当前位置:文档之家› 《信号与系统》实验指导书

《信号与系统》实验指导书

《信号与系统》实验指导书
《信号与系统》实验指导书

《信号与系统》实验指导书

黄剑航编

莆田学院机电工程学院

2015年3月

目录

实验1MATLAB在信号处理中的应用基础 (1)

实验2连续时间信号在MATLAB中的表示 (6)

实验3 连续时间信号在MATLAB中的运算 (12)

实验4傅里叶变换及其性质 (18)

实验5信号抽样及抽样定理 (24)

实验6连续时间LTI系统的时域分析 (30)

前言

MATLAB是矩阵实验室(Matrix Laboratory)的简称,它是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MathWorks公司也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。由于信号与系统课程的许多内容都是基于公式演算,而MATLAB借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需要。例如解微分方程、傅立叶正反变换、拉普拉斯正反变换和Z正反变换等。MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲激响应仿真分析、信号的时域分析、信号的频谱分析等内容。数值计算仿真分析可以帮助学生更深入地理解信号与系统的理论知识,并为将来使用MATLAB进行信号处理领域的各种分析和实际应用打下基础。

实验报告要求如下:

1. 具体格式参照“莆田学院机电工程学院实验报告”格式。

2. 注意实验报告要求分析组织有条理,截图美观,结论正确。

实验1 MATLAB 在信号处理中的应用基础

1. 实验目的

熟悉MATLAB 工作环境和基本操作;熟悉MATLAB 数组及矩阵运算;学习函数的编制,掌握MATLAB 的编程应用。通过不同的程序结构和不同的实际编程问题,掌握MATLAB 的编程方法。

2. 实验内容

2.1假设x =3,y =4。利用MTLAB 计算下列表达式:23

3()x y z x y =-, 要求:

(1)在命令窗口直接输入,得到运算结果;

(2)编写M 文档并在命令窗口执行,然后用工作空间平台查看有哪些变量在当前工作区。

2.2 一小球从空中下落的位移公式为:2001

2

x x v t at =++ ,利用MATLAB 计算

小球在t =5s 时的位置,已知:20010,15/,9.8/x m v m s a m s ===-.

2.3计算函数3232

1()(0.98)

/( 1.25)5()f x x x x x x

=+-+-+在x 为如下取值时候的函数值,x 取4.9, 3.2, 100, 1.5, 9.75, 2.56,16, 4.9, 10。

2.4 确定下列数组的大小,通过whos 或工作空间窗口(The workspace browser )检查你的答案。注意在本练习中后面的数组可能要用到前面数组的定义。

(1) u=[10, 20, 10+20] (2) v=[-1;20;3]

(3) w=[1 0 -9;2 -2 0;1 2 3] (4) x=[u' v] (5) y(3,3)=-7

(6) z=[zeros(4,1) ones(4,1) zeros(1,4)'] (7) v(4)=x(2,1)

2.5 执行完2.4的所有题目后,w(2,1)的值是多少? x(2,1)的值是多少?y(2,1)的值是多少?

2.6 c 数组的定义如下,写出下面子数组的内容。

c =

1.1000 -3.2000 3.4000 0.6000 0.6000 1.1000 -0.6000 3.1000 1.3000 0.6000 5.5000 0

(1) c(2,:) (2) c(:,end) (3) c(1:2,2:end) (4) c(6) (5) c(4:end) (6) c(1:2,2:4) (7) c([1 4],2) (8) c([2 2],[3 3]) 2.7 当赋值语句执行后,下列数组的内容是多少?

(1) a=[1 2 3; 4 5 6; 7 8 9]; a([3 1],:)=a([1 3],:); (2) a=[1 2 3; 4 5 6; 7 8 9]; a([1 3],:)=a([2 2],:); (3) a=[1 2 3; 4 5 6; 7 8 9]; a=a([2 2],:);

2.8 假设a,b,c 和d 的定义如下:

1

01

23,,,521012a b c d -??????

====?

???????????

分别运行出下列表达式的运算结果,并思考点乘和乘法的不同。

(1) a + b (2) a .* c (3) a * b (4) a * c (5) a + c (6) a + d (7) a .* d (8) a * d 2.9一个程序实例学习:

(温度转换)设计一个MATLAB 程序,读取一个华氏温度的输入,输出开尔文温度。 华氏温度和开尔文温度的转换关系式可在物理学课本中找到。其关系式为:

在物理学参考书中举了一些例子,我们可以用来检验我们程序是否正确。例如

我们设计程序的步骤如下:

(1)提示用户键入华氏温度值

(2)读取输入值

(3)通过关系式转换为开氏温度

(4)输出结果,结束

我们将会用input 函数输入华氏温度,用fprintf 函数输出结果。

% Script file:temp_conversion.m

%

% Purpose:

% To convert an input temperature from degrees Fahrenheit to

% an output temperature in kelvins.

%

% Record of revisions:

% Date Programmer Description of change

% ==== ========= ================

% 12/01/97 S.J.Chapman Original code

%

%Define variables:

% temp_f --Temperature in degrees Fahrenheit

% temp_k --Temperature in kelvins

%Prompt the user for the input temperature.

temp_f=input('Enter the temperature in degrees Fahrenheit:');

%Converttokelvins.

temp_k=(5/9)*(temp_f-32)+273.15;

%Writeouttheresult.

fprintf('%6.2f degrees Fahrenheit = %6.2f kelvins.\n',...

temp_f,temp_k);

我们输入上面的例子中的华氏温度值,以检测程序的正确性。注意用户的输入值已用黑

体字标出。

>> temp_conversion

Enter the temperature in degrees Fahrenheit:212

212.00 degrees Fahrenheit = 373.15 kelvins.

>> temp_conversion

Enter the temperature in degrees Fahrenheit:-110

-110.00 degrees Fahrenheit = 194.26 kelvins.

