当前位置:文档之家› Arduino学习笔记A13 - 最简单的Arduino频率计

Arduino学习笔记A13 - 最简单的Arduino频率计

Arduino学习笔记A13 - 最简单的Arduino频率计
Arduino学习笔记A13 - 最简单的Arduino频率计

Arduino学习笔记A13 - 最简单的Arduino频率计

想测量一个声音的频率或是占空比,但是又没频率计?我们可以用一块arduino去搞定这事情。需要的材料仅是一块普通arduino,无需外围元件。

特性:

1. 可以测量20~20kHz的信号,超过的话误差越来越大。

2. 误差大致是±5%。玩玩还行。

3. 输出的结果有:频率,占空比,周期,高电平时间,低电平时间。

4. 只能测量单频,复合波形就不行了。

步骤:

1.写下面程序到arduino里面

ARDUINO 代码复制打印下载

1./*

2.Arduino Frequency meter

3.Ansifa

4.2013/1/5

5.*/

6.int divider[6] = {0, 1, 8, 64, 256, 1024};

7.int prescaler = 5;

8.double count = 0;

9.double middle = 0;

10.char x = 0;

11.ISR(TIMER1_OVF_vect)

12.{

13.if(prescaler < 4)

14.{

15. prescaler++;

16.}

17.}

18.void interrupt()

19.{

20.if(!x)

21.{

22. count = TCNT1;

23. TCNT1 = 0x000;

24. TCCR1B = prescaler;

25.attachInterrupt(0, interrupt,

FALLING);

26.}

27.else

28.{

29. middle = TCNT1;

30.attachInterrupt(0, interrupt, RISING);

31.}

32. x = ~x;

33.}

34.void setup()

35.{

36.Serial.begin(57600);

37. TIMSK1 = 0x01;

38. TCCR1A = 0x00;

39.attachInterrupt(0, interrupt, RISING);

40.}

41.void loop()

42.{

43.Serial.print("Freq: ");

44.Serial.print(16000000.0 /

divider[prescaler] / count);

45.Serial.print(" Hz\t\tDuty: ");

46.Serial.print(middle / count * 100);

47.Serial.print(" %\t\tPeriod: ");

48.Serial.print(0.0000625 *

divider[prescaler]*count);

49.Serial.print(" ms\t\tH-time: ");

50.Serial.print(0.0000625 *

divider[prescaler]*middle);

51.Serial.print(" ms\t\tL-time: ");

52.Serial.print(0.0000625 *

divider[prescaler]*(count - middle));

53.Serial.println(" ms");

54.if(prescaler > 1)

55.{

56. prescaler--;

57.delay(200);

58.}

59.delay(100);

60.}

2. 将你的信号从D2和GND引脚输入。由于没有经过任何放大处理,信号必须满足开关arduino引脚的电平值,就是最好可以有0-5v的振幅。。

电路图太简单

3. 打开串口监视器,调波特率到57600,即可看到结果。因为没有任何防干扰措施,出现偏差特别

大的结果请自行忽略。

4. 如果你愿意的话,也可以扩展一下这个电路的性能:

* 振幅不够的话,可以使用运放或者三极管进行预放大;

* 测量频率不够高,可以使用74HEF4060进行分频。74HEF4060可以支持高达2^14=16384级分频,理论可以将量程提高16384倍。但是由于74HEF4060性能限制,可以将输入频率提高到20MHz。但是分频之后就只能看到频率,而测不到波形的占空比了。并且注意不要使用CD4060,那是低速版本。

简易数字频率计

4.2.3简易数字频率计电路设计 数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。 一、设计目的 1. 了解数字频率计测量频率与测量周期的基本原理; 2. 熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。 二、设计任务与要求 要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为: 1.测量范围:1HZ—9.999KHZ,闸门时间1s; 10 HZ—99.99KHZ,闸门时间0.1s; 100 HZ—999.9KHZ,闸门时间10ms; 1 KHZ—9999KHZ,闸门时间1ms; 2.显示方式:四位十进制数 3. 当被测信号的频率超出测量范围时,报警. 三、数字频率计基本原理及电路设计 所谓频率,就是周期性信号在单位时间 (1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为 fx=N/T 。因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。可见数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成,总体结构如图4-2-6:

