当前位置:文档之家› 实验十二_倒立摆系统控制算法的状态空间法设计

实验十二_倒立摆系统控制算法的状态空间法设计

实验十二_倒立摆系统控制算法的状态空间法设计
实验十二_倒立摆系统控制算法的状态空间法设计

实验十二倒立摆系统控制算法的状态空间法设计一.实验目的

学习如何使用状态空间法设计系统的控制算法。

二.实验内容

用状态空间法设计控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的相应指标为:

(1)杆角度θ和小车位移x的稳定时间小于5秒

(2)x的上升时间小于1秒

(3)θ的超调量小于20度(0.35弧度)

(4)稳态误差小于4%。

三.实验步骤

(1)打开教学程序,双击"LQR"模块,输入默认LQR控制器参数。将绿色模块中的"Pos Ref"的值设为0,并将"Switch"模块切换至"Pos Ref"模块信号输入;

(2)编译整个系统,然后进行连接,等待初始化3~5秒后,点击开始实时控制,倒立摆开始起摆;待倒立摆稳定后,用示波器观察小车的稳定位置P1和摆杆的稳定角度Pend1,并记录近似值;

(3)双击"Pos Ref"模块,将其设为0.2,即产生一个0.2的阶跃信号,双击示波器可观察各个信号的变化;

(4)用示波器观察小车的稳定位置P2和摆杆的稳定角度Pend2,并记录一个近似值;(5)点击停止仿真,到MATLAB command命令行中对记录的数据进行分析:自己编写程序画出系统的阶跃响应,计算响应指标,判断是否符合控制要求;

(6)编写MA TLAB程序用LQR方法计算出状态反馈向量K;

(7)对状态反馈控制系统进行0.2m的阶跃响应仿真,反复调整Q和R,得到不同的K,直到系统响应满足控制要求,记此时的K值为K0;

(8)用仿真满足控制要求的K0代替默认参数,输入到LQR模块中,重复步骤(2)~(5),若实际系统也满足控制要求,则记录K0值,并记录运行数据至磁盘;否则调整Q和R得到新的K值,重复上述步骤,直到实际系统也满足控制要求。

四.实验结果

(1)当Q1=200,Q3=100,R=1时,反馈向量K=[ -14.1421 -11.7799 57.8485 10.9999]改变Q、R值:

当Q1=250,Q3=150,R=1.5时,反馈向量K=[ -12.9099 -11.0466 56.0287 10.6382] 当Q1=150,Q3=50,R=0.5时,反馈向量K=[ -17.3205 -13.6230 62.3844 11.8998]

改变K值前后反馈后的响应曲线为:

(2)小车位移曲线:摆杆角位移曲线:

控制力曲线:

五、Matlab源程序如下:

clear all;

%%实际系统参数

f1=0.001;M=1.096;

m=0.109; b=0.25;

l=0.25; I=0.0034;

g=9.8; T=0.001;

%%求系统状态空间参数

p=I*(M+m)+M*m*l^2;

A=[0 1 0 0;0 -(I+m*l^2)*b/p m^2*g*l^2/p 0;0 0 0 1;0 -m*b*l/p m*g*l*(M+m)/p 0];

B=[0;(I+m*l^2)/p;0;m*l/p];

C=[1 0 0 0;0 0 1 0];

D=0;

%%求反馈向量K

R=1;

Q1=200;

Q3=100;

Q=[Q1 0 0 0;0 0 0 0;0 0 Q3 0;0 0 0 0];

K=lqr(A,B,Q,R);

%%求状态反馈后的系统sysstate

Ac=A-B*K;

Bc=B*K(1); %输入变换使输入与反馈的量纲匹配

sysstate=ss(Ac,Bc,C,D);

%%对lqr控制系统进行仿真

t=0:T:5;