这个结果和物理教科书的结果相同。

2.10编写一个程序,计算出坐标系中用户指定两点(X1,Y1)和(X2,Y2)之间的距离。要求有输入、输出及其相关提示。

2.11双曲余弦的定义如下:cosh 2

x x

e e x -+=,

编写一个程序,计算出用户指定的x 的值对应的双曲余弦值。用这个程序计算双曲余弦值的若干值,并和MATLAB 中的内建函数cosh(x)得到的值比较看看是否完全相同。并用MATLAB 打印出这个函数的图象。

2.12 电子工程:负载的最大输出功率一个内阻Rs =50Ω,电动势V =120V 的电源驱动一个负载RL 。当RL 为多少时,RL 的功率最大?在这种情况下,功率为多少?画以RL 为自变量的RL 功率图。

2.13利用公式

111

14357

π

≈-+-+ 求π的近似值,直到最后一项的绝对值小于510-为止。

2.14 Fibonacci(斐波纳契)序列的元素满足Fibonacci 规则:

21(1,2,3...)k k k a a a k ++=+= 且121,1a a ==;现要求该序列中第一个大于20000 的元素,并指明该元素是序列的第几项。

2.15在田径比赛中,一个身高为一米八零的铅球运动员,大概以多大的角度(和水平方向夹角)推铅球,才能使铅球推得最远,并求出最远距离。不计空气阻力,假设铅球出手点和运动员高度相等,且铅球出手瞬间初始速度大小为14m/s ,重力加速度取g=10m/s2。

2.16 打印出所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字立方和等于该数本身。例如153是一个水仙花数,满足153=1^3+5^3+3^3。 2.17 有一个函数:

12111031110x

x y x x x x

=-≤

,写一程序,输入x ,输出y 值。

2.18 输入3个整数,要求按大小输出。

2.19 编写一个MATLAB 程序,要求输入圆柱体的半径和高,然后输出体积。

3. 思考

3.1 MATLAB 的命令窗口的作用是什么? 3.2 列出几种不同的得到MATLAB 帮助的方法。

3.3 什么是工作区?在同一工作区内,你如何决定它里面存储了什么? 3.4 你怎样清空MATLAB 工作区内的内容? 3.5 数组,矩阵,向量有什么区别? 3.6 回答关于下列矩阵的有关问题

1.13.23.40.6

1.1

0.63.1

1.3

0.6

5.5

0.0

C -

????=-?????? (1)C 的大小是多少? (2)C(2,3)的值是多少? (3)列出值为0.6 的元素的下标 3.7 脚本文件和函数文件的区别是什么?

实验2 连续时间信号在MATLAB 中的表示

1. 实验目的

学会运用MATLAB 表示常用连续时间信号的方法;观察并熟悉这些信号的波形和特性。

2. 实验原理

在某一时间区间内,除若干个不连续点外,如果任意时刻都可以给出确定的函数值,则称该信号为连续时间信号,简称为连续信号。从严格意义上讲,MATLAB 数值计算的方法并不能处理连续时间信号。然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB 处理,并且能较好地近似表示连续信号。

MATLAB 提供了大量生成基本信号的函数。比如常用的指数信号、正余弦信号等都是MATLAB 的内部函数。为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。

3. 实例分析

3.1 典型信号的MATLAB 表示 (1)实指数信号

实指数信号的基本形式为()t f t Ke α=。式中,,K α为实数。当0α>时,实

指数信号随时间按指数式增长;当0α<时,实指数信号随时间按指数式衰减;当0α=时候,则转化为直流信号。MATLAB 中用exp 函数来表示实指数信号,其语句格式为:

*exp(*)y K a t =

例1 用MATLAB 命令产生单边衰减指数信号 1.52()t e u t -,并绘出时间03t ≤≤的波形图。

解:MATLAB 源程序为:

clear;clc;

K = 2; a = -1.5; t = 0:0.01:3; ft = K*exp(a*t); plot(t,ft);grid on axis([0,3,0,2.2]);

title('单边指数衰减信号');

(2)正弦信号

正弦信号的基本形式为()sin()f t K t ω?=+或者()cos()f t K t ω?=+。其中K

是振幅;ω是角频率;?是初相位。这三个参数称为正弦信号的三要素。MATLAB 中可用sin 或者cos 函数来表示正弦信号,其语句格式为:

*sin(*)K t phi ω+ *c o s (*K t p h i

ω+ 例2 用MATLAB 命令产生正弦信号2sin(2/4)t ππ+,并绘出时间03t ≤≤的波形图。

解:MATLAB 源程序为:

clear;clc;

K = 2; w = 2*pi; phi = pi/4; t = 0:0.01:3;

ft = K*sin(w*t+phi); plot(t,ft);grid on axis([0,3,-2.2,2.2]); title('正弦信号');

图1 单边指数衰减信号

图2 正弦信号

(3)抽样信号

抽样信号的基本形式为()sin()/Sa t t t =,在MATLAB 中用与()Sa t 类似的

sinc()t 函数表示,定义为sinc()sin()/()t t t ππ=。

可以看出,()Sa t 函数与sinc()t 没有本质的区别,

只是在时间尺度上不同而已。 例3 用MATLAB 命令产生抽样信号()Sa t ,并绘出时间为66t ππ-≤≤的波形图。

解:MATLAB 源程序为:

clear;clc;

t = -6*pi: pi/100: 6*pi; ft = sinc(t/pi); plot(t,ft);grid on

axis([-20,20,-0.5,1.2]); title('抽样信号');

图3 抽样信号

(4)矩形脉冲信号 矩形脉冲信号在MATLAB 中可用rectpuls 函数产生,其语句格式为:

(,)y rectpls t width =

该函数用于产生一个幅度为1、宽度为width ,且以t=0为对称轴的矩形脉冲信

号,width 的默认值为1。

例4 用MATLAB 命令画出下列矩形脉冲信号的波形图。

2(01)

()0(0,1)t f t t t ≤≤?=?

<>?