图4-2-6数字频率计原理图 从原理图可知,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生清“0”脉冲Ⅴ,使计数器每次测量从零开始计数。 1.放大整形电路 放大整形电路可以采用晶体管 3DGl00和74LS00,其中3DGl00组成放大器将输入频率为fx的周期信号如正弦波、三角波等进行放大。与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。 2.时基电路 时基电路的作用是产生标准的时间信号,可以由555组成的振荡器产生,若时间精度要求较高时,可采用晶体振荡器。由555定时器构成的时基电路包括脉冲产生电路和分频电路两部分。 (1)555多谐振荡电路产生时基脉冲 采用555产生1000HZ振荡脉冲的参考电路如图4-2-7所示。电阻参数可以由振荡频率计算公式f=1.43/((R1+2R2)*C)求得。 (2)分频电路 由于本设计中需要1s、0.1s、10ms、1ms四个闸门时间,555振荡器产生1000HZ,周期为1ms的脉冲信号,需经分频才能得到其他三个周期的闸门信号,可采用74LS90分别经过一级、二级、三级10分频得到。 图4-2-7 555多谐振荡电路 3. 逻辑控制电路 在时基信号II结束时产生的负跳变用来产生锁存信号Ⅳ,锁存信号Ⅳ的负跳变又用来产生清“0”信号V。脉冲信号Ⅳ和V可由两个单稳态触发器74LSl23产生,它们的脉冲宽度由电路的时间常数决定。触发脉冲从B端输入时,在触发脉冲的负跳变作用下,输出端Q可获得一正脉冲, Q非端可获得一负脉冲,其波形关系正好满足Ⅳ和V的要求。手动复位开关S按下时,计数器清“ 0 ”。参考电路如图4-2-8 图4-2-8数字频率计逻辑控制电路 4.锁存器 锁存器的作用是将计数器在闸门时间结束时所计得的数进行锁存,使显示器上能稳定地显示此时计数器的值.闸门时间结束时,逻辑控制电路发出锁存信号Ⅳ,将此时计数器的值送译码显示器。选用8D锁存器74LS273可以完成上述功能.当时钟脉冲CP的正跳变来到时,锁存器的输出等于输入,即Q=D。从而将计数器

ARDUINO入门及其简单实验7例

ARDUINO入门及其简单实验(7例) (1) 1. Arduino硬件开发平台简介 (1) 1.1 Arduino的主要特色 (2) 1.2 Arduino的硬件接口功能描述 (3) 1.3 Arduino的技术性能参数 (3) 1.4 电路原理图 (4) 2. Arduino软件开发平台简介 (5) 2.1 菜单栏 (5) 2.2 工具栏 (6) 2.3 Arduino 语言简介 (6) 3. Arduino开发实例中所用部分器件 (8) 1. LED简介 (8) 2. 光敏电阻简介 (9) 3. 直流电机简介 (9) 4. 电位器简介 (10) 4. Arduino平台应用开发实例 (10) 4.1【实作项目一】利用LED作光敏电阻采样实验 (10) 4.2【实作项目二】利用PWM信号控制LED亮度 (12) 4.3【实作项目三】单键控制一只LED的亮灭 (15) 4.4【实作项目四】利用PWM控制直流电机转速 (17) 4.5【实作项目五】利用电位器手控LED亮度 (19) 4.6【实作项目六】控制LED明暗交替 (21) 4.7【实作项目七】利用光敏电阻控制LED的亮灭 (23) ARDUINO入门及其简单实验(7例) 1. Arduino硬件开发平台简介 Arduino硬件是一块带有USB的I/O接口板(其中包括13条数字I/O引脚,6通道模拟输出,6通道模拟输入),并且具有类似于Java、C语言的集成开发环境。Arduino 既可以扩展一些外接的电子元器件,例如开关、传感器、LED、直流马达、步进马达或其他输入、输出装置;Arduino也可以独立运行,成为一个可以跟交互软件沟通的接口装置,例如:Flash、Processing、Max/MSP、VVVV或其他互动软件。Arduino 开发环境IDE全部开放源代码,可以供大家免费下载、利用,还可以开发出更多激发人们制作欲望的互动作品。

通信工程综合实训

成绩评定表

课程设计任务书

目录 1 微博机器人 (2) 1.1 编写代码 (3) 1.2 代码回顾 (6) 2 交通灯+手控延时 (11) 2.1 功能 (12) 2.2 电路原理 (12) 2.3 代码清单 (13) 2.4 测试结果 (16) 3 卫星天线及接收机调试 (16)

1微博机器人 在这个项卡具中还是需要使用两个温度传感器的电路。这次,你要有规律地在微博上更新两个传感器的状态。用发送微博的办法使你可以了解已经连接到Arduion上的和、任何传感器的状态。 Twitter是一条微博服务器,允许你发送长度在140个字符以内的微博或短消息。任何人只要进行下搜索,或那些已选择了关注你的微博的人,都可以看到你发布的微博的内容。微博是非常流行的网络应用,可以从任何网络浏览器或许多可用微博客户机中浏览微博内容,甚至电话终端也可以发送微博。这使得微博成为发送简单消息的理想选择。你也可以通过移动终端查看微博内容。 你需要连到https://www.doczj.com/doc/aa8375733.html,注册一个新用户。我推荐创建一个只被你的Arduino使用的账号。 因为2010年8月31日以后,Twitter改变了它的第三方程序入口注册策略,使用了一种叫做OAuth的认证方法,使得直接从Arduino发送微博非常困难。在这个改变之前,向Twitter发送微博是一个简单的过程,现在只能通过第三方实现。换句话说,你发布微博到一个网站或代理服务器,代理服务器使使用OAuth协议代替你发布微博,Arduino 当前的微博库主使用这种方法。 如果你已有账号,输入下的代码。 输入代码 在你上传代码之前,需要注册一条微博账号。你使用这个库已比由NeaCat完成,可以使用它的网址作为代理服务器发送微博。这意味你必须首先获得一个口令,它是一个你自己的要进入微博网站的用户名和口令的加密版本。要得到这个版本可以去网址https://www.doczj.com/doc/aa8375733.html, ,并单击”stepq”链接口令,复制并粘贴结果到口令代码段。 注意,因为你使用代理服务器而且必须给出你的微博用户名和口令来获得OAuth 令牌,所以推荐创建一个新的微博账号保持它为匿名。我相信你用自己的账号使用库也是安全的但是相比较而言匿名更安全。 之后,单击”step2”链连,获得两套相关的库代码。安装这些库文件夹到之前你下载

