当前位置:文档之家› 常见的准据法表述公式有

常见的准据法表述公式有

常见的准据法表述公式有
常见的准据法表述公式有

乘法公式的应用解析

乘法公式的几何背景 1、如图所示可以验证哪个乘法公式用式子表示为. 第2题 2、如图所示,用该几何图形的面积可以表示的乘法公式是. 3、如图,图①是边长为a的正方形中有一个边长是b的小正方形,图②是将图①中的阴影部分剪拼成的一个等腰梯形,比较图①和图②阴影部分的面积,可验证的是. 第4题图 4、用该几何图形的面积可以表示的等量关系是. 5、如图:边长为a,b的两个正方形,边保持平行,如果从大正方形中剪去小正方形,剩下的图形可以分割成4个大小相等的梯形.请你计算出两个阴影部分的面积,同时说明可以验证哪一个乘法公式的几何意义. 6、如图1,A、B、C是三种不同型号的卡片,其中A型是边长为a的正方形,B型是长为 b、宽为a的长方形,C是边长是b的正方形. 7、小杰同学用1张A型、2张B型和1张C型卡片拼出了一个新的图形(如图2).请根据这个图形的面积关系写出一个你所熟悉的公式是.8、图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形.

(1)你认为图1的长方形面积等于; (2)将四块小长方形拼成一个图2的正方形.请用两种不同的方法求图2中阴影部分的面积. 方法1: 方法2: (3)观察图2直接写出代数式(a+b)2、(a-b)2、ab之间的等量关系; (4)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含m、n的代数式表示). 9、如图,ABCD是正方形,P是对角线BD上一点,过P点作直线EF、GH分别平行于AB、BC,交两组对边于E、F、G、H,则四边形PEDG,四边形PHBF都是正方形,四边形PEAH、四边形PGCF都是矩形,设正方形PEDG的边长是a,正方形PHBF的边长是b.请动手实践并得出结论: (1)请你动手测量一些线段的长后,计算正方形PEDG与正方形PHBF的面积之和以及矩形PEAH与矩形PGCF的面积之和. (2)你能根据(1)的结果判断a2+b2与2ab的大小吗? (3)当点P在什么位置时,有a2+b2=2ab?

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求1(1) n n +型分数求和 分析:因为111n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1 n n n n =-++ (二) 用裂项法求 1()n n k +型分数求和 分析:1() n n k +型。(n,k 均为自然数) 因为11111()[]()()() n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111()()n n k k n n k =-++ (三) 用裂项法求() k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=() k n n k + 所以 () k n n k +=11n n k -+

(四) 用裂项法求2()(2) k n n k n k ++型分数求和 分析: 2()(2) k n n k n k ++(n,k 均为自然数) 211()(2)()()(2)k n n k n k n n k n k n k =-+++++ (五) 用裂项法求1()(2)(3) n n k n k n k +++型分数求和 分析:1()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ (六) 用裂项法求 3()(2)(3)k n n k n k n k +++型分数求和 分析:3()(2)(3) k n n k n k n k +++(n,k 均为自然数) 311()(2)(3)()(2)()(2)(3) k n n k n k n k n n k n k n k n k n k =-++++++++ 记忆方法: 1.看分数分子是否为1; 2.是1时,裂项之后需要整体×首尾之差分之一; 3.不是1时不用再乘; 4.裂项时首尾各领一队分之一相减。

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

乘法公式

14.2乘法公式 第1课时平方差公式 教学目标 1.经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算.2.理解平方差公式的结构特征,灵活应用平方差公式. 教学重点 平方差公式的推导和应用. 教学难点 理解平方差公式的结构特征,灵活应用平方差公式. 教学设计一师一优课一课一名师(设计者:) 教学过程设计 一、创设情景,明确目标 从前,有一个狡猾的庄园主,把一块边长为x米的正方形土地租给张老汉种植,第二年,他对张老汉说:“我把这块地的一边增加5米,另一边减少5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张老汉一听觉得好像没有吃亏,就答应了,回到家中,把这事和邻居们一讲,都说:“张老汉,你吃亏了!”张老汉非常吃惊.同学们,你知道张老汉为什么吃亏吗? 通过本节课的学习,你将能解释这其中的原因! 二、自主学习,指向目标 自学教材第107页至108页,思考下列问题: 1.根据条件列式: (1)a、b两数的平方差可以表示为________; (2) a、b两数差的平方可以表示为________; 2.平方差公式的推导依据是________________________________________________________________________.3.平方差公式(乘法)的特征是:左边是__________________,右边是__________________. 三、合作探究,达成目标 探究点一探索平方差公式 活动一:1.填写教材P107三个计算结果,