解:根据所定义的矩形脉冲信号,()f t 定义的矩形脉冲宽度为1,脉冲的中心位置相对于纵轴向右移动了0.5。因此,其MATLAB 源程序为:

clear;clc;

t = -0.5: 0.01: 3;

t0 = 0.5; width = 1;

ft = 2* rectpuls(t-t0, width);

plot(t,ft);grid on

axis([-0.5,3,-0.2,2.2]);

title('矩形脉冲信号');

图4 矩形脉冲信号周期性矩形波信号或方波在MATLAB中可用square函数产生,其语句格式为:

y=square(t,DUTY)

该函数用于产生一个周期为2π,幅值为1±的周期性方波信号,其中,DUTY参数用来表示信号的占空比DUTY%,即在一个周期内脉冲宽度(正值部分)与脉冲周期比值。占空比默认值为0.5。

例5用MATLAB命令产生频率为10Hz,占空比为30%的周期方波信号。

解:MATLAB源程序为:

clear;clc;

t = 0: 0.001: 0.3;

y = square(2*pi*10*t, 30);

plot(t,y);grid on

axis([0,0.3,-1.2,1.2]);

title('周期方波信号');

图5 周期方波信号

还有非周期的三角波脉冲可以用tripuls函数,周期三角波(锯齿波)可以用sawtooth函数实现。同学们可以通过MATLAB help自学,或者上网搜索及其他途径学习。

3.2 单位阶跃信号的MATLAB表示

单位阶跃信号是信号分析中的基本信号之一,在信号与系统分析中有着十分重要的意义,常用于简化信号的时域数学表示。例如,表示分段函数信号、时限信号和因果信号等。单位阶跃信号用符号()

u t表示,定义为:

10

()00

t u t t >?=?

clear;clc;

t = -1: 0.01: 5; ft = (t >=0 ); plot(t,ft);grid on axis([-1,5,-0.5,1.5]); title('单位阶跃信号');

图6 单位阶跃信号

此外,也可以在MATLAB 的工作目录下创建uCT 的M 文件,其MATLAB 源文件为: function f = uCT(t)

f = (t>=0);

保存后,就可调用该函数,并运用plot 命令来绘制单位阶跃信号的波形。例如,图6中波形也可以用如下代码实现:

clear;clc;

t = -1: 0.01: 5; ft = uCT(t); plot(t,ft);grid on axis([-1,5,-0.5,1.5]); title('单位阶跃信号');

注意,在此定义的uCT 函数是阶跃信号数值表示方法,因此在数值计算机中

我们将调用uCT 函数。而在MATLAB 的MAPLE 内核中,将Heaviside 函数定义为阶跃信号符号表达式,在符号运算过程中,若要调用它必须用sym 定义后,才能实现。例如,还可用下面的命令会出阶跃信号,即:

clear;clc;

y=sym('Heaviside(t)'); % 定义符号表达式 ezplot(y,[-1,5]).grid on

在表示分段函数信号、时限信号时,经常用到延时的单位阶跃信号,对于延

时T 的单位阶跃信号()u t T -,可以用 uCT(t-T)来表示。 例7 用MATLAB 命令实现幅度为1、宽度为1的门函数()g t 。

解:MATLAB 源程序为:

clear;clc;

t = -1: 0.01: 1;

ft = uCT(t+0.5)-uCT(t-0.5); plot(t,ft);grid on axis([-1,1 -0.2,1.2]); title('门函数');

图7 门函数波形

4. 实验内容

4.1 利用MATLAB 命令画出下列连续信号的波形图。 (1)2cos(3/4)t π+ (2)(2)()t e u t --

(3)[()(1)]t u t u t -- (4)[1cos()][()(2)]t u t u t π+--

4.2 利用MATLAB 命令产生幅度为1、周期为1、占空比为0.5的一个周期矩形脉冲信号。

4.3 利用MATLAB 命令画出如下信号的实部、虚部、模和幅角。

4

2

()2j t

j t f t e e π

π

=

++

5. 问题与思考

阶跃信号函数中语句ft = (t >=0 )的含义。

实验3 连续时间信号在MATLAB 中的运算

1. 实验目的

学会运用MATLAB 进行连续信号的时移、反折和尺度变换;学会运用MATLAB 进行连续信号的相加、相乘运算;学会运用MATLAB 数值计算方法求连续信号的卷积。

2. 实验原理

2.1信号的时移、反折和尺度变换

信号的时移、反折和尺度变换是针对自变量时间而言的,其数学表达式与波

形变换之间存在一定的变换规律。

信号()f t 的时移就是将信号数学表达式中的t 用0t t ±替换,其中0t 为正实数。

因此,波形的时移变换是将原来的()f t 波形在时间轴上向左或者向右移动。

0()f t t +为()f t 波形向左移动0t ;0()f t t -为()f t 波形向右移动0t 。信号()f t 的反折就是将表达式中的自变量t 用t -替换,即变换后的波形是原波形的y 轴镜像。信号()f t 的尺度变换就是将表达式中的自变量t 用at 替换,其中,a 为正实数。对应于波形的变换,则是将原来的()f t 的波形以原点为基准压缩(1a >)至原来的1/a ,或者扩展(01a <<)至原来的1/a 。

上述可以推广到0()f at t ±的情况。

2.2 MATLAB 数值计算法求连续时间信号的卷积

用MATLAB 分析连续时间信号,可以通过时间间隔取足够小的离散时间信

号的数值计算方法来实现。可调用MATLAB 中的conv( )函数近似地数值求解连续信号的卷积积分。如果对连续时间信号1()f t 和2()f t 进行等时间间隔t ?均匀抽样,则1()f t 和2()f t 分别变为离散序列1()f m t ?和2()f m t ?。其中m 为整数。当t ?足够小时,1()f m t ?和2()f m t ?即为连续时间信号1()f t 和2()f t 。因此连续信号的卷

积积分运算转化为:

1212()()*()()()f t f t f t f f t d τττ∞

-∞==-?

120

lim

()()t m f m t f t m t t ∞

?→=-∞

=??-???∑

采用数值计算法,只求当t n t =?时卷积积分()f t 的值()f n t ?,其中,n 为整数,即

12()()()m f n t f m t f n t m t t ∞

=-∞

?=

???-???∑

12()[()]m t

f m t f n m t ∞

=-∞

=???-?∑

其中,

12()[()]m f m t f n m t ∞

=-∞

??-?∑

实际就是离散序列1()f m t ?和2()f m t ?的卷积和。当

t ?足够小时,()f n t ?就是卷积积分的结果,从而连续时间信号

12()()[()*()]f t f n t f n f n ≈?=?