电子技术课程设计(数字频率计的设计)

一课程设计题目:数字频率计的设计 二、功能要求 (1)主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。 (2)率范围:分四1Hz~999Hz、01kHz~9.99kHz、1kHz~99.9kHz、10~999KHZ (3)周期范围:1ms~1s。 (4)用3个发光二极管表示单位,分别对应3个高档位。 三频率计设计原理框图 正弦波 数字频率计原理框图 1

测试电路原理:在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。改闸门信号控制闸门电路的导通与开断。让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关。 被测信号 频率测量算法对应的方框图 四、各部分电路及仿真 1 整形电路部分 整形电路的目的是将三角波、正弦波变成方便计数的脉冲信号。整形电路可以直接用555定时器构成施密特触发。 本次设计采用555定时器,适当连接若干个电阻就可以构成触发器 图1-1 整形电路 将555定时器的THR和TR1两个输入端连在一起作为信号输入端,则可得到 显示电路 闸门产生 输入电路闸门计数电路

施密特触发器,为了提高其稳定性通常要在要在CON端口接入一个0.01uf左右的滤波电容。但使用555定时器的时候输入的电压应该要大于5V,本次设计直接用信号源来做输入信号,并且信号源的振幅为10V,没有用放大电路将信号放大。 2 时基电路 时基电路时用来控制闸门信号选通的时间,由于本次设计的频率计测试范围是0到999KHz,故时基信号要有1ms 10ms 100ms 1s,基于上述,还需要一个分频器分出不同的频率。设计过程如下:可用一个多谐振电路产生频率为1KHz的脉冲信号(即T=1ms),然后使用分频器产生10ms 100ms 1s。 多谐振电路可以采用555定时器或者晶体振荡器来完成。本次设计采用555定时器实现,本次设计的精确度要求比较低,而且555定时器组成的多谐振荡起的最高振荡频率只能最多1MHz,而我们将用555定时器产生1Kz的频率,满足在该范围之内。分频器采用10分频,可用74LS90或者74LS160。 图2-1555定时器构成的多谐振振荡器 555多谐振振荡器设计参数:设计一个震荡周期为1ms,输出的占空比 2 3 q

multisim简易数字频率计

. . . . 哈尔滨工业大学 简易频率计的仿真设计

目录 1.设计要求 2. 总电路图及工作原理 3.电路组成介绍 3.1脉冲形成电路 3.2闸门电路 3.3时基电路 3.4计数译码显示电路 4. 电路的测试 5. 分析与评价 附录:元器件清单 1.设计要求 本次设计任务是要求设计一个简易的数字频率计,即用数字显示被测信号频率的仪 2

器,数字频率计的设计指标有: 1. 测量信号:正弦信号、方波信号等周期变化的物理信号; 2. 测量频率范围:0Hz~9999Hz; 3. 显示方式:4位十进制数显示。 2.电路工作原理 频率计总电路图如下所示: 2

频率计的基本原理:通过将被测周期信号整形为同频率的方波信号后,利用555定时器组成的振荡电路所产生的频率为1Hz的标准方波,作为基准时钟,与被整形后的方波信号一起经过闸门电路处理输入计数电路,再利用74LS90N的十进制计数功能进行级联计数,计数后输入8位数据/地址锁存器74LS273N以实现锁存和清零功能,最后输入到译码显示电路中,用BCD7段译码器显示出来,这样就实现了对被测周期信号的频率测量并显示的功能。 频率计的工作原理流程图如下所示: 3.电路组成介绍 3.1脉冲形成电路 脉冲形成电路由信号发生器与整形电路组成,输入信号先经过限幅器,再经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限副作用。由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。线路图如下所示: 2

3.2闸门电路 闸门电路的作用是控制计数器的输入脉冲,在电路中用一个与非门来实现(如下图所标注)。当标准信号(正脉冲)来到时闸门开通,被侧信号的脉冲通过闸门进入计时器计数;正脉冲结束时闸门关闭,计数器无时钟脉冲输入。 闸门电路 2

林锋教你一步一步玩机器人(arduino)--制作篇(入门组件A)