展示点评: (1)二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(二项) (2)观察上列算式的左边的两个二项式,有什么异同?运算出结果后的二项式与等式左边的二项式有什么关系? (等号的左边是两数的和乘以这两数的差,等号的右边是这两数的平方差.) 2.归纳:两个数的________与这两个数的差的积,等于这两数的________. 用公式表示上述规律为:(a+b)(a-b) =________这就是平方差公式. 3.观察教材图14.2-1,请你用两种方法计算图形中阴影部分的面积,得到什么结果?(a+b)(a-b)=a2-b2 4.观察教材P108例1中的两个算式,能否用平方差公式进行计算?若能用,公式中a,b分别代表什么? 例1运用平方差公式计算 (1)(3x+2)(3x-2); (2)(-x+2y)(-x-2y). 思考:确定能否应用平方差公式进行运算的关键是什么? 展示点评:观察算式:①是不是两个二项式相乘;②是不是两数的和乘以两数的差;③若作为因式的二项式的首项是负号的,可以连同符号一起看作为一项,也可以把一个因式里的两项颠倒位置观察思考.关键就是确定是不是两数的和乘以两数的差. 解答过程见课本P108例1 小组讨论:能运用平方差公式计算的式子有何特征? 【反思小结】能运用平方差公式进行计算的式子特征:①二项式与二项式的积;②把两个二项式进行对比:有一项相同,另一项互为相反数. 针对训练: 1.计算(2a+5)(2a-5)等于( A ) A.4a2-25 B.4a2-5 C.2a2-25 D.2a2-5 2.计算(1-m)(-m-1),结果正确的是( B ) A.m2-2m-1 B.m2-1 C.1-m2 D.m2-2m+1 探究点二平方差公式的综合应用 活动二:计算: (1)102×98; (2)(y+2)(y-2)-(y-1)(y+5). 展示点评:(1)例1是数的计算,观察其特征,把两个因数如何变形能够运用平方差公式进行计算? (2)例2中有整式的简单的混合运算,在进行运算时要注意什么? 展示点评:第1题可以变为100与2的和乘以100与2的差;第(2)题中多项式的乘法,能运用平方差公式的一定要运用平方差公式进行运算. 解答过程见课本P108例2 小组讨论:平方差公式与整式乘法有什么关系?在运用时应注意什么问题? 【反思小结】(1)可运用平方差公式运算的式子,也属于我们前面所学的多项式乘以多项式的运算,所以说平方差公式适用于特殊形式的该类运算. (2)有些不能直接用平方差公式的题目可向公式形式转化,写成两数和与两数差乘积的形式,再运用公式. (3)在运用平方差公式运算时,一要注意确定好公式中的“a”项,“b”项;二要注意对两个数整体平方,而不是部分平方.

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

(完整版)[初一数学]乘法公式

乘法公式 一、平方差公式:(a+b)(a-b)=a2-b2 要注意等式的特点: (1)等式的左边是两个二项式的乘积,且这两个二项式中,有一项相同,另一项互为相反数; (2)等式的右边是一个二项式,且为两个因式中相同项的平方减去互为相反数的项的平方. 值得注意的是,这个公式中的字母a,b可以表示数,也可以是单项式或多项式.平方差公式可以作为多项式乘以多项式的简便公式,也可以逆用做为快速计算的工具. 例1下列各式中不能用平方差公式计算的是(). A.(a-b)(-a-b)B.(a2-b2)(a2+b2) C.(a+b)(-a-b)D.(b2-a2)(-a2-b2) 解:C.根据上面平方差公式的结构特点,A中,-b是相同的项,a与-a 是性质符号相反的项,故可使用;B中a2是相同项,-b2与b2是互为相反数符合公式特点;同样D也符合.而C中的两个二项式互为相反数,不符合上述的等式的特征,因此不可使用平方差公式计算. 例2运用平方差公式计算: (1)(x2-y)(-y-x2); (2)(a-3)(a2+9)(a+3). 解:(1)(x2-y)(-y-x2)

=(-y +x2)(-y-x2) =(-y)2-(x2)2 =y2-x4; (2)(a-3)(a2+9)(a+3) =(a-3)(a+3)(a2+9) =(a2-32)(a 2+9) =(a2-9)(a2+9) =a4-81 . 例3计算: (1)54.52-45.52; (2)(2x2+3x+1)(2x2-3x+1). 分析:(1)中的式子具有平方差公式的右边的形式,可以逆用平方差公式;(2)虽然没有明显的符合平方差公式的特点,值得注意的是,平方差公式中的字母a,b可以表示数,也可以是单项式或多项式,我们可以把2x2+1看做公式中字母a,以便能够利用公式.正如前文所述,利用平方差可以简化整式的计算. 解:(1)54.52-45.52 =(54.5+45.5)(54.5-45.5)