上式表明通过MATLAB 实现连续信号1()f t 和2()f t 的卷积,可以利用各自抽

样后的离散时间序列的卷积再乘上抽样间隔t ?。抽样间隔t ?越小,误差也就越小。

3. 实例分析

例1 已知信号()(2)()(1)[(1)()]f t u t u t t u t u t =+-+-+--,试用MATLAB 命令画出(2)f t -、(3)f t 、()f t -、(32)f t --的波形图。

解:根据已知信号,先建立()f t 函数文件,即在MATLAB 的工作目录下创建funct1.m 文件,MATLAB 源程序为: function f = funct1(t)

f=uCT(t+2)-uCT(t)+(-t+1).*(uCT(t)-uCT(t-1));

然后,可以调用上述函数来绘制所求的信号波形。程序运行完,产生如图1所示的波形。MATLAB 源程序为:

clear;clc;

t = -2:0.01:4; ft1 = funct1(t-2); ft2 = funct1(3*t); ft3 = funct1(-t); ft4 = funct1(-3*t-2);

subplot(221) plot(t,ft1);grid on title('f(t-2)');

axis([-2 4 -0.5 2]);

subplot(222) plot(t,ft2);grid on title('f(3t)');

axis([-2 4 -0.5 2]);

subplot(223) plot(t,ft3);grid on title('f(-t)');

axis([-2 4 -0.5 2]);

subplot(224) plot(t,ft4);grid on title('f(-3t-2)'); axis([-2 4 -0.5 2]);

图1 f(t-2),f(3t),f(-t),f(-3t-2)波形图

例2 用MATLAB 数值计算分析法求信号1()()(2)f t u t u t =--与32()()t f t e u t -=的卷积积分。

解:因为32()()t f t e u t -=是一个持续时间无限长的信号,而计算机数值计算不可能计算真正的无限长时间信号,所以在进行2()f t 的抽样离散化时,所取的时间范围让2()f t 衰减到足够小就可以了,本例中取 2.5t =。MATLAB 源程序为:

clear;clc;

dt = 0.01; t = -1:dt:2.5; f1 = uCT(t)- uCT(t-2); f2 = exp(-3*t).*uCT(t); f = conv(f1,f2)*dt; n =length(f); tt = (0:n-1)*dt-2;

subplot(221), plot(t,f1),grid on ; axis([-1, 2.5, -0.2,1.2]); title('f1(t)'); xlabel('t');

subplot(222), plot(t,f2),grid on ; axis([-1, 2.5, -0.2,1.2]); title('f2(t)'); xlabel('t');

subplot(212), plot(tt,f),grid on ; title('f(t)=f1(t)*f2(t)'); xlabel('t');

程序运行后,产生如图2所示的波形。

图2 例2的卷积结果

由于1()f t 和2()f t 的时间范围都是从1t =-开始,所以卷积结果的时间范围从

2t =-开始,增量还是取样间隔t ?,这就是上面MATLAB 语句tt = (0:n-1)*dt-2

的由来。

对于时限信号的卷积运算,还可以利用MATLAB 中的function 命令建立一

个实用函数来求卷积。例如,可以建立连续时间信号卷积运算的函数ctsconv.m ,其MATLAB 源程序为:

function [f,t] = ctsconv(f1,f2,t1,t2,dt) f = conv(f1,f2); f = f*dt;

ts = min(t1) +min(t2); te = max(t1)+max(t2); t = ts:dt:te;

subplot(221)

plot(t1,f1); grid on

axis([ min(t1), max(t1), min(f1)-abs(min(f1)*0.2), max(f1)+abs(max(f1)*0.2) ]) title('f1(t)');xlabel('t');

subplot(222)

plot(t2,f2); grid on

axis([ min(t2), max(t2), min(f2)-abs(min(f2)*0.2), max(f2)+abs(max(f2)*0.2) ]) title('f2(t)');xlabel('t');

subplot(212) plot(t,f); grid on

axis([ min(t), max(t), min(f)-abs(min(f)*0.2), max(f)+abs(max(f)*0.2) ]) title('f(t)=f1(t)*f2(t)');xlabel('t');

对于例2,可以用上面定义的ctsconv 函数求的,MATLAB 源程序为: clear;clc; dt = 0.01; t1 = -1:dt:2.5;

f1 = uCT(t1)- uCT(t1-2); t2 = t1;

f2 = exp(-3*t2).*uCT(t2); [t,f] = ctsconv(f1,f2,t1,t2,dt);

程序运行后,可获得和例2相同的波形结果。

4. 实验内容

4.1 试用MATLAB 命令绘制信号/2()sin(10)sin(9)t t f t e t e t ππ--=+的波形图。

4.2 已知信号()()(1)(1)[(1)(f t u t u t t u t u t =--+-+-,画出()f t 、(2)f t +、()f t -、(21)f t -+的波形。

4.3 求信号1()()(2)f t u t u t =--与2()()(1)(2)(3)f t u t u t u t u t =+-----的卷积结果12()()*()f t f t f t =,并画出12(),()f t f t 和()f t 的波形。

4.4 求信号1()(0.5)(0.5)f t u t u t =+--与自身的卷积结果11()()*()f t f t f t =,并画出1()f t 和()f t 的波形。

5. 问题与思考

MATLAB运算符中.*和* 的区别?可结合例子说明。(实验1和实验2都有碰到的)

信号与系统实验题目及答案

第一个信号实验的题目 1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =?---; (5)0.5()4cos(),010t f t e t t π-=?= 2连续信号的基本运算与波形变换 已知信号2 2,2 1 ()33 t t f t ? -+-≤≤?=???,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1 (1)2 d f t dt +(5)(2)t f d ττ-∞-? 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。 4连续系统的时域分析 (1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为 2()2()t f t e u t -=时,该系统的零状态响应()y t 。 (2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出 该系统的冲激响应和阶跃响应的波形。 实验一答案: (1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:

(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下: (3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下: (4)()[(1)(2)]f t t u t t u t t =?---在MATLAB 软件的输入程序及显示波形如下: (5)0.5()4cos(),010t f t e t t π-=?=在MATLAB 软件的输入程序及显示波形如下:

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

空间分析实验指导书

空间分析实验指导书 黎华 武汉理工大学资环学院 2011年9月

目录 实验一、市区择房分析 (2) 实验二、最短路径分析 (3) 实验三、寻找最佳路径 (5) 实验四(综合实验一)、学校选址规划 (7)

实验一、市区择房分析 1、背景 如何找到环境好、购物方便、小孩上学方便的居住区地段是购房者最关心的问题,因此购房者就需要从总体上对商品房的信息进行研究分析,选择最适宜的购房地段。 2、数据 ●城市市区交通网络图(network.shp) ●商业中心分布图(marketplace.shp) ●名牌高中分布图(school.shp) ●名胜古迹分布图(famous place.shp) 3、步骤 1)所寻找的区域应该满足以下条件 ●离主要交通要道200米之外,以减少噪音污染 ●在商业中心的服务范围内,服务范围以商业中心规模的大小(属性字段YUZHI)来 确定 ●距名牌高中在750米内,以便小孩上学便捷 ●距名胜古迹500米内,环境幽雅 2)对每个条件进行缓冲区分析,得到各个条件所对应的区域 3)运用空间叠置分析对上述4个图层进行叠加,得到适合的购房地段

实验二、最短路径分析 1.背景:在现实生活中寻求最短,最快,提高效率有着重大意义,而交通网络中要素的设置如权重的改变和阻强的设置对最短路径的选择也有着很大的影响,研究这些因子的改变究竟对最短路径能造成多大的影响,对于现实也有一定的指导意义。 2.目的:学会用ArcGIS9 进行各种类型的最短路径分析,了解内在的运算机理。 3.数据:试验数据位于\Chp7\Ex2,请将练习拷贝至E:\Chp7\Ex2\ 一个GeoDatabase 地理数据库:City.mdb,内含有城市交通网、超市分布图,家庭住址以及网络关系。 4.要求:应该能够给出到达指定目的地的路径选择方案根据不同的权重要求得到不同的最佳路径,并给出路径的长度;根据需求找出最近的设施的路径,这里是以超市为例。 (1)在网络中指定一个超市,要求分别求出在距离、时间限制上从家到超市的最佳路径。 (2)给定访问顺序,按要求找出从家经逐个地点达到目的地的最佳路径。 5.操作步骤: 首先打开ArcMap选择E:\Chp7\Ex2\city.mdb再双击后选择将整个要素数据集city加载进来。然后将place 点状要素以HOME 字段属性值进行符号化,1 值是家,0 值是超市,(1)无权重最佳路径的选择 1)在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标放在家和想要去的超市点上。 2)确认在Analysis 下拉菜单中的Options 按钮打开的Analysis Options 对话框中的weight 和weight filter 标签项全部是none,这样使得进行的最短路径分析是完全按照这个网络自身的长短来确定的。 3)点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve 键,则最短路径将显示出来,这条路径的总成本将显示在状态列。 (2)加权最佳路径选择 1)在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标放在家和想去的某个超市点上。 2)选择Analysis 下拉菜单,选择Option按钮,打开Analysis Option对话框,选择Weight 标签页,在边的权重(edge weight)上,全部选择长度(length)权重属性。 3)点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve键,则以长度为比重为基础的最短路径将显示出来,这条路径的总成本将显示在状态列。 4)上述是通过距离的远近选择而得到的最佳路径,而不同类型的道路由于道路车流量的问题,有时候要选择时间较短的路径,同样可以利用网络分析进行获得最佳路径。 这里的时间属性是在建网之前,通过各个道路的类型(主干道,次要道等)来给定速度属性,然后通过距离和速度的商值确定的,并将其作为属性设定于每个道路上,这里没有考虑红灯问题以及其他因素,而是一种理想情况,不过可以将其他的要素可以逐渐加入来完善。 (3)按要求和顺序逐个对目的点的路径的实现 1)在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标按照车辆访问的顺序逐个放在点上。

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

《信号与系统》实验四

信息科学与工程学院《信号与系统》实验报告四专业班级电信09-班姓名学号实验时间2011 年月日指导教师陈华丽成绩

0≤n 的幅频特性曲线,由此图可以确

1.对连续信号)()sin()(0t u t Ae t x t a Ωα-=(128.444=A ,πα250=,πΩ2500=)进行理想采样,可得采样序列500) ()sin()()(0≤≤==-n n u nT Ae nT x n x nT a Ωα。图1给出了)(t x a 的幅频特性曲线,由此图可以确 定对)(t x a 采用的采样频率。分别取采样频率为 1KHz 、300Hz 和200Hz ,画出所得采样序列)(n x 的幅频

特性)( j e X 。并观察是否存在频谱混叠。 源程序: % 产生序列x(n) n=0:50; A=444.128; a=50*sqrt(2.0)*pi; T=1/1000; % T 分别取1/1000、1/300、1/200 w0=50*sqrt(2.0)*pi; x=A*exp(-a*n*T).*sin(w0*n*T); %函数f 的表达式 subplot(1,2,1),stem(n,x) title('理想采样序列 fs=1000Hz') % 绘制x(n)的幅度谱 k=-250:250; W=pi/125*k; X=x*(exp(-j*pi/125)).^(n'*k); % 由公式计算DTFT magX=abs(X); subplot(1,2,2),plot(W,magX) title('理想采样序列的幅度谱') 结果图

fs=300HZ fs=200HZ

信号与系统实验2

实验报告 实验二连续时间系统的时域分析 一、实验目的: 1、掌握用Matlab进行卷积运算的数值方法和解析方法,加深对卷积积分的理解。 2、学习利用Matlab实现LTI系统的冲激响应、阶跃响应和零状态响应。 二、实验内容及步骤 实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

1、 编写程序Q2_1,完成)(1t f 与)(2t f 两函数的卷积运算。 2、 编写程序Q2_2,完成)(1t f 与)(2t f 两函数的卷积运算。 3、编写程序Q2_3。利用程序Q2_1,验证卷积的相关性质。 (a) 验证性质:)()(*)(t x t t x =δ (b) 验证性质: )()(*)(00t t x t t t x -=-δ 4、编写程序Q2_4。某线性时不变系统的方程为 )(8)(2)(6)(5)(t f t f t y t y t y +'=+'+'', (a)系统的冲激响应和阶跃响应。 (b)输入()()t f t e u t -=,求系统的零状态响应)(t y zs 。 三. 实验结果 一: dt=0.01 t1=0:dt:2 f1=0.5*t1 t2=0:dt:2 f2=0.5*t2 f=dt*conv(f1,f2) t=0:0.01:4 plot(t,f);axis([-1 5 0 0.8])

