) 5.往返时间t=2V o/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 (2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。 (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动----曲线运动万有引力 1)平抛运动 1.水平方向速度V x=V o 2.竖直方向速度V y=gt 3.水平方向位移S x=V o t 4.竖直方向位移S y=gt2/2 5.运动时间t=(2S y/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度V t=(V x2+V y2)1/2=[V o2+(gt)2]1/2 合速度方向与水平夹角β: tgβ=V y/V x=gt/Vo 7.合位移S=(S x2+ S y2)1/2 , 位移方向与水平夹角α: tgα=S y/S x=gt/2V o 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。 (2)运动时间由下落高度h(S y)决定与水平抛出速度无关;在平抛运动中t是解题关键。 (3)α与β的关系为tgβ=2tgα。 (4)当速度方向与合力(加速度)方向不在同一直线上时物体做曲线运动;曲线运动必有加速度。

新版《普通高中物理课程标准》解读(20200717063733)

《普通高中物理课程标准》解读 一、修订背景 1.研究制订学生发展核心素养体系和学业质量标准。 ——源于 2014 年教育部的文件《关于全面深化课程改革落实立德树人根本任务的意见》,文件研究提出各学段学生发展核心素养体系,对正在修订的《高中课程标 准》明确要求,要把学科核心素养贯穿始终。 2.减轻中小学生课业负担 ; 开发特色课程。 —— 2010 年国务院审议通过的《国家中长期教育改革和发展规划纲要》 (2010-2020年),刚要中提出要切实减轻中小学生课业负担,开发特色课程,本次修订也贯彻了 该刚要的精神。 3.课改实验十余年的成果和经验积累。 4开始,宁夏等四省区率先开始新课程改革,之后全国其他省市相继进入课改, 到17 年经历了十余年的实践,新的教学理念、教学方式已深入人心,这一轮的 课改积累了大量的成功经验,也发现了一些问题,对这些问题有了新的、科学的 认识,对新课标的修订给出依据。 4.国际科学教育的最新发展 ( 学习进阶、核心概念、 STEM教育?? ) 1997 年国际经济合作与发展组织率先提出核心素养,引发世界范围内的广泛关注,联合国教科文组织,欧盟、美国等进行了研究,我国也是同样,这次修订可以说 是与世界同步。 本次修订物理课标内容和变化有哪些?→▲▲ 二、物理课标的修订的主要内容和变化 ( 一) 关于课程方案 1.进一步明确了普通高中教育的定位。 普通高中的培养目标是进一步提升学生综合素质,着力发展核心素养。 2.进一步优化了课程结构。 (1) 将课程类别调整为必修课程、选择性必修课程和选修课程; (2)进一步明确了各类课程的功能定位,与高考综合改革相衔接。 ( 二) 关于学科课程标准 1.学科核心素养贯穿始终

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

如何理解高中物理概念的教学策略

如何理解高中物理概念的教学策略 如何理解高中物理概念的教学策略 如何理解高中物理概念的教学策略 2014-09-06 物理论文 如何理解高中物理概念的教学策略 如何理解高中物理概念的教学策略文/雷呈福摘要:学生只有扎实地掌握了相关的物理概念,才能够更进一步地去构建正确的知识框架,去运用所学的理论知识解决实际问题。针对高中的物理概念教学,通过以下三个具体的方面阐述了其教学策略。关键词:高中;物理概念;教学策略物理是一门研究客观世界物质运动形式和基本规律以及各种物质之间相互关系的学科,在高中物理中主要是分为力、热、光、电、声五个板块来进行教学的。这其中难免就会涉及大量的专业术语和物理概念,如何让学生快速准确地掌握有关的物理概念,对于提高课堂教学效率具有重要的意义。一、由浅入深,透过现象认识本质人们正确地认识事物并接受概念是需要一段过程的。人们对于外界的客观事物,首先会形成一个直观的表象的认识,这是认识的第一步。然后随着对于事物的慢慢了解,其认识也会随之由浅入深,由表及里,从表象认识达到理性认识的飞跃。学生对于高中物理概念的认识、理解和掌握也必须经过这一由浅入深的过程。因此,教师在平时的课堂教学中,必须充分认识到这一客观规律,帮助学生透过现象认识客观事物的本质。比如,在讲授惯性定律以及摩擦力的概念时,教师可以首先向学生演示伽利略的斜面实验(仅通过对课本上相关插图进行口述讲解往往起不到较好的效果),一来可以利用学生对于新奇事物的好奇感来激发学生的求知欲,二来也可以通过对于该实验的演示来使学生获得有关摩擦力的初步直观认识,让学生了解到小球通过斜面滑下来之后,之所以最终会停下来是由于受到了地面对