林锋教你一步一步玩机器人(arduino)系列 ------制作篇 (入门组件上) ----- 张林锋/文 2012-5-28

目录 1 前言 (3) 2. 准备工作 (3) 2.1 元器件准备工作 (3) 2.2 实验板子准备 (4) 3 LED 实验 (5) 4 蜂鸣器实验 (7) 5.按键实验 (9) 6 8*8点阵实验 (11) 7 串口实验 (12) 8 模拟量输入(电压输入) (16) 9 直流电机控制(L298N驱动模块) (18) 10 PMW 脉冲宽度调试 (21) 11 控制舵机 (22) 12 超声波模块 (23) 13 巡线防跌模块 (26) 14 红外遥控 (27) 说明 写这系列文章主要目的是和读者一同分享下自己的学习过程,也希望能给读者带来一些帮助,文章部分内容剪裁网络文章,部分自己撰写。文章内容用于爱好者之间学习,不得用于商业目的。当然笔者才疏学浅,所书内容难免有缺点和漏洞,还请读者多多海涵,希望能和广大电子爱好者交流心得。 本人QQ:65198204 邮箱:65198024@https://www.doczj.com/doc/aa8375733.html, 博客:https://www.doczj.com/doc/aa8375733.html,/u/2775824690

1 前言 在淘宝买的Arduino 主板套件终于在26号到了,物流也太慢了,发了4天才到。套件包含:4轮小车,Arduino MEGA 2560 主板,配套的MEGA Sensor Shield V2.0扩展板,超声波模块,红外遥控模块,寻线防跌模块,舵机。套件是在27°寒语电子工作室(https://www.doczj.com/doc/aa8375733.html,/)买的,也就是科易互动科技的子站(https://www.doczj.com/doc/aa8375733.html,/)。 备注一下:套件性价比很高,也有配套的相关资料,不过个人觉得配套资料写的不够详细和全面,对于新手制作会带来很多不便。 在制作篇系列文章中,我会对入门组件的应用,以及4轮小车套件的制作,做出详细的制作流程,图文并茂。相信会对新手入门带来一定收获。 读者在做本文章实验时可以结合阅读我的相关入门知识文章,基本篇,硬件篇,软件篇。 制作篇分:入门上篇:主要介绍一些基础配件,以及小车所要用的器件。 4轮小车篇:主要介绍小车制作全过程。 入门下篇:主要介绍一些其他外围器件应用。比如:1602,12864液晶应用,时钟模块应用等。 4轮小车改造篇:加入自己的一些元素。 2. 准备工作 2.1 元器件准备工作 本篇实验器件所用到的元器件如下:(1)发光二极管(2)蜂鸣器(3)按键(4)可变电阻(5)8*8点阵(6)串口(7)直流电机(8)伺服电机(9)超声波模块(10)寻线防跌模块(11)红外遥控。 下面给我的全家福来个图,呵呵。

《Arduino创意机器人》智能风扇校本课程教学设计

《Arduino创意机器人》智能风扇校本课程教学设计Arduino创意机器人项目是我校于2018年开设的一门选修课程,对于师生而言都缺乏相应的知识储备基础与项目设计能力,因此需要设计相关的系列课程进行教学。在经过相关知识的学习后,选定智能风扇作为课程的一个主题单元进行设计,针对风扇模型开展多种项目设计,实现知识的教学与项目的创新设计。 该课程均采取建构主义学习理论作为理论基础,重点在激发学生的思考,让学生主动构建硬件模型,思考程序原理设计。在形成认知结果情况下,进行项目实践,尝试错误后纠正原有认知框架,不断修正。 课程设计采用同样的教学框架,具体如下: 课堂导入:采用具体项目模型进行导入,激发学生的学习兴趣,聚焦学生注意力。引发学生的思考,构建项目基本组装框架,形成基本的程序原理图。在小组探讨交流中形成自己的认知地图。 硬件组装:在观察的基础上,找出相应的硬件设备,进行硬件的组装,观察硬件上面的各类参数,与构成的认知框架进行同化。 程序设计:根据小组讨论的结果,尝试进行程序设计。在尝试错误以后,由教师统一解释讲解具体的设计原理,学生再进行相应的程序设计,上传调试。 拓展阅读:在项目涉及的基础上,进行创新创意的延伸,引出新的项目设计,让学生小组探究设计。 项目总结:学生的学习情况与项目知识的梳理。 《Arduino创意机器人》智能风扇课时安排 序号课程内容课程设备列表课时1启动风扇Romeo板、按钮模块、风扇模块1 2声控风扇Romeo板、按钮模块、风扇模块、声音传感器1 3换挡风扇Romeo板、按钮模块、风扇模块1 4遥控风扇Romeo板、风扇模块、红外遥控套件1 5摇头风扇Romeo板、风扇模块、舵机模块1 6风扇创意设计Romeo板、风扇模块、其他所需器材2

南京邮电大学课程设计报告-简易数字频率计

目录 第一章技术指标 整体功能要求 系统结构要求 电气指标 扩展指标 设计条件 第二章整体方案设计 算法设计 整体方框图及原理 第三章单元电路设计 时基电路设计 闸门电路设计 控制电路设计 小数点显示电路设计 整体电路图 整机原件清单 第四章测试与调整 时基电路的调测 显示电路的调测 4-3 计数电路的调测 控制电路的调测 整体指标测试 第五章设计小结 设计任务完成情况 问题及改进 心得体会 第一章技术指标