二: dt=0.01 t=-3:dt:3 t1=-6:dt:6 ft1=2*rectpuls(t,2) ft2=rectpuls(t,4) y=dt*conv(ft1,ft2) plot(t1,y) axis([-4 4 0 5]) 以上两题出现错误点:(1)最开始模仿例1的写法用function [f,k]=sconv,总提示出现 错误 (2)t0+t2 ≤ t ≤ t1+t3 不大能理解的运用个特点,在编写的时候总是被忽略。导致t和t1设置的长度总出错。 三: (a) dt=0.01 t=0:dt:2 t0=0 t1=0:dt:2t2=0:dt:2

混凝土结构实验指导书及实验报告(学生用)

土木工程学院 《混凝土结构设计基本原理》实验指导书 及实验报告 适用专业:土木工程周淼 编 班级::学 号: 理工大学 2018 年9 月

实验一钢筋混凝土梁受弯性能试验 一、实验目的 1.了解适筋梁的受力过程和破坏特征; 2.验证钢筋混凝土受弯构件正截面强度理论和计算公式; 3.掌握钢筋混凝土受弯构件的实验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术 和有关仪器的使用方法; 4.培养学生对钢筋混凝土基本构件的初步实验分析能力。 二、基本原理当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段:第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。梁开裂标志着第一阶段的结束。此时,梁纯弯段截面承担的弯矩M cr称为开裂弯矩。第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力急增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。压区混凝土中压应力也由线性分布转化为非线性分布。当受拉钢筋屈服时标志着第二阶段的结束。此时梁纯弯段截面承担的弯矩M y称为屈服弯矩。第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。此时,梁承担的弯矩M u 称为极限弯矩。适筋梁的破坏始于纵筋屈服,终于混凝土压碎。整个过程要经历相当大的变形,破坏前有明显的预兆。这种破坏称为适筋破坏,属于延性破坏。 三、试验装置

信号与系统实验四

信号与系统实验实验四:周期信号的傅里叶级数 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、掌握用傅里叶级数进行谐波分析的方法。 4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。 二、预习内容 1、周期信号的傅里叶级数分解及其物理意义。 2、典型信号傅里叶级数计算方法。 三、实验原理 1. 信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压)(t u 和电流)(t i 等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。 无论是信号的时间特性还是频率特性都包含了信号的全部信息量。 2. 信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间),(11T t t +内表示为 ()∑∞ =Ω+Ω+=10sin cos )(n n n t n b t n a a t f 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A 0t A n 0A 0t (a)(b) Ω(c)ωΩ 5Ω3Ω Ω3Ω5 3. 信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。 4. 信号频谱的测量 在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛

实验指导四空间大数据处理与地图投影

实验四空间数据处理与地图投影 一、实验目的 1.掌握空间数据处理(融合、拼接、剪切、交叉、合并)的基本方法,原理。 2.掌握地图投影变换的基本原理与方法。 3.掌握ArcGIS中投影的应用及投影变换的方法、技术,同时了解地图投影及其变换在实际中的应用。 二、实验准备 1.软件准备:ArcGIS 10.2 2.数据准备: (1)stationsll.shp(美国爱达荷州轮廓图) (2)idll.shp(美国爱达荷州滑雪场资料) 以上两个数据是以十进制表示经纬度数值的shapefile (3)snow.txt(美国爱达荷州40个滑雪场的经纬度值) (4)stations.shp,一个已投影的shapefile,用于检验习作2的投影结果 (5)idoutl.shp,基于爱达荷横轴墨卡托坐标系的爱达荷州轮廓图,用于检验习作3投影的正确性 三、实验容与步骤 1.空间数据处理 1.1 裁剪要素 ?在ArcMap中,添加数据“县界.shp”、“Clip.shp”(Clip 中有四个实体) ?开始编辑,激活Clip图层。选中Clip图层中的一个实体(注意不要选中“县界”中的实体!)

图4-1 编辑Clip ?点击按钮,打开ArcToolBox; ?选择“Analysis Tools->Extract”,双击“Clip”,弹出窗口剪切窗口,指定输入实体为“县界”,剪切实体为“Clip”(必须为多边形实体),并指定输出实体类路径及名称,这里请命名为“县界_Clip1” 如图4-5; 图4-2 工具箱

图4-3 剪切窗口 ?依次选中Clip主题中其它三个实体,重复以上的操作步骤,完成操作后将得到共四个图层——“县界_Clip1”,“县界_Clip2”,“县界_Clip3”,“县界_Clip4”); ?操作完成后,一定要“Save Editors”。 图4-4 生成四个剪切图层

土工实验指导书及实验报告

土工实验指导书及实验报告编写毕守一 安徽水利水电职业技术学院 二OO九年五月

目录 实验一试样制备 实验二含水率试验 实验三密度试验 实验四液限和塑限试验 实验五颗粒分析试验 实验六固结试验 实验七直接剪切试验 实验八击实试验 土工试验复习题

实验一试样制备 一、概述 试样的制备是获得正确的试验成果的前提,为保证试验成果的可靠性以及试验数据的可比性,应具备一个统一的试样制备方法和程序。 试样的制备可分为原状土的试样制备和扰动土的试样制备。对于原状土的试样制备主要包括土样的开启、描述、切取等程序;而扰动土的制备程序则主要包括风干、碾散、过筛、分样和贮存等预备程序以及击实等制备程序,这些程序步骤的正确与否,都会直接影响到试验成果的可靠性,因此,试样的制备是土工试验工作的首要质量要素。 二、仪器设备 试样制备所需的主要仪器设备,包括: (1)孔径0.5mm、2mm和5mm的细筛; (2)孔径0.075mm的洗筛; (3)称量10kg、最小分度值5g的台秤; (4)称量5000g、最小分度值1g和称量200g、最小分度值0.01g的天平;