浅谈高中物理概念教学

浅谈高中物理概念教学 易正芬四川省什邡中学 物理知识由物理概念、物理规律、物理实验和物理研究方法等组成,是人们解决物理问题的基础。物理概念是反映物理现象和过程的本质属性的思维形式,他是学习和掌握物理知识的前提,所以物理概念教学在高中物理教学中显得十分重要,例如,学生对牛顿第二定律(F=ma)理解就必须建立在对加速度、质量、合外力的深刻理解基础之上,学生学习时若不能真正理解物理概念的内涵、以及与相关概念的联系及区别,在运用物理知识进行物理思维是,往往会产生一些思维障碍,出现各种各样的错误,如乱套公式、张冠李戴、思维混乱等现象。本文就高中物理概念教学中应该注意的问题谈点自己的体会。 一、要重视概念引入的过程和方法 在讲物理概念之前必须弄清1、为什么要引入某个物理概念(包括为什么要研究这个问题,问题是怎么提出来的等)2、怎样引入概念,心理学研究认为,概念的建立和形式主要有两种方式:一种是学生由大量的同类事物的不同例证中,独立发现同类事物的关键特征,另一种是向学生展示定义,利用原有认知结构中的有关知识理解新概念,心理学分别把这两种方式称为概念的形成与概念同化,他们是学生获得概念的两种基本方法,引入概念时要注意从哪些主要的物理现象、事实出发,运用怎样的手段和方法一一观察实验方法、来了、理论分析方法和数学方法(1)由具体事实概括出新概念,这是一种侧重于概念形成的教学,当学生已有认知结构简单,知识具体而贫乏时,往往需要从大量的具体例子出发,利用他们实际经验中的一些生动事例,以归纳的方法概括出一类事物的本质属性,初步形成一个新的概念。这种形式在较低年级,特别是在开始学习一门新的学科时运用较多。在这种形式教学中要充分运用启发、发现的教学方法,避免学生机械记忆概念的文字表达,使学生形成一个稳定的、清晰的可分辨的概念,能较自然地纳入认知结构。(2)利用旧知识导出新概念在初中物理学习中,随着学生年龄增长、生活经验逐渐丰富,物理知识掌握量的增加,认知结构中积累了大量的物理概念,再学习新概念时,可利用认知结构中的有关概念,以概念同化的方式进行学习,这是学习概念的主要丰富。如重力、浮力、压力、支持力等都是在力的概念上延伸,这类概念教学的主要目的是使物理概念更加系统化,使学生的认知结构更完善,以利于概念的理解、掌握和运用。 二、要克服定势思维的影响 学生在学习和运用知识的过程中,形成了一套切实有效的习惯的方式和方法,变成了学生的一种潜能,一定的思维模式,这种现象叫思维定势,在概念教学中学生具有一定生活学习体验和经验,这是学生学习物理知识的前提条件。先入的生活观念有的基本正确,对学习有积极的促进作用,但也有的观念是错误的,对物理概念的形成有一定的消极作用,造成一定的理解障碍。例如:在学习力和运动的关系这部分知识之前,许多学生都有这种看法,认为静止的物体,用力推动它时,它才会运动,力停止作用时,它就会停下来,推物体的力越大,物体运动的就越快,速度就越大,所以力是使物体运动的原因,这种观点当然是错误的。所以讲有些物理概念时可用一些生动的物理实验或物理现象给学生以更强烈地刺激,形成鲜明的对比,说明原有概念的错误所在,使原有观念发生动摇,直至清除。 三、要注意相近概念的区别和联系