U=0.2*ones(size(t));

y=lsim(sysstate,U,t);

figure(1);

hold on;

plot(t,y(:,1),t,y(:,2),'r');

box on;

xlabel('t/s');

ylabel('Position/m or Angle/rad');

legend('Car Position','Pendulum Angle');

六.思考题

①计算Ac的特征值

当Q1=200,Q3=100,R=1时,反馈向量K=[ -14.1421 -11.7799 57.8485 10.9999] Ac = 0 1.0000 0 0

12.4899 10.1829 -50.4605 -9.7147

0 0 0 1.0000

33.3267 27.1709 -108.4945 -25.9218

特征值为:-5.5539 + 2.1139i,-5.5539 - 2.1139i,-2.3155 + 1.9714i,-2.3155 - 1.9714i ②通过仿真分析Q11和Q33的大小对控制效果的影响。

⑴固定Q33,改变Q11

当Q11=250,Q33=100,R=1 Q11=150,Q33=100,R=1时

由图可看出Q11变大使得系统调节时间,峰值时间减小,超调量增大,系统响应变快。

⑵固定Q11,改变Q33

Q11=200,Q33=200,R=1 Q11=200,Q33=10,R=1时

由图可看出Q33变大使得系统调节时间,峰值时间增大,超调量减小,系统响应变慢。

自动控制原理课程设计——倒立摆系统控制器设计

一、引言 支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。 问题的提出 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

自动化控制系统设计实例教学大纲-2017

《自动化控制系统设计实例》课程教学大纲 课程代码:060032005 课程英文名称:Automation Control System Design Examples 课程总学时:16学时讲课:16学时实验:0学时上机:0学时 适用专业:自动化 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 自动化控制系统设计实例是自动化专业的专业基础选修课。通过对该课程的学习,使学生建立起“系统”概念,了解自动化系统主要的控制方法、控制技术,为后续专业课学习奠定基础。 (二)知识、能力及技能方面的基本要求 通过实例教学,针对不同的控制对象,全方位、多视角介绍采用单片机、自动化仪表、工控机、PLC组建不同工业流程的设计实例和实施过程;要求学生了解自动化控制系统的设计原则、设计步骤,建立起“控制”与“系统”的概念,了解自动化控制系统的主流技术和前沿技术。 (三)实施说明 在讲授具体内容时,从一个具体的被控对象分析入手到合理的控制要求的形成,从控制装置、元器件部件选型到控制方案的产生,从硬件结构到电路细节,从软件框图到控制算法以及实施过程一一进行分析讲解;培养学生思考问题、分析问题和解决问题的能力。 (四)对先修课的要求 本课程的先修课是《自动控制原理》和《C语言程序设计》。 (五)对习题课、实验环节的要求 无。 (六)课程考核方式 1.考核方式:考查 2.考核目标:考核学生对自动化控制系统的了解程度;考核学生自动化产品研发思路和独立思考能力。 3.成绩构成:本课程的学生成绩采用二级制(通过、不通过)。成绩由学术报告和平时成绩相结合的方法确定。其中:平时成绩由考勤及课堂表现组成,占总的40% ;学术报告成绩占总的60%。 (七)主要参考书目: 1. 《自动化系统工程设计与实施》,林敏等编,电子工业出版社,2008。 2. 《过程控制系统》,俞金寿孙自强编著,机械工业出版社,2009。 3. 《PLC编程及应用》(第4版),廖常初编著,机械工业出版社,2015。 二、中文摘要 本课程是自动化专业学生的一门实践性很强的专业基础选修课程。课程通过对精选实例的自动化控制系统的设计、选型、研制、调试和实施等讲授,使学生建立“控制”与“系统”的概念,了解自动化系统的主流技术和发展趋势。本课程将全方位、多视角地介绍单片机、自动化仪表、工控机、PLC等组建不同工业流程的设计实例和实施过程,本课程将为后续自动化专业课程的学习奠定基础。

自动控制原理课程设计-倒立摆系统控制器设计

1 引言 支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。 1.1 问题的提出 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 1.2 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,