(5)不锈钢环刀(内径61.8mm、高20mm;内径79.8mm、高20mm或内径61.8mm、高40mm); (6)击样器:包括活塞、导筒和环刀; (7)其他:切土刀、钢丝锯、碎土工具、烘箱、保湿器、喷水设备、凡士林等。 三、试样制备 (一)原状土试样的制备步骤 1、将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取土样。 2、检查土样结构,若土样已扰动,则不应作为制备力学性质试验的试样。 3、根据试验要求确定环刀尺寸,并在环刀内壁涂一薄层凡士林,然后刃口向下放在土样上,将环刀垂直下压,同时用切土刀沿环刀外侧切削土样,边压边削直至土样高出环刀,制样时不得扰动土样。 4、采用钢丝锯或切土刀平整环刀两端土样,然后擦净环刀外壁,称环刀和土的总质量。 5、切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述。 6、从切削的余土中取代表性试样,供测定含水率以及颗粒分析、界限含水率等试验之用。

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

ACCESS2010数据库技术实验指导书3

《ACCESS2010数据库技术及应用》 实验指导(3) 学号: 姓名: 班级: 专业:

实验三窗体 实验类型:验证性实验课时: 4 学时指导教师: 时间:201 年月日课次:第节教学周次:第周 一、实验目的 1. 掌握窗体创建的方法 2. 掌握向窗体中添加控件的方法 3. 掌握窗体的常用属性和常用控件属性的设置 二、实验内容和要求 1. 创建窗体 2. 修改窗体,添加控件,设置窗体及常用控件属性 三、实验步骤 案例一:创建窗体 1.使用“窗体”按钮创建“成绩”窗体。 操作步骤如下: (1)打开“教学管理.accdb”数据库,在导航窗格中,选择作为窗体的数据源“教师”表,在功能区“创建”选项卡的“窗体”组,单击“窗体”按钮,窗体立即创建完成,并以布局视图显示,如图3-1所示。 (2)在快捷工具栏,单击“保存”按钮,在弹出的“另存为”对话框中输入窗体的名称“教师”,然后单击“确定”按钮。 图3-1布局视图 2.使用“自动创建窗体”方式 要求:在“教学管理.accdb”数据库中创建一个“纵栏式”窗体,用于显示“教师”表中的信息。 操作步骤: (1)打开“教学管理.accdb”数据库,在导航窗格中,选择作为窗体的数据源“教师”表,在功能区“创建”选项卡的“窗体”组,单击“窗体向导”按钮。如图3-2所示。 (2)打开“请确定窗体上使用哪些字”段对话框中,如图3-3 所示。在“表和查询”下拉列表中光图3-2窗体向导按钮

标已经定位在所学要的数据源“教师”表,单击按钮,把该表中全部字段送到“选定字段”窗格中,单击下一步按钮。 (3)在打开“请确定窗体上使用哪些字”段对话框中,选择“纵栏式”,如图3-4所示。单击下一步按钮。 (4)在打开“请确定窗体上使用哪些字”段对话框中,输入窗体标题“教师”,选取默认设置:“打开窗体查看或输入信息”,单击“完成”按钮,如图3-5所示。 (5)这时打开窗体视图,看到了所创建窗体的效果,如图3-6所示。 图3-3“请确定窗体上使用哪些字”段对话框 图3-4“请确定窗体使用的布局”段对话框中

CAD上机实验指导书及实验报告

北京邮电大学世纪学院 实验、实习、课程设计报告撰写格式与要求 (试行) 一、实验报告格式要求 1、有实验教学手册,按手册要求填写,若无则采用统一实验报告封面。 2、报告一律用钢笔书写或打印,打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 3、统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。 4、实验报告中的实验原始记录,须经实验指导教师签字或登记。 二、实习报告、课程设计报告格式要求 1、采用统一的封面。 2、根据教学大纲的要求手写或打印,手写一律用钢笔书写,统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 三、报告内容要求 1、实验报告内容包括:实验目的、实验原理、实验仪器设备、实验操作过程、原始数据、实验结果分析、实验心得等方面内容。 2、实习报告内容包括:实习题目、实习任务与要求、实习具体实施情况(附上图表、原始数据等)、实习个人总结等内容。 3、课程设计报告或说明书内容包括:课程设计任务与要求、总体方案、方案设计与分析、所需仪器设备与元器件、设计实现与调试、收获体会、参考资料等方面内容。 北京邮电大学世纪学院 教务处 2009-8

实验报告 课程名称计算机绘图(CAD) 实验项目AutoCAD二维绘图实验 专业班级 姓名学号 指导教师实验成绩 2016年11月日

信号与系统实验报告

中南大学 信号与系统试验报告 姓名: 学号: 专业班级:自动化 实验一 基本信号的生成 1.实验目的 ● 学会使用MATLAB 产生各种常见的连续时间信号与离散时间信号; ● 通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用信号的 理解; ● 熟悉MATLAB 的基本操作,以及一些基本函数的使用,为以后的实验奠 定基础。 2.实验内容 ⑴ 运行以上九个例子程序,掌握一些常用基本信号的特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形的变化。 ⑵ 在 k [10:10]=- 范围内产生并画出以下信号: a) 1f [k][k]δ=; b) 2f [k][k+2]δ=; c) 3f [k][k-4]δ=; d) 4f [k]2[k+2][k-4]δδ=-。

源程序: k=-10:10; f1k=[zeros(1,10),1,zeros(1,10)]; subplot(2,2,1) stem(k,f1k) title('f1[k]') f2k=[zeros(1,8),1,zeros(1,12)]; subplot(2,2,2) stem(k,f2k) title('f2[k]') f3k=[zeros(1,14),1,zeros(1,6)]; subplot(2,2,3) stem(k,f3k) title('f3[k]') f4k=2*f2k-f3k; subplot(2,2,4) stem(k,f4k) title('f4[k]') ⑶ 在 k [0:31]=范围内产生并画出以下信号: a) ()()k k 144f [k]sin cos π π=; b) ()2k 24f [k]cos π =; c) ()()k k 348f [k]sin cos π π=。 请问这三个信号的基波周期分别是多少? 源程序: k=0:31; f1k=sin(pi/4*k).*cos(pi/4*k); subplot(3,1,1) stem(k,f1k) title('f1[k]') f2k=(cos(pi/4*k)).^2; subplot(3,1,2) stem(k,f2k) title('f2[k]') f3k=sin(pi/4*k).*cos(pi/8*k); subplot(3,1,3) stem(k,f3k) title('f3[k]') 其中f1[k]的基波周期是4, f2[k]的基波周期是4, f3[k]的基波周期是16。

