当前位置:文档之家› (完整版)掺铒光纤放大器的原理与应用毕业设计

(完整版)掺铒光纤放大器的原理与应用毕业设计

(完整版)掺铒光纤放大器的原理与应用毕业设计
(完整版)掺铒光纤放大器的原理与应用毕业设计

毕业设计(论文)报告

题目掺铒光纤放大器的原理与应用

系别尚德光伏学院

专业应用电子技术(光电子技术方向)班级0903

学生姓名刘钰华

学号090264

指导教师

2012年4 月

掺铒光纤放大器的原理与应用

摘要:光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信具有通信容量大、传输速率高、使用寿命长,等诸多特点。因而得到了普遍的应运,其中光放大器是光纤系统中的重要组成部分。光纤放大器(简写OFA)是指运用于光纤通信线路中,实现信号放大的一种新型全光放大器。

本论文介绍了掺铒光纤放大器(简写EDFA)的相关理论。首先对光纤放大器的种类进行大致的简介,其次阐述了掺铒光纤放大器的历史和发展,以及对掺铒光纤放大器工作原理进行了介绍。重点关注了掺铒光纤放大器在现代光纤通信系统中的应运。

关键字:光纤、光纤通信、掺铒光纤放大器、应运

Principles and applications of the erbium-doped fiber

amplifier

Abstract:Optical Fiber Communication, is the use of optical fiber to transmit light waves carry information in order to achieve the purpose of communication. Large capacity optical fiber communication with the communication, transmission rate, long life and many other features. And so it generally should be shipped, in which optical fiber amplifier is an important component of the system. Fiber amplifier is used in optical fiber communication lines. A new type of signal amplification to achieve all-optical amplifiers.

This paper describes the erbium-doped fiber amplifier theories. First, erbium-doped fiber amplifier general introduction to the history and types

of optical amplifiers and erbium-doped fiber amplifier operating principle

was introduced. Focus on the erbium-doped fiber amplifier in a modern optical fiber communication system should be shipped.

Keywords:Fiber 、Optical Fiber Communication 、Erbium-doped

fiber 、amplifier Should be shipped

目录

前言 (1)

第一章绪论 (2)

1.1 光纤通信系统中放大技术 (3)

1.1.1光纤放大器的分类 (3)

1.1.2 半导体光放大器 (4)

1.1.3 光纤放大器 (6)

1.2 掺铒光纤放大器的发展历史 (6)

1.3 EDFA 的发展方向 (8)

第二章掺铒光纤放大器的工作原理及性能参数 (10)

2.1掺铒光纤放大器的介绍 (10)

2.1.1 EDFA放大器的组成 (10)

2.1.2 EDFA的放大原理 (11)

2.1.3 EDFA的基本性能 (12)

2.2 EDFA的优缺点 (12)

2.3 EDFA的主要应用形式. (14)

2.4 EDFA的增益特性 (15)

第三章 EDFA在密集波分复用系统中应用与研究 (18)

3.1 波分复用(WDM)的基本概念 (18)

3.1.1 波分复用系统的组成 (18)

3.1.2 EDFA在WDM系统中的应用 (19)

3.1.3 WDM系统对EDFA的要求 (19)

3.1.4 密集波分复用(DWDM)原理概述 (21)

3.2 EDFA在密集波分复用(DWDM)系统中应用的分析 (22)

3.2.1 EDFA在DWDM系统中的作用和应用方式 (22)

3.2.2 DWDM中对EDFA的主要性能要求 (24)

第四章总结 (27)

致谢 (28)

参考文献

前言

人类传播信息方式是多种多样的。用光来传递信息也是很早之前就有的。远在周代我国就有了烽火传递信息的方法,烽火作为一种原始的声光通信手段,服务于古代军事战争。从边境到国都以及边防线上,每隔一定距离就筑起一座烽火台。内储柴草,当敌人入侵时,便一个接一个地点燃起烽火报警,各路诸侯见到烽火,马上派兵相助,抵抗敌人。

现如今用光纤来传递信息已成为非常重要的信息传递方式。在光纤通信系统中光放大又是一个非常重要的环节。光放大器是可将微弱的光信号直接进行光放大的器件。它的出现使光纤通信技术产生了质的飞跃;它使光波分复用技术,光孤子通信技术迅速成熟并得于商用,同时他为未来的全光通信网奠定了扎实的基础,成为现代和未来光纤通信系统中不可少的重要器件。