需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。 2 直线倒立摆数学模型的建立 直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。 鉴于小车倒立摆系统是不稳定系统,实验建模存在一定的困难。因此,本文通过机理建模方法建立小车倒立摆的实际数学模型,可根据微分方程求解传递函数。 2.1 微分方程的推导(牛顿力学方法) 微分方程的推导在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。做以下假设: M小车质量m摆杆质量 b小车摩擦系数I 摆杆惯量

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合 第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。 随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。 (1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。 (2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。 本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。 8.1 控制系统的状态空间描述 8.1.1 系统数学描述的两种基本方法 统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

倒立摆控制系统设计报告.doc

控制系统综合设计 倒立摆控制系统 院(系、部): 组长: 组员 班级: 指导教师: 2014年1月2日星期四

目录 摘要----------------------------------------------------------------------------------3 引言----------------------------------------------------------------------------------3 一、整体方案设计--------------------------------------------------------------3 1、需求-----------------------------------------------------------------------------3 2、目标-----------------------------------------------------------------------------3 3、概念设计----------------------------------------------------------------------3 4、整体开发方案设计---------------------------------------------------------3 5、评估----------------------------------------------------------------------------4 二、系统设计--------------------------------------------------------------------4 (一)系统设计-----------------------------------------------------------------4 1、功能分析----------------------------------------------------------------------4 2、设计规范和约束------------------------------------------------------------6 3、详细设计----------------------------------------------------------------------7 (二)机械系统设计-----------------------------------------------------------8 三、理论分析---------------------------------------------------------------------9 1、控制系统建模----------------------------------------------------------------9 2、时域和频域分析------------------------------------------------------------13 3、设计PID或其他控制器---------------------------------------------------21 四、元器件、设备选型--------------------------------------------------------30

倒立摆系统的控制器设计

倒立摆系统的控制器设计

摘 要 倒立摆是一种典型的非线性,多变量,强耦合,不稳定系统,许多抽象的控制概念如系统的稳定性、可控性、系统的抗干扰能力等都可以通过倒立摆直观的反应出来;倒立摆的控制思想在实际中如实验、教学、科研中也得到广泛的应用;在火箭飞行姿态的控制、人工智能、机器人站立与行走等领域有广阔的开发和利用前景。因此,对倒立摆系统的研究具有十分重要的理论和实践意义。 本文首先将直线倒立摆抽象为简单的模型以便于受力分析进行机理建模,然后通过牛顿力学原理进行分析,得出相应的模型,进行拉氏变化带入相应参数得出摆杆角度和小车位移、摆杆角度和小车加速度、摆杆角度和小车所受外界作用力、小车位移与小车所受外界作用力的传递函数,其中摆杆角度和小车加速度之间的传递函数为: 02()0.02725()()0.01021250.26705s G s V s s Φ==- ………… (1) 即我们在本次设计中主要分析的系统的传递函数。 然后从时域角度着手,分析直线一级倒立摆的开环单位阶跃响应和单位脉冲响应,利用Matlab 中的Simulink 仿真工具进行仿真,得出结论该系统的开环响应是发

散的。 最后分别利用根轨迹分析法,频域分析法和PID 控制法对倒立摆系统进行校正。 针对目标一:调整时间0.5(2%)s t s =误差带,最大超调量%10%≤p σ,选取参数利用根轨迹法进行校正,得出利用超前校正环节的传递函数为: 135.1547( 5.0887) ()135.1547c s G s s +=+ ………………………… (2) 针对目标二:系统的静态位置误差常数为10;相位裕量为 50 ;增益裕量等于或大于10 分贝。通过频域法得出利用超前校正环节的传递函数为: 1189.6(8.15) ()99.01c s G s s +=+ …………………………… ……………………(3) 针对目标三: 调整时间误差带)%2(2s t s =,最大超调量,%15%≤p σ,设计或调整PID 控制器参数,得出调整后的传递函数为: 150()21020c G s s s =++ ………………………………………. .(4)