1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 3.电气指标 被测信号波形:正弦波、三角波和矩形波。 测量频率范围:分三档: 1Hz~999Hz ~ ~ 测量周期范围:1ms~1s。 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~的精度均为+1。 5.设计条件 电源条件:+5V。 可供选择的元器件范围如下表

门电路、阻容件、发光二极管和转换开关等原件自定。 第二章 整体方案设计 算法设计 频率是周期信号每秒钟内所含的周期数值。可根据这一定义采用如图2-1所示的算法。图2-2是根据算法构建的方框图。 被测信号

电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关,因此,为保证在1s内被测信号的周期量误差在10 3量级,则要求闸门信号的精度为10 量级。例如,当被测信号为1kHz时,在1s的闸门脉冲期间计数器将计数1000次,由于闸门脉冲精度为10 ,闸门信号的误差不大于,固由此造成的计数误差不会超过1,符合5*10 3的误差要求。进一步分析可知,当被测信号频率增高时,在闸门脉冲精度不变的情况下,计数器误差的绝对值会增大,但是相对误差仍在5*10 3范围内。 整体方框图及原理 输入电路:由于输入的信号可以是正弦波,三角波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。在整形之前由于不清楚被测信号的强弱的情况。所以在通过整形之前通过放大衰减处理。当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。 频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号由RC振荡电路构成一个较稳定的多谐振荡器,经4093整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。 周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。

Arduino 入门到精通 例程1-Hello World!

Arduino 入门到精通例程1 1、Hello World! 首先先来练习一个不需要其他辅助元件,只需要一块Arduino 和一根下载线的简单实验,让我们的Arduino 说出“Hello World!”,这是一个让Arduino 和PC 机通信的实验,这也是一个入门试验,希望可以带领大家进入Arduino 的世界。 这个实验我们需要用到的实验硬件有: Arduino 控制器 USB 下载线 我们按照上面所讲的将Arduino 的驱动安装好后,我们打开Arduino 的软件,编写一段程序让Arduino 接受到我们发的指令就显示“Hello World!”字符串,当然您也可以让Arduino 不用接受任何指令就直接不断回显“Hello World!”,其实很简单,一条

if()语句就可以让你的Arduino 听从你的指令了,我们再借用一下Arduino 自带的数字13 口LED,让Arduino 接受到指令时LED 闪烁一下,再显示“Hello World!” 下面给大家一段参考程序。 int val;//定义变量val int ledpin=13;//定义数字接口13 void setup() { Serial.begin(9600);//设置波特率为9600,这里要跟软件设置相一致。当接入特定设备(如:蓝牙)时,我们也要跟其他设备的波特率达到一致。pinMode(ledpin,OUTPUT);//设置数字13 口为输出接口,Arduino 上我们用到的I/O 口都要进行类似这样的定义。 } void loop() { val=Serial.read();//读取PC 机发送给Arduino 的指令或字符,并将该指令或字符赋给val if(val=='R')//判断接收到的指令或字符是否是“R”。 {//如果接收到的是“R”字符 digitalWrite(ledpin,HIGH);//点亮数字13 口LED。 delay(500); digitalWrite(ledpin,LOW);//熄灭数字13 口LED delay(500);

物联网系统课程设计

物联网系统课程设计 学系名称:物联网工程 班级名称:物联网工程 2 班 学生姓名:朱泓锦 20136239 指导教师:肖迎元助教: 二零一六年十月

摘要 智能车辆是集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,是智能交通系统的一个重要组成部分。它在军事、民用、太空开发等领域有着广泛的应用前景。随着电子工业的发展,智能技术广泛运用于各种领域,运用于智能家居中的产品更是越来越受到人们的青睐。 以arduino程序和蓝牙模组,app为基础,是蓝牙模组,arduino 小车和手机之间信息交互的关键。本课题所研究的物联网应用系统以arduino程序为核心,利用蓝牙模组,arduino小车和app等实现基本功能。 基本功能:利用蓝牙模组和app之间的信息交互,控制小车的移动,从而达到无线控制的效果 注:仅能实现小车的基本操作 关键词:arduino程序,arduino小车,app,蓝牙模组

1 绪论 随着科技进步,现代工业技术发展越来越体现出机电一体化的特征。无论是在金属加工、汽车技术、工业生产等等方面,机器设备表现了所谓智能化、集成化、小型化、高精度化的发展趋势。 1.1 选题背景 随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。可见其研究意义很大。本设计就是在这样的背景下提出的,指导教师已经有充分的准备。本题目是结合科研项目而确定的设计类课题。设计的智能电动小车应该能够实现适应能力,能自动避障,可以智能规划路径。 智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。同遥控小车不同,遥控小车需要人为控制转向、启停和进退,比较先进的遥控车还能控制器速度。常见的模型小车,都属于这类遥控车;智能小车,则可以通过计算机编程来实现其对行驶方向、启停以及速度的控制,无需人工干预。操作员可以通过修改智能小车的计算机程序来改变它的行驶方向。因此,智能小车具有再编程的特性,是机器人的一种。 中国自1978年把“智能模拟”作为国家科学技术发展规划的主要研究课题,开始着力研究智能化。从概念的引进到实验室研究的实现,再到现在高端领域(航

