当前位置:文档之家› 最新50套高考物理动量定理

最新50套高考物理动量定理

最新50套高考物理动量定理
最新50套高考物理动量定理

最新50套高考物理动量定理

一、高考物理精讲专题动量定理

1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

在沙坑里.求:

⑴沙对小球的平均阻力F ;

⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122

()

mg t t t + (2)1mgt 【解析】

试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:

方向竖直向上

⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理

点评:本题考查了利用冲量定理计算物体所受力的方法.

2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。 (1)若在t =0时刻,粒子射入;在t <0

2

T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。 (2)若B 0=

02c v l ,且粒子从0≤l ≤02T

的任一时刻入射时,粒子离开磁场时的位置都不在y 轴上,求T 0的取值范围。 (3)若B 0=

02c v l ,00l T v π=,在x >l 的区域施加一个沿-x 方向的匀强电场,在04

T t =时刻入射的粒子,最终从入射点沿-x 方向离开磁场,求电场强度的大小。

【答案】(1)0

0v B cl =;(2)00

l T v π≤;(3)()2

0421v E n cl π=+()0,1,2n =L .

【解析】 【详解】

设粒子的质量为m ,电荷量为q ,则由题意得

q

c m

=

(1)粒子在磁场中做匀速圆周运动,设运动半径为R ,根据几何关系和牛顿第二定律得:

R l =

20

00v qv B m R

=

解得0

0v B cl

=

(2)设粒子运动的半径为1R ,由牛顿第二定律得

20

001

v qv B m R =

解得12

l R =

临界情况为:粒子从0t =时刻射入,并且轨迹恰好过()0,2l 点,粒子才能从y 轴射出,如图所示

设粒子做圆周运动的周期为T ,则

00

2m l

T qB v π

π=

= 由几何关系可知,在0

2

T t =

内,粒子轨迹转过的圆心角为 θπ=

对应粒子的运动时间为

1122

t T T ππ=

= 分析可知,只要满足0

12

T t ≥,就可以使粒子离开磁场时的位置都不在y 轴上。 联立解得0T T ≤,即00

l

T v π≤

(3)由题意可知,粒子的运动轨迹如图所示

设粒子的运动周期为T ,则

00

2m l

T qB v ππ=

= 在磁场中,设粒子运动的时间为2t ,则

21144

t T T

=+

由题意可知,还有

00

244

T T t =

+ 解得0T T =,即00

l

T v π=

设电场强度的大小为E ,在电场中,设往复一次所用的时间为3t ,则根据动量定理可得

302Eqt mv =

其中

3012t n T ?

?=+ ??

?()0,1,2n =L

解得()2

421v E n cl

π=+(

)0,1,2n =L

3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小;

(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。 【解析】 【详解】

(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:

F=mg sin θ

根据牛顿第二定律有:

F=ma ;

解得:

a =6.0m/s 2

(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:

21

2

0m W mv -=-

解得

W =18J ;

(3)物体沿斜面上滑和下滑的总时间为:

0226

2s 6

v t a ?=

== 重力的冲量:

20N s G I mgt ==?

方向竖直向下。

4.两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m ,两根质量均m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行,大小0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过T=5.0s ,金属杆甲的加速度为a=1.37 m/s 2,求此时两金属杆的速度各为多少?

【答案】8.15m/s 1.85m/s 【解析】

设任一时刻两金属杆甲、乙之间的距离为,速度分别为和

,经过很短时间

,杆

甲移动距离

,杆乙移动距离

,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势:

回路中的电流:

杆甲的运动方程:

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时

为0)等于外力F 的冲量:

联立以上各式解得

代入数据得

=8.15m/s

=1.85m/s

【名师点睛】

两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.

5.质量为m=0.2kg 的小球竖直向下以v 1=6m/s 的速度落至水平地面,再以v 2=4m/s 的速度反向弹回,小球与地面的作用时间t=0.2s ,取竖直向上为正方向,(取g=10m/s 2).求 (1)小球与地面碰撞前后的动量变化? (2)小球受到地面的平均作用力是多大? 【答案】(1)2kg?m/s ,方向竖直向上;(2)12N . 【解析】

(1)取竖直向上为正方向,碰撞地面前小球的动量11 1.2./p mv kg m s ==- 碰撞地面后小球的动量220.8./p mv kg m s ==

小球与地面碰撞前后的动量变化212./p p p kg m s ?=-= 方向竖直向上 (2)小球与地面碰撞,小球受到重力G 和地面对小球的作用力F , 由动量定理()F G t p -=? 得小球受到地面的平均作用力是F=12N