近年来,包括有线电视在内的光纤通信系统,由于光纤干线的普及,由于光纤干线的普及为了,适应通信容量的扩大和远距离传输网络高功能化的需要,波分复用(WDM)技术有了新的发展。但在WDM系统中,最有力的关键技术,就是光纤放大器的实用化。众所周知,在光纤线路中,最有影响的指标一是色散,另是衰减损耗。关于色散问题将另外探讨。衰减是指光信号在光纤内传输过程中,产生的光功率损耗而言。衰减量是将每1km产生的损耗,用dB表示之值,0.2dB/km,3dB。例如单模光纤约为0.2dB/km,大约传输15km时损耗达3dB。为了实现远距离的光信号传系统中,首先在CATV 系统中,应用光纤放大器的是工作在光损耗最小的 1.5μm 波域的掺铒光纤放大器(EDFA),但在通信系统中,由于早期铺设的光纤条件的限制,利用 1 条光纤传的高速信号比较复杂,但如利用 2.5Gbps×4 的四波WDM 传输,则很容易实现。因此,从90 年代后期起WDM的发展,也推动了EDFA 的进步。目前,1.5μm的EDFA 波

域,除了早期的1530~1560nmEDFA 之外,还出现了拓宽波域的增益位移(GS)型EDFA (1570~1600nm)。另外,在CATV系统中应用最多的 1.3μm 波长的单模光纤(SMF)系统中,由于波长色散甚小即使不作色散补偿,也能传输高至10Gbps 的优点,一直受到业界的重视。但由于1.3μm的SMF传输损耗较大(一般为0.30dB/km)。所以只适用于近、中距离传的远距离传输。今后,随着1.3μm的远距离传输需要增加,新问世的 1.3μm 波域的掺谱光纤放大器(EPFA)也成了业界关心的热点。近年,由于因特网的爆发式增长,为了有效的利用光普波长资源,在开发太比秒级(1Tbp)的高速信号中,高密度波分复用(DWDM)又称密集波分复用技术的发展,也促进了1.4μm 波域的利用。为此目的研制的掺铥光纤放大器(TDFA)的实用化也是业界关心的产品。还有,应用光纤拉曼现象的拉曼光纤放大器,随着WDM技术的应用,又重新抬头,在实现超宽波域达100nm放大方面颇具特点。本文拟就掺铒光纤放大器(EDFA)的原理及应用发展动向作一综述。

第一章绪论

1.1 光纤通信系统中放大技术

1.1.1光纤放大器的分类

光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光孤子通信以及全光网络的发展。顾名思义,光放大器就是放大光信号。在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。有了光放大器后就可直接实现光信号放大。光放大器主要有3种:光纤放大器、拉曼放大器以及半导体光放大器。光纤放大器就是在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质。每一种掺杂剂的增益带宽是不同的。掺铒光纤放大器的增益带较宽,覆盖S、C、L频带; 掺铥光纤放大器的增益带是S波段;掺镨光纤放大器的增益带在1310nm附近。而喇曼光放大器则是利用喇曼散射效应制作成的光放大器,即大功率的激光注入光纤后,会发生非线性效应?喇曼散射。在不断发生散射的过程中,把能量转交给信号光,从而使信号光得到放大。由此不难理解,喇曼放大是一个分布式的放大过程,即沿整个线路逐渐放大的。其工作带宽可以说是很宽的,几乎不受限制。这种光放大器已开始商品化了,不过相当昂贵。半导体光放大器(S0A)一般是指行波光放大器,工作原理与半导体激光器相类似。其工作带宽是很宽的。但增益幅度稍小一些,制造难度较大。这种光放大器虽然已实用了,但产量很小。

迄今为止的光纤通信系统,为了拓长通信距离都需在通信线路中设置一定数量的中继器,以便使衰减的光信号强度得到补充。而中继器无一例外都是采用光—电—光的转换方式。中继器的这种工作模式带来了不少问题,如使得成本高,系统复杂,可靠性降低等。于是,人们设想,是否