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

oracle数据库实验指导书

计算机科学学院《ORACLE数据库》实验指导书

《ORACLE数据库》实验指导书 实验一Oracle数据库安装配置以及基本工具的使用 1.实验的基本内容 实验室中oracle数据库安装后某些服务是关闭的(为了不影响其他课程的使用),所以在进入数据库前需要对oracle进行配置: (1)启动oracle OraHomeTNSLISTENER 和oracleserviceORACLE 两个服务 (2)修改listener.ora 和tnsnames.ora 两个文件的内容 (3)以用户名:system ,口令:11111 以“独立登录”的方式进入oracle 数据库系统 (4)熟悉数据库中可用的工具。 2.实验的基本要求 (1)掌握Oracle11g的配置以及登录过程。 (2)熟悉系统的实验环境。 3.实验的基本仪器设备和耗材 计算机 4.实验步骤 (1) 查看设置的IP地址是否与本机上的IP地址一致。若不一致则修改为本机IP地址。 (2) 启动oracle OraHomeTNSLISTENER 和oracleserviceORACLE 两个服务 控制面板/性能与维护/管理工具/服务/ oracle OraHomeTNSLISTENER(右击/启动)。 控制面板/性能与维护/管理工具/服务/ oracleserviceORACLE(右击/启动) (3) 修改listener.ora 和tnsnames.ora 两个文件的内容 D:\app\Administrator\product\11.1.0\db_1\NETWORK\ADMIN (用记事本方式打开),将HOST=“…..”内容修改为本机的IP地址,保存退出。 D:\app\Administrator\product\11.1.0\db_1\NETWORK\ADMIN (用记事本方式打开),将HOST=“…..”内容修改为本机的IP地址,保存退出。 (4) 启动oracle 数据库

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编 汽车工程学院 2005年9月

前言 1.实验总体目标、任务与要求 1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、动量方程实 验,实现对基本理论的验证。 2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。 2.适用专业 热能与动力工程 3.先修课程 《流体力学》相关章节。 4.实验项目与学时分配 5. 实验改革与特色 根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一伯努利方程实验 1.观察流体流经实验管段时的能量转化关系,了解特定截面上的总水头、测压管水头、压强水头、速度水头和位置水头间的关系,从而加深对伯努利方程的理解和认识。 2.掌握各种水头的测试方法和压强的测试方法。 3.掌握流量、流速的测量方法,了解毕托管测速的原理。 二、实验条件 伯努利方程实验仪 三、实验原理 1.实验装置: 图一伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验 细管9. 实验粗管10.测压管11.调节阀12.接水箱13.量杯14回水管15.实验桌 2.工作原理 定压水箱7靠溢流来维持其恒定的水位,在水箱下部装接水平放置的实验细管8,水经实验细管以恒定流流出,并通过调节阀11调节其出水流量。通过布置在实验管四个截面上的四组测压孔及测压管,可以测量到相应截面上的各种水头的大小,从而可以分析管路中恒定流动的各种能量形式、大小及相互转化关系。各个测量截面上的一组测压管都相当于一组毕托管,所以也可以用来测管中某点的流速。 电测流量装置由回水箱、计量水箱和电测流量装置(由浮子、光栅计量尺和光电子

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

信号与系统实验(新)

信号与系统实验 实验1 阶跃响应与冲激响应 一、实验目的 1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并 研究其电路元件参数变化对响应状态的影响; 2、掌握有关信号时域的测量方法。 二、实验原理说明 实验如图1-1所示RLC串联电路的阶跃响应与冲激响应的电路连接图,图1

用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。 三、实验内容 1、阶跃响应波形观察与参数测量 设激励信号为方波,其幅度为1.5V 峰峰值,频率为500Hz 。 实验电路连接图如图1-1(a )所示。 ① 连接如图1-1所示 ② 调整激励源信号为方波,调节频率旋钮,使f=500Hz ,调节幅度旋钮, 使信号幅度为1.5V 。(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节) ③ 示波器CH1接于TP909,调节滑动变阻器,使电路分别工作于欠阻尼、 临界和过阻尼三种状态,并将实验数据填入表格1-1中。 ④ TP908为输入信号波形的测量点,可把示波器的CH ·接于TP908上,便 于波形比较。 表1-1 注:描绘波形要使三状态的X 轴坐标(扫描时间)一致。 2、冲激响应的波形观察 冲激信号是由阶跃信号经过微分电路而得到。 实验电路如图1—1(b )所示。 参数测量 波形观察 欠阻尼状态 临界状态 过阻尼状态 状态 参数测量 R< Tr= Ts= δ= R= Tr= R>

①将信号输入接于P905。(频率与幅度不变); ②将示波器的CH1接于TP906,观察经微分后响应波形(等效为冲激激 励信号); ③连接如图1-1(b)所示 ④将示波器的CH2接于TP909,调整滑动变阻器,使电路分别工作于欠 阻尼、临界和过阻尼三种状态 ④观察TP909端三种状态波形,并填于表1-2中。 表1-2 表中的激励波形为在测量点TP906观察到的波形(冲激激励信号)。 四、实验报告要求 1、描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时, 要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。 2、分析实验结果,说明电路参数变化对状态的影响。 五、实验设备 双踪示波器 1 台 信号系统实验箱 1台 上升时间t r :y(t)从0.1到第一次达到0.9所需时间。 峰值时间t p :y(t)从0上升y max 所需的时间。 调节时间t s :y(t)的振荡包络线进入到稳态值的% 5 误差范围所需的时间。 激励波形 响应波形 欠阻尼状态临界状态过阻尼状态

相关主题
文本预览
相关文档 最新文档