6.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以10m/s 运动的乙运动员从后去推甲运动员,甲运动员以6m/s 向前滑行,已知甲、乙运动员相互作用时间为1s ,甲运动员质量m 1=70kg 、乙运动员质量m 2=60kg ,求:

⑴乙运动员的速度大小;

⑵甲、乙运动员间平均作用力的大小。 【答案】(1)3m/s (2)F=420N 【解析】 【详解】

(1)甲乙运动员的动量守恒,由动量守恒定律公式

''

11221122m v m v m v m v +=+

得:

'

23m/s v =

(2)甲运动员的动量变化:

'1111-p m v m v ?= ①

对甲运动员利用动量定理:

p Ft

?=②

由①②式可得:

F=420N

7.一质量为1 kg的小物块放在水平地面上的A点,距离A点8 m的位置B处是一面墙,如图所示.物块以v0=5 m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为3 m/s,碰后以2 m/s的速度反向运动直至静止.g取10 m/s2.

(1)求物块与地面间的动摩擦因数μ;

(2)若碰撞时间为0.01s,求碰撞过程中墙面对物块平均作用力的大小F;

【答案】(1)0.1(2)500N

【解析】

(1)由动能定理,有-μmgs=1

2

mv2-

1

2

m v02

可得μ=0.1

(2)由动量定理,规定水平向左为正方向,有FΔt=mv′-(-mv)

可得F=500N

8.电磁弹射在电磁炮、航天器、舰载机等需要超高速的领域中有着广泛的应用,图1所示为电磁弹射的示意图.为了研究问题的方便,将其简化为如图2所示的模型(俯视图).发射轨道被简化为两个固定在水平面上、间距为L且相互平行的金属导轨,整个装置处于竖直向下、磁感应强度为B的匀强磁场中.发射导轨的左端为充电电路,已知电源的电动势为E,电容器的电容为C,子弹载体被简化为一根质量为m、长度也为L的金属导体棒,其电阻为r.金属导体棒,其电阻为r.金属导体棒垂直放置于平行金属导轨上,忽略一切摩擦阻力以及导轨和导线的电阻.

(1)发射前,将开关S接a,先对电容器进行充电.

a.求电容器充电结束时所带的电荷量Q;

b.充电过程中电容器两极板间的电压y随电容器所带电荷量q发生变化.请在图3中画出u-q图像;并借助图像求出稳定后电容器储存的能量E0;

(2)电容器充电结束后,将开关b ,电容器通过导体棒放电,导体棒由静止开始运动,导体棒离开轨道时发射结束.电容器所释放的能量不能完全转化为金属导体棒的动能,将导体棒离开轨道时的动能与电容器所释放能量的比值定义为能量转化效率.若某次发射结束时,电容器的电量减小为充电结束时的一半,不计放电电流带来的磁场影响,求这次发射过程中的能量转化效率η.

【答案】(1)a .Q CE =;b .

;2

012E CE =(2)223B L C m

η=

【解析】

(1)a 、根据电容的定义Q

C U

=

电容器充电结束时其两端电压U 等于电动势E ,解得电容器所带电荷量Q CE = b 、根据以上电容的定义可知q

u C

=

,画出q-u 图像如图所示:

有图像可知,稳定后电容器储存的能量0E 为图中阴影部分的面积01

2

E EQ =,

将Q 代入解得2

012

E CE =

(2)设从电容器开始放电至导体棒离开轨道时的时间为t ,放电的电荷量为Q ?,平均电流为I ,导体棒离开轨道时的速度为v

根以导体棒为研究对象,根据动量定理0BLIt mv =-,(或BLi t m v ∑?=∑?), 据电流定义可知It Q =?(或i t Q ∑?=?) 根据题意有1122Q Q CE ?=

=,联立解得2BLCE v m

=

导体棒离开轨道时的动能()2

2128k

BLCE E mv m == 电容器释放的能量222

113228

E CE CU CE ?=-=

联立解得能量转化效率223k E B L C

E m

η==

?