答案 控制系统的状态空间描述 习题解答

第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 3 x 2 x 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α& ②: 3222x x x +=α&③:u x x +=333α& 输出y 为1y x du =+,得 1112223331000100 1x a x x a x u x a x ?? ?????? ????????=+???????????????????????? &&& []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++&&&&&& ;(2) u u y y -=+&&&&&&32; (3) u u y y y y 75532+=+++&&&&&&&&& 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =&,3y x =&&,则有:

1223 31231 543x x x x x x x x u y x =??=?? =---+??=?&&& 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? &&& (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 3222332()3()()() 11()12 23()232 s Y s sY s s U s U s s Y s s U s s s s s +=---==++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????-?? ?? &&& 123110 2 2x y x x ?????? =- ?????????? (3) 解 采用拉氏变换法求取状态空间表达式。对微分方程(3)在零初试条件 下取拉氏变换得: 323()2()3()5()5()7()s Y s s Y s sY s Y s s U s U s +++=+

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

倒立摆校正装置的设计

自动控制原理课程设计报告 倒立摆系统的控制器设计 指导教师:谢昭莉 学生:冯莉 学号: 20095099 专业:自动化 班级: 2009 级 3 班 设计日期: 2011.12.12—2011.12.23 重庆大学自动化学院 2011年12月

重庆大学本科学生课程设计任务书

目录 1倒立摆系统的研究背景和意义 (1) 2小车倒立摆系统模型的假设 (1) 3符号说明 (2) 4模型的建立 (2) 4.1牛顿力学法系统分析 (2) 4.2拉氏变换后实际系统的模型 (6) 5开环响应分析 (7) 6根轨迹法设计超前校正装置函数 (9) 6.1校正前倒立摆系统的闭环传递函数的析 (9) 6.2系统稳定性分析 (9) 6.3期望闭环极点的确定 (10) 6.4 超前校正装置传递函数的设计 (11) 6.4.1校正参数计算 (11) 6.4.2控制器的确定 (13) 6.4.3校正装置的改进 (13) 6.4.4Simulink仿真 (15)

7直线一级倒立摆频域法设计 (17) 7.1系统频域响应分析 (17) 7.2频域法控制器设计 (19) 7.2.1控制器的选择 (19) 7.2.2系统开环增益的计算 (19) 7.2.3校正装置的频率分析 (20) 7.2.4控制器转折频域和截止频域的求解 (22) 7.2.5校正装置的确定 (22) 7.2.6Simulink仿真 (24) 8直线一级倒立摆的PID控制设计 (25) 8.1PID简介 (25) 8.2PID控制设计分析 (25) 8.3PID控制器的参数测定 (26) 9总结与体会 (29) 9.1总结 (29) 9.2体会 (29) 10参考文献 (30)

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

(整理)控制系统的状态空间模型

第一章控制系统的状态空间模型 1.1 引言 工程系统正朝着更加复杂的方向发展,这主要是由于复杂的任务和高精度的要求所引起的。一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合,可能是时变的。由于需要满足控制系统性能提出的日益严格的要求,系统的复杂程度越来越大,为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算,并且要求能够方便地用大型计算机对系统进行处理。从这个观点来看,状态空间法对于系统分析是最适宜的。大约从1960年升始发展起来。这种新方法是建立在状态概念之上的。状态本身并不是一个新概念,在很长一段时间内,它已经存在于古典动力学和其他一些领域中。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。 本课程将主要涉及控制系统的基于状态空间的描述、分析与设计。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用MA TLAB进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的分析方法。第三章将给出系统的稳定性分析。第四章将给出几种主要的设计方法。 本章1.1节为控制系统状态空间分析的引言。1.2节介绍状态空间描述1.3节讨论动态系统的状态空间表达式。1.4状态空间表达式的标准形式。1.5 介绍系统矩阵的特征值基本性质.1.6讨论用MATLAB进行系统模型的转换问题。 1.2控制系统的状态空间描述 状态空间描述是60年代初,将力学中的相空间法引入到控制系统的研究中而形成的描述系统的方法,它是时域中最详细的描述方法。 特点:1.给出了系统的内部结构信息. 2.形式上简洁,便于用数字计算机计算. 1.2.1 状态的基本概念 在介绍现代控制理论之前,我们需要定义状态、状态变量、状态向量和状态空间。