数列求和-裂项法

数列求和 ------裂项相消法 引例:教材P47 什么是裂项相消法?什么时候使用? 思考1: 变式: 思考2:在裂项的过程中,是怎样把项裂开的?关键是什么?怎样相互抵消的? 1.???? 求数列的前n 项和.11111,,,,,13243546n(n +2)222222224142434 2.,,,,,.41142143141n n n ?????-?-?-?- 求数列的前项和222235721 3..(12)(23)(34)[(1)]n n S n n +=++++???+ 求和∑求和:k n n k+1k k=12 4.S =(2-1)(2-1)2n n a a =若数列{},,可以用裂项相消法求数列前n 项和?11n(n +)

小结:什么是裂项相消法?什么时候使用裂项相消法?在使用的过程当中应当注 意什么?裂项相消法运用的数学思想是什么? 你是否有新的感受呢?请用一句话总结一下前面的内容。 思维拓展: 思考3:裂项相消法最大的成功--实现了消项,运用错位相减法也是消项,是不 是可以考虑用裂项法相消法可以求等比数列的和吗?可以求{}g 等差等比的和吗?试试看。 在等比数列{}(1)n a q 1中, 试一试:用裂项相消法 练习: 2*1122:{},().(1) 1111(2) .(1)(1)(1)3n n n n n a n S n n n N a n a a a a a a =+∈+++<+++ 例题数列的前项和为求;证明:对一切正整数,有2335721.2222n n n S +=++++ 求和211111-=++++L n n S a a q a q a q 211111-=++++L n n n qS a q a q a q a q 1(1)1-=-n n a q S q 11 (1)-=-n n q S a a q 121321* {},,,,,2.(){}(21)3()(){}.n n n n n n n n n n a a a a a a a a a a n b n N b n T a -----?=∈ 已知数列满足:是首项、公差均为的等差数列 Ⅰ求数列的通项公式; Ⅱ令,求数列的前项和

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

(完整word版)初中数学乘法公式

第 1 页 共 16 页 乘法公式 概念总汇 1、平方差公式 平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a +b )(a -b )=a 2 -b 2 说明: (1)几何解释平方差公式 如右图所示:边长a 的大正方形中有一个边长为b 的小正方形。 第一种:用正方形的面积公式计算:a 2-b 2; 第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b ) 结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。 所以:a 2-b 2=(a +b )(a -b )。 (2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式 完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即 (a +b )2 =a 2 +2ab +b 2 ,(a -b )2 =a 2 -2ab +b 2 这两个公式叫做完全平方公式。平方差公式和完全平方公式也叫做乘法公式 说明: (1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2 第二种:把图形分割成由2个正方形和2个相同的

第 2 页 共 16 页 长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以 它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b 2 (2)几何解释完全平方(差)公式 如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a -b )2 第二种:把图形分割成由2个正方形和2个相同的 长方形来看,长方形小正方形大正方形阴影S S S S ?=2-- 其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a -b ),宽是b ,所以 它的面积就是:()2 2 2 2 22b ab a b b a b a +-=?-?-- 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:()222 2b ab a b a +-=- (3)在进行运算时,防止出现以下错误:(a +b )2=a 2+b 2,(a -b )2=a 2-b 2 。要注意符号的处理,不同的处理方法就有不同的解法,注意完全平方公式的变形的运用。完全平方公式的a 和b ,可以表示任意的数或代数式,因此公式的使用就不必限于两个二项式相乘,而可以扩大到两个多项式相乘,但要注意在表示成完全平方公式的形式才能运用公式,完全平方公式有着广泛的应用,尤其要注意完全平方公式和平方差公式的综合应用 方法引导 1、乘法公式的基本计算 例1 利用平方差公式计算: (1)(3x +5y )(3x -5y ); (2)(0.5b +a )(-0.5b +a ) (3)(-m +n )(-m -n ) 难度等级:A