高中物理中的比值定义法 (1)

比值定义法 - 概述 所谓比值定义法,就是用两个基本的物理量的“比”来定义一个新的物理量的方法。一般地,比值法定义的基本特点是被定义的物理量往往是反映物质的最本质的属性,它不随定义所用的物理量的大小取舍而改变,如确定的电场中的某一点的场强就不随q、F而变。 比值定义法 - 详解 比值定义法,就是在定义一个物理量的时候采取比值的形式定义。用比值法定义的物理 概念在物理学中占有相当大的比例,比如速度、密度、压强、功率、比热容、热值等等 补充: 一、“比值法”的特点: 1、比值法适用于物质属性或特征、物体运动特征的定义。由于它们在与外界接触作用 时会显示出一些性质,这就给我们提供了利用外界因素来表示其特征的间接方式,往往借助实验寻求一个只与物质或物体的某种属性特征有关的两个或多个可以测量的物理量的比值, 就能确定一个表征此种属性特征的新物理量。应用比值法定义物理量,往往需要一定的条件;一是客观上需要,二是间接反映特征属性的的两个物理量可测,三是两个物理量的比值必须 是一个定值。 2.两类比值法及特点 一类是用比值法定义物质或物体属性特征的物理量 如:电场强度E、磁感应强度B、电容C、电阻R等。它们的共同特征是;属性由本身 所决定。定义时,需要选择一个能反映某种性质的检验实体来研究。比如:定义电场强度E,需要选择检验电荷q,观测其检验电荷在场中的电场力F,采用比值F/q就可以定义。 另一类是对一些描述物体运动状态特征的物理量的定义, 如:速度v、加速度a、角速度ω等。这些物理量是通过简单的运动引入的,比如匀速 直线运动、匀变速直线运动、匀速圆周运动。这些物理量定义的共同特征是:相等时间内, 某物理量的变化量相等,用变化量与所用的时间之比就可以表示变化快慢的特征。 二、“比值法”的理解 1.理解要注重物理量的来龙去脉。 为什么要研究这个问题从而引入比值法来定义物理量(包括问题是怎样提出来的),怎样进行研究(包括有哪些主要的物理现象、事实,运用了什么手段和方法等),通过研究得 到怎样的结论(包括物理量是怎样定义的,数学表达式怎样),物理量的物理意义是什么(包括反映了怎样的本质属性,适用的条件和范围是什么)和这个物理量有什么重要的应用。 2.理解要展开类比与想象,进行逻辑推理。 所有的比值法定义的物理量有相同的特点,通过展开类比与想象,进行逻辑推理、抽象思维等活动,从而引起思维的飞跃,知识的迁移,在类比中加深理解。如在重力场、电场、 磁场的教学中,相同的是都需要选择一个检验场性质的实体,用检验实体的受力与检验实体

高中物理课程标准

高中物理课程标准 物理学是一门基础自然科学,它所研究的是物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法。随着人类对物质世界认识的深入,物理学一方面带动了科学和技术的发展,另一方面,推动了文化、经济和社会的发展。它在科学中的地位也很高,我上大学后才意识到了。比如物理和数学是所用理工科的必修课,而那些化学生物都是不是我们物理学的课。所以在这里看出物理确实很重要,不仅在医学,理工科而且还日常生活中也很重要。 高中物理课程应体现物理学自身及其与文化、经济和社会互动发展的时代性要求,肩负起提高学生科学素养、促进学生全面发展的重任。为了适应科学技术进步和可持续发展的需求,培养高素质人才,必须构建符合时代要求的高中物理课程。并且国家在不断地进行改善。比如从物理教学大纲到物理新课程标准。我下面简单的解释教学大纲和物理课程标准。 1、含义:以前我没听说过物理教学大纲,自从上了这门可以后才知道了。“大纲”是指“物理课是普通高中的一门重要课程”。物理教学要“为实现普通高中的任务和培养目标更好地做出贡献”。“标准”指出:“高中物理是普通高中科学领域的一门基础课程,……旨