电子课程设计——数字频率计

2020/9/14 电子课程设计 ——数字频率计

目录 一 . 设计任务与要求 (2) 二 . 总体框图 (2) 2 . 1 题目分析及总体方案确定 (2) 三 . 选择器件 (4) 3 . 1 元件清单列表 (4) 3 . 2各元器件符号及逻辑功能 (5) 四 . 功能模块 (11) 4 . 1 整形电路 (11) 4 . 2 时基电路 (11) 4 . 3 逻辑控制电路 (12) 4 . 4 计数器、锁存器 (13) 4 . 5 译码显示电路 (15) 五 . 总体设计电路图 (15)

一 . 设计任务与要求 数字频率计是用来测量正弦信号、矩形信号、三角波等波形工作频率的仪器,其测量结果用十进制数字显示。具体要求如下: 1.测量频率范围:1Hz~10KHz; 2.数字显示位数:4位数字显示; 3.测量时间:t≤1.5s; 4.被测信号:方波、三角波、正弦波。 二 . 总体框图 2 . 1 题目分析及总体方案确定 频率的测量总的来说有三种方法:直接测量法、直接与间接测量相结合的方法和多周期同步测量法。直接测量法最简单,但测量误差最大;后两种方法测量精度高,但电路复杂。由于该题目没有对测量误差提出特别要求,为简单起见,采用直接测量法。 数字频率计就是直接用十进制的数字来显示被测信号频率。可以测的方波的频率,通过放大整形处理,它可还以测量正弦波、三角波和尖脉冲信号的频率。所谓频率就是在单位时间(1s)内周期信号的脉冲个数。若在一定时间间隔T内测得周期信号的脉冲个数N,则其频率为f=N Hz。 据此可得数字频率计的组成框图如图1—1(a)所示:

1-1(a) 图中的逻辑控制电路有两个作用:一是产生锁存脉冲,使显示器上的数字稳定;二是产生清零脉冲,使计数器每次测量从零开始计数。各信号之间的时序关系如图1-1(b)所示,图中信号由上而下依次是由放大整形电路得到的脉冲信号、时间基准信号、闸门电路输出、锁存脉冲和清零脉冲。

简易数字频率计

宁波工程学院 电子信息工程学院 课程设计报告 课程设计题目:简易数字频率计 起讫时间:2011年05月23日至2011年06月03日

目录第一章技术指标 1.1整体功能要求 1.2电气指标 1.3扩展指标 1.4设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图 2.3 计数原理 第三章单元电路设计 3.1 波形变换电路 3.2 闸门电路设计 3.3小数点显示电路设计 第四章测试与调整 4.1 硬件测试与调整 4.2 软件测试与调整 4.3 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进 5.3心得体会 附录

第一章技术指标 1.1整体功能要求 设计并制作一台数字显示的简易频率计,主要用于测量正弦波、方波等周期 信号的频率值。 1.2 电气指标 1.2.1 信号波形:方波; 1.2.2 信号幅度;TTL电平; 1.2.3 信号频率:100Hz~9999Hz; 1.2.4 测量误差:≤1%; 1.2.5 测量时间:≤1s/次,连续测量; 1.2.6 显示:4位有效数字,可用数码管,LED或LCD显示。 1.3扩展指标 1.3.1 可以测量正弦波信号的频率,电压峰-峰值VPP=0.1~5V; 1.3.2 方波测量时频率测量上限为3MHz,测量误差≤1%; 1.3.3 正弦(Vopp=0.1V~5V)测量时频率测量上限为3MHz,测量误差≤1%; 1.3.4量程自动切换,且自动切换为四位有效数字输出; 1.4设计条件 1.4.1 电源条件:+5V。 1.4.2开发平台:本系统以高速SOC单片机C8051F360和FPGAEP2C8T144为 核心,主要包括9个模块,其主要配置见表1-1。 表1-1数字电子系统设计实验平台模块一览 型号名称主要配置 MCU模块SOC单片机8051F360,CPLD芯片EMP3064TC44 74151 FPGA模块EMP3064TC44,串行配置芯片,JTAG和AS配置 接口 74153 LCD和键盘模块12864中文液晶,16个按键 7404 8位高速A/D模块30MHz8位A/D转换器ADS930,信号调理电路4518 10位高速D/A模块双路100MHz10位D/A转换器THS5651,差分放 大电路,反相器