用光放大器直接进行光信号放大,以实现全光通信。经过多年的不懈努力,各种各样的光放大器终于问世了。在光通信技术的发展进程中,不断取得新的突破,其中尤以光放大器,特别是掺铒光纤放大器(EDFA)的发明最为激动人心。它使光通信技术产生了革命性的变化:用相对简单价廉的光放大器,代替长距离光纤通信系统中传统使用的复杂昂贵的光—电—光混合式中继器,从而可实现比特率及调制格式的透明传输,升级换代也变得十分容易,尤其是性能十分优秀的EDFA 与WDM 技术的珠联璧合,奠定了高速大容量WDM 光通信系统与网络大规模应用的基础。光放大器主要有两类:光纤光放大器和半导体光放大器。光纤放大器又分为两种,即掺稀土元素的光纤放大器和利用常规光纤的非线性效应(如受激拉曼散射,受激希里渊散射等)的光放大器。半导体光放大器主要是行波半导体激光放大器。

1.1.2 半导体光放大器

1 半导体光放大器的结构:半导体光放大器是一种把发光器件一一半导体激光器结构作为放大装置使用的器件, 因为具有能带结构, 所以其增益带宽比采用光纤放大器的宽。另外, 通过改变所使用的半导体材料的组成可以使波长使用范围超过100nm, 这是半导体光放大器的一个突出特点。半导体光放大器由有源区和无源区构成,有源区为增益区, 使用Inp这样的半导体材料制作, 与半导体激光器的主要不同之处是SOA带抗反射涂层, 以防止放大器端面的反射, 排除共振器功效。抗反射涂层就是在端面设置单层或多层介质层。以平面波人射单层介质层时, 抗反射膜的条件相对于厚度为1/4波长。实际的放大器, 传输光是数微米的点光,可以研究假想波导模严格的无反射条件。去除端面反射影响的另一种方法, 也可以采用使端面倾斜的方法和窗结构。把光放大器作为光通信中继放大器使用, 入射光的偏振方向是无规则的, 最好是偏振波依赖性小的放大

器。为了消除这种偏振波依赖性, 可以引人运用窄条结构使激活波导光路近似正方形断面形状的方法和施加抗张应力, 以增大TM波增益的应变量子阱结构。目前, 实现偏振无关半导体光放大器的方法有很多种, 如张应变量子阱结构、应变补偿结构、同时采用张应变量子阱和压应变量子阱的混合应变量子阱结构等。采用脊型波导结构的应变量子阱光放大器基本结构图。有源区4C3T采用混合应变量子阱结构, 即4 个压应变量子阱, 3个张应变量子阱, 压应变和张应变量子阱之间用与LPN晶格匹配的宽的I aGaAsp垒层隔开上下波导层分别为波长1.15um的IaGaAsP匹配材料包层为p型Inp, 接触层为重P型掺杂IaGaAsP材料, 材料的外延法生长过程中, n 型掺杂源为硅烷,p 型掺杂源为二甲基锌材料;生长完成后, 采用标准的光刻、反应离子刻蚀、湿法腐蚀、蒸发、溅射等工艺制作脊型波导结构。

2 半导体光放大器的原理:半导体光放大器的原理与掺稀土光纤放大器相似但也有不同, 其放大特性主要取决于有源层的介质特性和激光腔的特性。它虽也是粒子数反转放大发光但发光的媒介是非平衡载流子即电子空穴对而非稀有元素。半导体的发光可根据激发方式的不同分为光致发光、电致发光和阴极发光等。光致发光是指用半导体的光吸收作用来产生非平衡载流子, 实际上是一种光向另一种光转换的过程。电致发光是指用电学方法将非平衡载流子直接注人到半导体中而产生发光, 这常借助于 PN结来完成。在半导体中电子的能级限制在导带和价带两个带内, 在导带中电子充当移动载流子, 在价带中空穴充当载流子。半导体在外界激发下, 可将价带中的电子激发到导带中, 同时在价带中留下空穴, 所产生的电子和空穴分别跃迁到导带底和价带顶, 这一过程只与晶格交换能量而不产生光发射, 称为无辐射跃迁, 与此同时, 导带底的电子还要跃迁到价带顶与空穴复合, 并同时发射光子, 二者形成动态平衡, 与