2.2.3 运用乘法公式进行计算

2.2.3 运用乘法公式进行计算 1.熟练运用乘法公式进行计算;(重点、难点) 2.通过对不同的式子采取合适的方法运算,培养学生的思维能力和解题能力. 一、情境导入 1.我们学过了哪些乘法公式? (1)平方差公式:(a+b)(a-b)=a2-b2. (2)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2. 2.怎样计算:(a+2b-c)(a-2b+c). 二、合作探究 探究点:运用乘法公式进行计算 【类型一】乘法公式的综合运用 计算: (1)(2+1)(22+1)(24+1)…(216+1); (2)(a+b)2-2(a+b)(a-b)+(a-b)2; (3)(x-2y+3z)(x+2y-3z); (4)(2a+b)2(b-2a)2. 解析:(1)可添加(2-1),与首项结合起来用平方差公式,再把结果依次与下一项运用平方差公式; (2)逆用完全平方公式,能简化运算; (3)两个因式都是三项式,且各项的绝对值对应相等,所以可先运用平方差公式; (4)先利用积的乘方把原式变形为[(b+2a)(b-2a)]2,再利用平方差公式把中括号内的多项式的乘法展开,然后再利用完全平方公式展开即可. 解:(1)原式=(2-1)(2+1)(22+1)(24+1)…(216+1)=(22-1)(22+1)(24+1)…(216+1) =(24-1)(24+1)…(216+1)=232-1; (2)原式=[(a+b)-(a-b)]2=(a+b-a+b)2=4b2; (3)原式=[x-(2y-3z)][x+(2y-3z)]=x2-(2y-3z)2=x2-(4y2-12yz+9z2)=x2-4y2 +12yz-9z2; (4)(2a+b)2(b-2a)2=[(b+2a)(b-2a)]2=(b2-4a2)2=b4-8a2b2+16a4. 方法总结:运用乘法公式计算时,先要分析式子的特点,找准合适的方法,能起到事半功倍的作用.同时由于减少了运算量,能提高解题的准确率. 【类型二】运用乘法公式求值 如图,立方体每个面上都写有一个自然数,并且相对两个面所写两数之和相等. 若18的对面写的是质数a,14的对面写的是质数b,35的对面写的是质数c,试求a2+b2+c2-ab-bc-ca的值.

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

乘法公式(基础)知识讲解

乘法公式(基础) 【学习目标】 1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义; 2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘 法运算; 3. 能灵活地运用运算律与乘法公式简化运算. 【要点梳理】 要点一、平方差公式 平方差公式:22 ()()a b a b a b +-=- 两个数的和与这两个数的差的积,等于这两个数的平方差. 要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式. 抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征: 既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型: (1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+ (6)增因式变化:如2244()()()()a b a b a b a b -+++ 要点二、完全平方公式 完全平方公式:()2222a b a ab b +=++ 2222)(b ab a b a +-=- 两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两 数的平方和加(或减)这两数之积的2倍.以下是常见的变形: ()2222a b a b ab +=+-()2 2a b ab =-+ ()()22 4a b a b ab +=-+ 要点三、添括号法则 添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号, 括到括号里的各项都改变符号. 要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求 1 (1) n n +型分数求和 分析:因为 111n n -+=11 (1)(1)(1) n n n n n n n n +-= +++(n 为自然数) 所以有裂项公式: 111 (1)1 n n n n =- ++ 【例1】 求 111 ......101111125960+++???的和。 111111111 ()()......()101111125960106012 =-+-++-= -= (二) 用裂项法求 1 () n n k +型分数求和 分析: 1 () n n k +型。(n,k 均为自然数) 因为 11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 。所以1111()()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? 111111*********()()()()()25727929112111321315= -+-+-+-+- 111111********* [()()()()()][]2577991111131315251515 =-+-+-+-+-=-= (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k -+ 【例3】 求 2222 (1335579799) ++++????的和 1111111198 (1)()()......( )13355797999999 =-+-+-++-=-= (四) 用裂项法求 2()(2) k n n k n k ++型分数求和 分析: 2()(2)k n n k n k ++(n,k 均为自然数) 则 211 ()(2) ()()(2) k n n k n k n n k n k n k = - +++++ 【例4】 计算: 4444 (135357939597959799) ++++???????? 11111111()()......()()133535579395959795979799 1132001397999603 =-+-++-+-????????=-= ?? (五) 用裂项法求 1 ()(2)(3) n n k n k n k +++型分数求和 分析: 1 ()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111 ()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ 【例5】 计算:111 ......1234234517181920+++ ????????? 1111111 [()()......()] 3123234 2343451718191819201111139[]312318192020520 =-+-++-????????????=--=???? (六) 用裂项法求 3()(2)(3) k n n k n k n k +++型分数求和 分析: 3()(2)(3) k n n k n k n k +++(n,k 均为自然数)