Arduino入门到精通例程6-按键控制

Arduino 入门到精通例程 6 6按键控制LED实验 I/O 口的意思即为INPUT接口和OUTPUT接口,到目前为止我们设计的小灯 实验都还只是应用到Arduino的I/O 口的输出功能,这个实验我们来尝试一下使用Arduino的I/O 口的输入功能即为读取外接设备的输出值,我们用一个按键和一个LED小灯完成一个输入输出结合使用的实验,让大家能简单了解I/O的作用。按键开关大家都应该比较了解,属于开关量(数字量)元件,按下时为闭合(导通)状态。完成本实验要 用到的元件如下: 按键开关*1 红色M5 直插LED*1 220 Q电阻*1 10K Q电阻*1 面包板*1 面包板跳线*1 扎 我们将按键接到数字7接口,红色小灯接到数字11接口(Arduino控制器0-13数字I/O接口都可以用来接按键和小灯,但是尽量不选择0和1接口,0和1接口为接口功能复用,除I/O 口功能外也是串口通信接口,下载程序时属于与PC 机通信故应保持0和1接口悬空,所以为避免插拔线的麻烦尽量不选用0和1 接口),按下面的原理图连接好电路。下面开始编写程序,我们就让按键按下时小灯亮起,根据前面的学习相信这个程序很容易就能编写出来,相对于前面几个实验这个实验的程序中多加了一条条件判断语句,这里我们使用if 语句,Arduino的程序便写语句是基于C语言的,所以C的条件判断语句自然也适用于Arduino,像while、swich等等。这里根据个人喜好我们习惯于使用简单易于理解的if 语句给大家做演示例程。

我们分析电路可知当按键按下时,数字7 接口可读出为高电平,这时我们使数字11 口输出高电平可使小灯亮起,程序中我们判断数字7 口是否为低电平,要为低电平使数字11 口输出也为低电平小灯不亮,原理同上。 参考源程序: int ledpin=11;// 定义数字11 接口 int inpin=7;// 定义数字7 接口 int val;// 定义变量val void setup(){pi nM ode(ledpi n,0 UTPUT);// 定义小灯接口为输出接口 pinMode(inpin,INPUT);〃定义按键接口为输入接口}void loop(){val=digitalRead(inpin);〃读取数字7 口电平值赋给val if(val==LOW)〃检测按键是否按下,按键按下时小灯亮起 { digitalWrite(ledpin,LOW);} else { digitalWrite(ledp in ,HIGH);}}下载完程序我们本次的小灯配合按键的实验就完 成了,本实验的原理很简单,广泛被用于各种电路和电器中,实际生活中大家也不难在各种设备上发现,例如大家的手机当按下任一按键时背光灯就会亮起,这就是典型应用了,下面一个实验就是一个最简单的生活中应用实例--------------- 抢答器。

数字频率计课程设计

课程设计任务书 学生姓名:覃朝光 ___________ 专业班级:通信1103 __________ 指导教师: ___________ 工作单位:信息工程学院 题目:数字频率计的设计与实现 初始条件: 本设il?既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形 电路和必要的门电路等,也可以使用单片机系统构建简易频率计。用数码管显示频率汁数值。 要求完成的主要任务:(包括课程设讣工作量及技术要求,以及说明书撰写等具体要求)仁课程设计工作量:1周。 2、技术要求: 1)设计一个频率讣。要求用4位7段数码管显示待测频率,格式为0000Hz. 2)测量频率范围:10~9999HZo 3)测量信号类型:正弦波、方波和三角波。 4)测量信号幅值:0.5~5V° 5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。 6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设讼分电路,画出总体电路原理图,阐述基本原理。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全 文用A4纸打印,图纸应符合绘图规范。 时间安排: 仁2013年5月17日,布宜课设具体实施计划与课程设计报告格式的要求说明。 2、2013年6月18日至2013年6月22日,方案选择和电路设计。 3、2013 年6月22日至2013 年7月1日,电路调试和设计说明书撰写。 4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日 word

武汉理匸大学$数字电子电路》课程设讣说明书 目录 摘要 (3) 1电路的设计思路与原理 (4) 1.1电路设计方案的选择 (4) 1.1.1方案一:利用单片机制作频率计 (4) 1.1.2方案二:利用锁存器与计数器制作频率计 (4) 1.1.3方案三:利用定时电路与计数器制作频率计 (5) 1.1.4方案确定 (6) 1.2原理及技术指标 (6) 1.3单元电路设计及参数计算 (8) 1.3.1时基电路 (8) 1.3.2放大整形电路 (9) 1.3.3逻辑控制电路 (9) 1.3.4计数器 (11) 1.3.5锁存器 (12) 1.3.6译码电路 (13) 2仿真结果及分析 (13) 2.1仿其总图 (13) 2.2单个元电路仿真图 (14) 2.3测试结果 (16) 3测试的数据和理论计算的比较分析 (16) 4制作与调试中出现的故障、原因及排除方法 (16) 4.1故障a (17) 4.2故障b (17) 4.3故障c (17) 4.4故障d (17) 4.5故障e (18) 5心得体会 (18) 2

简易数字频率计设计报告

简易数字频率计设计报告 目录 一.设计任务和要求 (2) 二.设计的方案的选择与论证 (2) 三.电路设计计算与分析 (4) 四.总结与心得..................................... 错误!未定义书签。2 五.附录........................................... 错误!未定义书签。3 六.参考文献....................................... 错误!未定义书签。8