热平衡状态下的情况不同, 这时的电子和空穴为非平衡载流子, 载流子的分布不再是费米统计分布。由于电子从导带底跃迁到价带顶的时间常数即辐射寿命与无辐射跃迁的时间常数相比相对较长, 所以可以认为电子和空穴各自保持热平衡状态, 对载流子的这种准平衡状态分别用准费米能级和来表示。半导体的辐射跃迁包括自发跃迁和受激跃迁两个过程。自发辐射跃迁是指占据高能态的电子可以自发地跃迁到低的空能态与空穴复合, 同时发射一个光子, 这一过程称为自发辐射发光受激辐射跃迁是指与一个理想的光子相互作用后导致的受激辐射。这两个过程类似于掺饵光纤放大器(EDFA)中的自发辐射和受激辐射过程。半导体在外界激励下会产生非平衡载流子, 半导体在泵浦光激励下怎样产生光放大为?了尽可能简单, 假设半导体在0 K, 费米能级在禁带的中间位置, 因此在Ep以下的每个有效能级上被电子充满, 则半导体将吸收子。如果半导体未受光泵浦激励, 则半导体将吸收光子, 其实半导体的两个能带所扮演的角色类似于EDFA中的能带E1和E2所起的作用, 只是它的能带比EDFA的能带更宽。一个带隙Ex把处在下面的导带和上面的价带分开, 这样, 从一个能带转移到另一个能带内所发生的能量改变至少是Eg, 因此, 若hv>E 则半导体吸收光子, 当吸收了泵浦光子后就会在导带中产生电子, 而在价带中留下空穴, 然后电子和空穴都迅速向能带的最底点弛豫, 并通过发射一个能量为禁带宽度能量的光子复合。如果泵浦源的强度越来越大, 电子将会趋向于累积在导带的底部, 空穴趋向于累积在价带的顶部, 直到电子空穴对的产生和复合达到动态平衡为止。如果假设带内驰豫过程比带间复合速率快得多, 那么可以利用准费米能级Epn和Epp来描述电子空穴的数目。于是导带底和Epn之间的每个态都被添满, 而价带顶和之间的所有态都是空的, 从而实现光放大。通过适当的选择半导体材料, 就可获得能使发射或吸收波长处于光通信所需要的范围(如1300nm或

1550nm)内的带隙。

1.1.3 光纤放大器

光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了衰减对光网络传输速率与距离的限制,更重要的是它开创了1550nm频段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。在目前实用化的光纤放大器中主要有掺铒光纤放大器(EDFA)、半导体光放大器(SOA)和光纤拉曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV网、军用系统(雷达多路数据复接、数据传输、制导等)等领域,作为功率放大器、中继放大器和前置放大器。

光纤放大器一般都由增益介质、泵浦光和输入输出耦合结构组成。目前光纤放大器主要有掺铒光纤放大器、半导体光放大器和光纤拉曼放大器三种,根据其在光纤网络中的应用,光纤放大器主要有三种不同的用途:在发射机侧用作功率放大器以提高发射机的功率;在接收机之前作光预放大器以极大地提高光接收机的灵敏度;在光纤传输线路中作中继放大器以补偿光纤传输损耗,延长传输距离。

1.2 掺铒光纤放大器的发展历史

掺铒光纤放大器(Erbium Doped Fiber Amplifier ,缩写为EDFA)是90年代开始在光纤传输系统中应用的新型器件,它的推广应用为光纤通信技术带来了一场革命。掺铒光纤主要在1.55um波段的应用的有源光纤的研究基础上发展起来的。前期的工作是研究光纤激光器和研究掺稀土元素

光纤,后来发现了在光纤中掺铒元素能够实现放大的作用,其工作波长对应于光纤的1.55um传输波长,人们用掺铒光纤制作成功掺铒光纤放大器。何谓CATV用掺铒光纤放大器?它的应用状况如何?在近几年来,光纤CATV系统特别是1500nm光纤CATV系统包括模拟系统和数字系统在我们

国家迅速发展,掺铒光纤放大器在光纤CATV系统中也得到了广泛应用。功率放大器是在CATV系统的前端将发射机的输出光放大后再进行分配,以供各方向的光纤干线传输用。功率放大器与功率分配器也可考虑做成两段重复使用。

从远离前端处将光纤干线分支时,可在分支前面接入掺铒光纤放大器,作为线路放大器,以补偿分支损耗。在光纤传输网络管理中如何实现对掺铒光纤放大器的监控。光纤放大器作为整个系统的一个功能模块,纳入网管系统的方法一般有两种:其一是通过光纤放大器的232C接口电路将光纤放大器的性能参数和告警信息传输给网管系统,进行统一管理,显示和处置。其二是由光纤放大器的开关量信息接口向网管系统送开关量信息进行管理显示。在工程实践中已采用过这两种成功的方法。何谓DWDM