常见数列通项公式的求法

常见数列通项公式的求法-中学数学论文 常见数列通项公式的求法 邹后林 (会昌中学,江西赣州342600) 摘要:数列的通项求法灵活多样,需要充分利用化归与转化思想。非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。现举数例。 关键词:数列;通项公式;求法 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-12-0031-01 例1:已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。 (1)求数列{an}、{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn。 解:(1)∵a1=1,an+1=2Sn+1 (n∈N*), ∴an=2Sn-1+1 (n∈N*,n1), ∴an+1-an=2(Sn-Sn-1), 即an+1-an=2an,∴an+1=3an (n∈N*,n1)。 而a2=2a1+1=3,∴a2=3a1。 ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*)。∴a1=1,a2=3,a3=9,

在等差数列{bn}中,∵b1+b2+b3=15, ∴b2=5。 又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2。 ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn0 (n∈N*),∴舍去d =-10,取d=2,∴b1=3,∴bn=2n+1 (n∈N*)。 (2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①∴3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)3n,② ∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

乘法公式的综合运用

第三课时(乘法公式的综合运用) 一、学导目标:1.进一步理解乘法公式。 2.能熟练地运用乘法公式解题。 二、学导重点:熟练的利用平方差、完全平方公式进行混合运算。 三、学导难点:灵活运用乘法公式 四、目标导航 1.复习回顾两个公式。 2.自学例题:教材P65例2第(2)小题、P66例 3.(注意书上的解题方法。) 3.注意:难,小本节内容偏组内、小组间要认真交流,有困难的要问老师。 4.教材P66练习第1、2 题: 5.计算: (1)(x+3)2(3-x)2(2)(2a+b+1)(2a+b-1) (3)(a-2b-3)(a+2b+3) (4)(2a+b)2-(b+2a)(2a-b) 五、学导流程: (一)、出示目标:1.进一步理解乘法公式。 2.能熟练地运用乘法公式解题。

(二)、自学质疑:1、学生把课前没学完的可以再围绕“目标”和“目标导航”自学、对学、小组内展开。 2、教师深入其中查进度、问题汇总、导学。 3、检测“目标导航”有关内容。 (三)、汇报展示:1、各小组再小组长带领下共同展示目标内容 2、教师针对展示的结果进行分析、归纳组织学生再学、学会、会学。 五、测评提升: 1.先化简,再求值: (5y+1)(5y-1)-(5y+25y 2),其中y= 52 2.解方程: (1)(x+ 41)2–(x-41)(x+41)=41 (2)(x+1)(x-1)-(x+2)2=7 3.解不等式: 2(x+4)(x-4) (x-2)(2x+5) 4.计算 (1)(2x+3)3 (3)(2a-b-3c)2 5.计算: (1)已知x 2+xy =6 y 2+xy=10 求:1.(.x+y)2 2. x 2-y 2 3..x-y

分数裂项求和

学生曹一诺学校年级六年级科目数学 教师陈作谦日期16年4月24日时段15:00-17:00 次数第一次课题 分数裂项求和 教学重点难点重点:清楚掌握几种简单的裂项求和的方法及其解答过程。难点:能判断所处题目的特点,并用其对应的方法进行解答。 教学步骤及教学内容一、作业检查: 平时成绩中上,卓师的小升初模拟试题测试结果,数学为46分二、课前热身: 与学生探讨小升初的意义,互动中令学生明白考试的应对方式。 三、内容讲解: 先做几个题目: (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? , (2)求 2222 ...... 1335579799 ++++ ???? 的和 这种题目就是分数裂项求和的运用。 分数裂项求和,分成减法裂项和加法裂项: 减法裂项就是:分母化成两个数的积,分子化成这两个数的差;加法裂项就是:分母化成两个数的积,分子化成这两个数的和。 (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? ,

解:原式= +?+?+?7 55 -7533-5311-3……+11 99-11? =( + ??+??+??)7 55-757()533-535()311-313 ……+( 11911 ?-11 99?) )11 191()7151()5131()3111(-+??+-+-+-= 11 191715151313111-+??+-+-+-= 11 111-= 11 10= (2)求 2222 (1335579799) ++++????的和 解:原式=+?+?+?7 55-75 33-53 11-3……+99 9797-99? 1111111 (1)()()......() 3355797991 1999899 =-+-+-++-=-= 再看一道例题: 例1:计算:72 17561542133011209127651-+-+-+ - 解:原式=98988787767665655454434332321?+-?++?+-?++?+-?++?+- )()()()()()()(9 1818171716161515141413131211+-+++-+++-+++-= 9 18 18 17 17 16 16 15 15 14 14 13 13 12 11--++--++--++--= 9 11-=

相关主题
文本预览
相关文档 最新文档