9.一个质量为2kg 的物体静止在水平桌面上,如图1所示,现在对物体施加一个水平向右的拉力F ,拉力F 随时间t 变化的图象如图2所示,已知物体在第1s 内保持静止状态,第2s 初开始做匀加速直线运动,第3s 末撤去拉力,第5s 末物体速度减小为求:

前3s 内拉力F 的冲量。 第2s 末拉力F 的功率。 【答案】(1) (2)

【解析】 【详解】 (1)冲量为:

即前3s 内拉力F 的冲量为

(2)设物体在运动过程中所受滑动摩擦力大小为f ,则在

内,由动量定理有:

设在

内物体的加速度大小为a ,则由牛顿第二定律有:

第2s 末物体的速度为: 第2s 末拉力F 的功率为:

v

联立以上方程代入数据可求出F 的功率为:

10.一垒球手水平挥动球棒,迎面打击一以速度水平飞来的垒球,垒球随后在离打击

点水平距离为

的垒球场上落地。设垒球质量为0.81kg ,打击点离地面高度为2.2m ,球

棒与垒球的作用时间为0.010s ,重力加速度为,求球棒对垒球的平均作用力的大

小。 【答案】900N 【解析】 【详解】

由题意可知,垒球被击后做平抛运动,竖直方向:h=gt2

所以:

水平方向:x=vt

所以球被击后的速度:

选取球被击出后的速度方向为正方向,则:v0=-5m/s

设平均作用力为F,则:Ft0=mv-mv0

代入数据得:F=900N

【点睛】

此题主要考查平抛运动与动量定理的应用,其中正确判断出垒球被击后做平抛运动是解答的关键;应用动量定理解题时注意正方向.

11.质量为200g的玻璃球,从1.8m高处自由下落,与地面相碰后,又弹起1.25m,若球与地面接触的时间为0.55s,不计空气阻力,取g=10m/s2。求:

(1)在与地面接触过程中,玻璃球动量变化量的大小和方向;

(2)地面对玻璃球的平均作用力的大小。

【答案】(1),竖直向上(2)

【解析】

【详解】

(1)小球下降过程中只受重力,机械能守恒,根据机械能守恒,有:mgH=m v12

解得:

小球上升过程中只受重力,机械能守恒,根据机械能守恒,有:mgh=m v22

解得:

假设竖直向下为正方向,则;负号表示方向竖直向上;

(2)根据动量定理有:Ft+mgt=?p

代入已知解得:F=-6 N

“-”表示F的方向竖直向上;

【点睛】

本题关键是明确乒乓球上升和下降过程机械能守恒,然后结合机械能守恒定律和动量定理列式求解,注意正方向的选取.

12.一位足球爱好者,做了一个有趣的实验:如图所示,将一个质量为m、半径为R的质

量分布均匀的塑料弹性球框静止放在粗糙的足够大的水平台面上,质量为M (M >m )的足球(可视为质点)以某一水平速度v 0通过球框上的框口,正对球框中心射入框内,不计足球运动中的一切阻力。结果发现,当足球与球框发生第一次碰撞后到第二次碰撞前足球恰好不会从右端框口穿出。假设足球与球框内壁的碰撞为弹性碰撞,只考虑球框与台面之间的摩擦,求:

(1)人对足球做的功和冲量大小;

(2)足球与球框发生第一次碰撞后,足球的速度大小; (3)球框在台面上通过的位移大小。

【答案】(1)202Mv ;Mv 0;(2)0M m v M m -+(3)2M

R m

【解析】(1)人对足球做的功W =2

12

Mv 冲量:I =Mv 0

(2)足球的初速度为v 0,第一次碰撞后,设足球的速度为v 1,球框的速度为v 2。对足球和球框组成的系统,由动最守恒定律得:Mv 0=Mv 1+mv 2 由能量守恒定律得

2

22012

111222

Mv Mv mv =+ 联立解得足球的速度10M m

v v M m

-=+ 球框的速度202M

v v M m

=

+ (3)多次碰撞后足球和球框最终静止,设球框受到台面的摩擦力为f ,通过的总位移为x 对足球和球框组成的系统,由能量守恒定律得2

12

fx Mv = 又第一次碰撞后经时间t ,足球恰好未从框口穿出 说明此时足球与球框二者共速,均为10M m

v v M m

-=+ 由运动学规律得

12

122

v v t v t R +-= 对球框,由动量定理得 –ft =mv 1-mv 2 联立解得球框通过的总位移x =

2M

R m

相关主题
文本预览
相关文档 最新文档