用增益平坦掺铒光纤放大器?它的应用状况如何? 采用在1550nm窗口

附近的密集型WDM技术是扩大现有光纤通信能力的最有效的方法。增益平坦型光纤放大器是DWDM传输系统的关键部件,可以十分有效地解决由于光波分复用/解复用带来的插入损耗,使WDM系统的中继问题变得十分简单。由于EDFA具有40nm的工作带宽,它可以同时放大多个波长不同的光信号,因此它可以十分方便地应用于DWDM系统中,补偿各种光衰耗。

模块是集成化的掺铒光纤放大器(如图1-1所示),

图1-1:EDFA 内部方块图

分为光电一体EDFA模块和光增益模块两种,其具有体积小、功耗低、使用方便等特点,可以根据用户使用的情况十分方便地安装在各种各样的应用系统中,如SDH机架内、CATV机盒内、DWDM系统机架内。

1.3 EDFA 的发展方向

EDFA 的发展方向 EDFA 从 C 波段( conventional band )1530~1560nm(常规的 ED-FA)向 L 波段(long wavelength band)1570~1605nm 发展,可采用掺铒氟化物光纤放大器 (EDFFA),带宽可达 75nm;采用碲化物 EDFA,带宽可达 76nm;采用增益位移掺铒光纤放大器(GS-EDFA),通过控制掺铒光纤的铒粒子数反转程度,可在 1570~ 1600nm 波段实现放大,它与普通的 EDFA 组合,可得到带宽约 80nm 的宽带放大器;采用覆盖 C 波段和 L 波段的超宽带光放大器(UWOA),可用带宽 80nm,能在单根光纤上放大 100 多路波长信道;采用常规 EDFA 和扩带光纤放大器(EBFA)组成的基于掺铒光纤的双带光纤放大器(DBFA),工作波长为1528~1610nm;将局部平坦的 EDFA 与光纤拉曼放大器串联使用,可获

得带宽高于 100nm 的超宽带增益平坦放大器;EDFA 应具有动态增益平坦特性的小型化、集成化方向发展。 EDFA 是目前及未来一段时间放大器的主要选择,在骨干网和城域网/接入网中发挥着关键性作用。但 EDFA 级联噪声大以及带宽受限,它与 DRA 混合使用,在长距离、大容量传输中是当前的一种优秀方案。FRA:宽带、低噪声、抑制非线性、提高传输距离,进行色散补偿等,必将成为下一代光放大器的主流。城域网 /接入网中光放大器目前具有竞争力的技术为 Mini EDFA、EDWA 和 SOA 技术,这种低价放大器正在标准化。随城域网建设的兴起,光放大器在低价领域必有一番作为。

第二章掺铒光纤放大器的工作原理及性能参数

2.1掺铒光纤放大器的介绍

2.1.1 EDFA放大器的组成

词名:掺铒光纤放大器;英文名:Erbium Doped Fiber Amplifier ;

缩写:EDFA

来历:Er-Doped Fiber Amplifier

相关术语:Optical Amplifier

石英光纤掺稀土元素(如Nd、Er、Pr、Tm等)后可构成多能级的激光系统,在泵浦光作用下使输入信号光直接放大。提供合适的反馈后则构成光纤激光器。掺Nd光纤放大器的工作波长为1060nm及1330nm,由于偏离光纤通信最佳宿口及其他一些原因,其发展及应用受到限制。EDFA及PDFA 的工作波长分别处于光纤通信的最低损耗(1550nm)及零色散波长(1300nm)窗口,TDFA工作在S波段,都非常适合于光纤通信系统应用。尤其是EDFA,发展最为迅速,已实用化在掺铒光纤发展的基础上,不断出现许多新型光纤放大器,例如,以掺铒光纤为基础的双带光纤放大器(DBFA),是一种宽带的光放大器,宽带几乎可以覆盖整个波分复用(WDM)带宽。类似的产品还有超宽带光放大器(UWOA),它的覆盖带宽可对单根光纤中多达100路波长信道进行放大。

下图为掺铒光纤放大器实物图

图2-1:掺铒光纤放大器

一个典型的掺铒光纤放大器主要由以下几部分组成(如图2-2所示):