一、 设计任务与要求 1.1位数:计4位十进制数。 1.2.量程 第一档 最小量程档,最大读数是9.999KHZ ,闸门信号的采样时间为1S. 第二档 最大读数是99.99KHZ ,闸门信号采样时间为0.1S. 第三档 最大读数是999.9KHZ ,闸门信号采样时间为10mS. 第四档 最大读数是9999KHZ ,闸门信号采样时间为1mS. 1.3 显示方式 (1)用七段LED 数码管显示读数,做到能显示稳定,不跳变。 (2)小数点的位置随量程的变更而自动移动 (3)为了便于读数,要求数据显示时间在0.5-5s 内连续可调 1.4具有自检功能。 1.5被测信号为方=方波信号 二、设计方案的选择与论证 2.1 算法设计 频率是周期信号每秒钟内所含的周期数值。可根据这一定义采用如图 2-1所示的算法。图2-2是根据算法构建的方框图。 被测信号 图2-2 频率测量算法对应的方框图 输入电路 闸门 计数电路 显示电路 闸门产生

整体方框图及原理 频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。 周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态

数电课程设计报告-数字频率计

数电课程设计报告:频率计 目录 一、设计指标 二、系统概述 1.设计思想 2.可行性论证 3.工作过程 三、单元电路设计及分析 1.器件选择 2.设计及工作原理分析 四、电路的组构及调试 1.遇到的问题 2.现象记录及原因分析 3.解决及结果 4.功能的测试方法、步骤、设备、记录的数据 五、总结 1.体会 2.电路总图 六、参考文献 一、设计指标 设计指标:要求设计一个测量TTL方波信号频率的数字系统。测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。

频率的测量范围有四档量程。 1)测量结果显示四位有效数字,测量精度为万分之一。 2)频率测量范围:100.1Hz——999.9kHz,分为: 第一档: 100.0Hz——999.9Hz 第二档: 1.000kHz——9.999kHz 第三档: 10.00kHz——99.99kHz 第四档: 100.0kHz——999.9kHz 3)量程切换可以采用两个按键SWB、SWA手动切换。 扩展要求: 一、当被测频率大于999.9kHz,超出最大值时,设置亮一个警灯,并同时发出报警声音。 二、自动切换量程 提示: 1.计数器计到9999时,产生溢出信号CO,启动量程加档。 2.显示不足4位有效数字时量程减档。 三、各量程输出信号的频率最高位有效数字为1、2、3、4、5、6、7、8、9。 二、系统概述 1.设计思想 周期性信号频率可通过记录信号在1s内的周期数来确定其频率。

累计标准时间Ts中被测信号的脉冲个数Nx,被测信号频率:fx≈Nx/Ts 测量时间Ts选择:由于测量时间Ts需要根据被测信号的频率切换,所以通常对振荡时钟进行分频以获得不同的定时时间。 采样定时、显示锁存、计数器清零的控制时序波形图 2.可行性论证 用计数器实现记录周期数的功能;用时基信号产生计数时间作为采样时间;用四位动态扫描通过数码管显示结果;因为如果计数器直接把数据输入到数码管显示,那么数码管的数据就会不断变化,累计增加的情况,所以采用锁存器,在每个时间信号内,通过一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器;为了不要让每次锁存的数据会比上次

简易数字显示频率计的设计

简易数字显示频率计的设计 摘要:本文应用NE555构成时钟电路,7809构成稳压电源电路,CD4017构成控制电路,CD40110和数码管组成计数锁存译码显示电路,实现可测量1HZ-99HZ这个频段的数字频率计数器。 关键词:脉冲;频率;计数;控制 1 引言 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量显得很重要。测量频率的方法有很多,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。 2 电子计数器测频方法 电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。 3 简易数字频率计电路组成框图 本设计主要运用数字电路的知识,由NE555构成时钟电路,7809构成稳压电源电路,CD4017构成控制电路,CD40110和数码管组成计数锁存译码显示电路。从单元电路的功能进行划分,该频率计由四大模块组成,分别是电源电路、时钟电路(闸门)、计数译码显示电路、控制电路(被测信号输入电路、锁存及清零)。电路结构如图1所示。 图1 简易数字频率计电路组成框图 4 单元模块电路设计

4.1电源电路 在电子电路中,通常都需要电压稳定的直流电源供电。小功率的稳压电源的组成如图2所示,它由电源变压器、整流电路、滤波电路和稳压电路四部分组成。 图2 电源电路 220V市电经220V/12V变压器T降压,二极管桥式整流电路整流,1000uF电容滤波后送人7809的输入端(1脚)。7809的第二脚接地,第三脚输出稳压的直流电压,C7、C8是为了进一步改变输出电压的纹波。红色发光管LED指示电源的工作状态,R9为LED的限流电阻,取值为5.1K。 4.2 时钟电路 电路如图3所示,由NE555构成的多谐振电路,3脚输出振荡脉冲,其中LED为黄色发光二极管,R1为5.1K,R2为1K,R3为10K,C1,C5为100UF,C4为0.01UF,C2为1000PF,R PE 选取10K。 图3 时钟电路 4.3计数、显示电路

相关主题
文本预览
相关文档 最新文档