在进一步提高学生的科学素养”,“应体现物理学自身及其与文化、经济和社会互动发展的时代性要求,肩负起提高学生素养,促进学生全面发展的重任”,“为终身发展,形成科学世界观和科学价值观打下基础”,“满足全体学生终身发展的需求”。 可以看出,对物理课在各学科的定位,“标准”强调了物理是科学学习领域的基础。比“大纲”的定位更高一层,“大纲”中只说物理课要“为实现做贡献”是比较抽象的。“标准”则非常明确地提到“全体学生”,要为他们的终生发展服务。说明新的“标准”是以人为本,更加关注的是学生自身的发展和自身的需求。 2、物理教学目标 “大纲”要求:“学习基础知识及其应用,了解物理学与其他学科以及物理学与技术进步,社会发展的关系”,“进行科学方法的训练,培养学生的观察和实验能力,科学思维能力,分析问题和解决问题的能力”。“培养学习科学的兴趣和实事求是的科学态度,树立创新意识,结合物理教学进行辩证唯物主义教育和爱国主义教育”,归纳起来就是要求学生经过高中物理课的学习要具有基础知识及应用的能力,学习科学的方法,科学的态度和辩证唯物主义和爱国主义。 课程总目标:让学生继续学习基本的物理知识与技能;体验科学探究过程,了解科学研究方法;增强创新意识和实践能力,发展探索自然、理解自然的兴趣与热情;认识物理学对科技进步

高中物理概念热力学

一、分子动理论 ①基本观点: ①物质是由大量分子组成的。①阿伏伽德罗常量:在12克碳单质中,所含有的碳-12分子个数。其符号是N A。我们将此定义为1mol(读作:摩尔,简称:摩。),其值为×1023mol-1。单位是:mol-1。我们将1mol分子的质量叫做摩尔质量,其符号是M。单位 是kg/mol。1g/mol=1×10-3kg/mol。② 般单分子质量的数量级是10-27~10-26(kg)。③分子体积(此公式 不适用于气体)其中V mol是一摩尔物质所对应的体积(摩 尔体积)理想气体的摩尔体积恒 为22.4L/mol。 得出。④ ②分子在永不停息地做热运动。①扩散现象:不同物质能够相互渗透的现象。扩散现象说明了:分子在永不停息地做热运动,温度越高,扩散越快。分子之间存在间隙。②布朗运动:悬浮微粒在流

体中永不停息地做无规则运动的现象。微粒越小,布朗运动越明显;温度越高,布朗运动越激烈。它间接地反映了液体分子的运动是永不停息的、无规则的。③热运动:分子的永不停息、无规则运动。 ③分子间存在相互作用力。①分子间同时存在分子引力和分子斥力,表现的分子间作用力是其合力。②分子引力和分子斥力均随分子间距变大而减小,但斥力减小更快。当某一分子受力平衡时,此时的分子间距r0叫做平衡距离。③内能:分子势能和分子动能的统称。分子势能与两分子间距离有关,分子距离越大,分子势能越大。分子动能与温度有关,温度越高,分子动能越大。内能可通过热传递和做功的方式改变。分子间各作用力的图像如下: ②分子运动速率统计: ①无论是低温还是高温,其分子运动速率统计图像都呈“中间多,两头少”的分布规律,它表明了在某一温度下一定数量的分子,其单个分子速率为其最小值和最大值的分子个数远远小于单个分子速率为分子平均速率的分子个数。

相关主题
文本预览
相关文档 最新文档