最新倒立摆系统的控制器设计

目录 摘要.......................................................................................................................................... - 5 - 1 倒立摆系统概述................................................................................................................................ - 6 - 1.1倒立摆的种类......................................................................................................................... - 6 - 1.2系统的组成............................................................................................................................. - 6 - 1.3工程背景................................................................................................................................. - 6 - 2 数学模型的建立................................................................................................................................ - 7 - 2.1牛顿力学法系统分析............................................................................................................. - 7 - 2.2拉氏变换后实际系统的模型............................................................................................... - 10 - 3 开环响应分析.................................................................................................................................. - 11 - 4 根轨迹法设计.................................................................................................................................. - 13 - 4.1校正前倒立摆系统的闭环传递函数的分析....................................................................... - 13 - 4.2系统稳定性分析................................................................................................................... - 13 - 4.3 根轨迹设计.......................................................................................................................... - 14 - 4.4 SIMULINK仿真..................................................................................................................... - 17 - 5 直线一级倒立摆频域法设计........................................................................................................ - 18 - 5.1 系统频域响应分析.............................................................................................................. - 18 - 5.2频域法控制器设计............................................................................................................... - 19 - 5.2.1控制器的选择........................................................................................................... - 19 - 5.2.2系统开环增益的计算............................................................................................... - 20 - 5.2.3校正装置的频率分析............................................................................................... - 20 - 5.3 Simulink仿真..................................................................................................................... - 24 - 6 直线一级倒立摆的PID控制设计................................................................................................ - 25 - 6.1 PID简介............................................................................................................................... - 25 -

控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n 和0t t ≥时输入的时间函数)(t u , 则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。 4. 状态空间 以状态变量())()() (21t x t x t x n 为坐标的n 维空间。 系统在某时刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

小车倒立摆系统开题报告

开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下一步的研究(或设计)工作。 一、课题的目的意义: 倒立摆系统作为一个实验装置,形象直观,结构简单,构件组成参数和形状易于改变,成本低廉;作为一个被控对象,它又相当复杂,就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取行之有效的控制方法方能使之稳定。 理论是工程的先导,倒立摆的研究具有重要的工程背景。机器人行走类似倒立摆系统,尽管第一台机器人在美国问世以来已有几十年的历史,但机器人的关键技术至今仍未很好解决。由于倒立摆系统的稳定与空间飞行器控制和各类伺服云台的稳定有很大相似性,也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象。因此,倒立摆机理的研究又具有重要的应用价值,成为控制理论中经久不衰的研究课题。 文献综述(分析国内外研究现状、提出问题,找到研究课题的切入点,附主要参考文献,约2000字): 倒立摆系统的最初分析开始于二十世纪五十年代,是一个比较复杂的不稳定,多变量,带有强耦合特性的高阶机械系统。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统受到不确定因素的干扰。其控制方法和思路在处理一般工业过程中有很广泛的用途,此外,其相关的研究成果也在航天科技和机器人学习方面得到了大量的应用,如机器人行走过程中平衡控制,火箭发射中的垂直度控制和卫星飞行中的姿态控制等,因此,倒立摆系统是进行控制理论研究的理想平台。 倒立摆是机器人技术﹑控制理论﹑计算机控制等多个领域﹑多种技术的有机结合,其被控

相关主题
文本预览
相关文档 最新文档