(1)掺铒光纤——是EDFA 的主体, 在石英基质中掺入饵离子制成。

(2)泵浦光源——泵浦光用于供给掺铒光纤中铒粒子的能量,使其吸收能量跃迁到亚稳态能级。

(3)隔离器——用于抑制光的来回反射, 保证放大器工作稳定。

(4)耦合器——用于将信号光和泵浦光耦合到掺铒光纤中。

(5)控制电路——从放大器输出端抽取监测信号, 对放大器的泵浦光功率及输入信号光等进行调节、控制增益的大小, 保证输出信号的稳定。

(6)光滤波器———带宽为1 nm以下的窄带光滤波器, 用于消除放大器的自发辐射光, 以降低放大器的噪声。

图2-2: EDFA的结构

2.1.2 EDFA的放大原理

EDFA的放大作用是通过1550nm波段的信号光在掺铒光纤中传输与Er3+离子相互作用产生的。在掺铒光纤中注入足够强的泵浦光,就可以将大部分处于基态的Er3+离子抽运到激发态上,处于激发态的Er3+离子又迅速无辐射地转移到亚稳态上。由于Er3+离子在亚稳态上能级寿命较长,

因此,很容易在亚稳态与基态之间形成粒子数反转,即处于亚稳态的Er3+粒子数比处于基态的Er3+粒子数多。当信号光子通过掺铒光纤,与Er3+离子相互作用发生受激辐射效应,产生大量与自身完全相同的光子,这时通过掺铒光纤传输的信号光子迅速增多,产生信号放大作用;只有少数处于基态的Er3+离子对信号光子产生受激吸收效应,吸收光子 。如图2-3所示。

10ms

1480nm 980nm 4I 11/2

1520-1570nm

4I 13/2

4I 15/2Er+3的能级图

图2-3: Er3+ 能级图 2.1.3 EDFA 的基本性能

(1)增益特性:增益特性表示了光放大器的放大能力,定义为输出功率和输入功率之比。EDFA 的增益大小与多种因素有关,增益一般为15dB~40dB 。

(2)输出功率特性:EDFA 的最大输出功率常3dB 饱和输出功率来表示。3dB 饱和输出功率是指当饱和增益下降3dB 时所对应的输出功率,该参数反映了EDFA 的最大功率输出能力,EDFA 的饱和输出特性与泵浦功率大小、

掺铒光纤长短有关。泵浦光功率越大,3dB饱和输出功率越大;掺铒光纤长度越长,3dB饱和输出功率也越大。

(3)噪声特性:EDFA的输出光中,除了有信号光外,还有被放大的噪声。EDFA的噪声主要有4种:信号光的散粒噪声;被放大的自发辐射光ASEde 散粒噪声;自发辐射ASE光谱与信号光之间的差拍噪声;自发辐射ASE光谱间的差拍噪声。

2.2 EDFA的优缺点

EDFA之所以得到迅速的发展源于它一系列突出的优点。之所以得到迅速的发展, EDFA之所以得到迅速的发展,源于它一系列突出的优点。

(1)EDFA的工作波长与光纤最小损耗窗口一致,恰好落在最佳波长区因为EDFA的主体也是一段光纤,它与线路光纤的耦合损耗很小,甚至可达到0.1dB,耦合效率高。因为是光纤型放大器,易于与传输光纤耦合连接,也可以用熔接在一起,熔接后反射损耗小。

(2)能量转换效率高。激光工作物质集中在光纤芯子中,且集中在光纤芯子中的近轴部分,饵信号光和泵浦光也是在光纤的近轴部分最强,这使得光与媒质的作用很充分;再加之有较长的作用长度,因而有较高的转换效率。所需泵浦光功率较低(数十毫瓦),泵浦效率却相当高,用980nm 光源泵浦时,增益效率可达11dB/mW,用1480nm光源泵浦时为5.1 dB/mW;泵浦功率转换为输出功率的效率和吸收效率高于80%。

(3)增益高、噪声低、输出功率大。增益约为20-40dB。输出功率在单光谱时可达14dBm,而在双泵浦时可达 17dBm,甚至20dBm。噪声指数低,一般为4~7dB。

(4)频带宽,在1310nm和1550nm窗口各有20-40nm带宽,可以进行

实验十二掺铒光纤放大器(edfa)的性能测试

实验十二掺铒光纤放大器(EDFA)的性能测试 一、实验目的 1. 了解掺铒光纤放大器(EDFA)的工作原理、基本结构及相关特性; 2. 测试掺铒光纤放大器(EDFA)的各种参数,并根据测量的参数计算增益、输出饱和功率和噪声系数; 二、实验原理 在光纤放大器实用化以前,为了克服光纤传输中的损耗,每传输一段距离都要进行“再生”,即把传输后的弱光信号转换成电信号,经过放大、整形后,再去调制激光器,生成一定强度的光信号,即所谓的O—E—O光电混合中继。但随着传输码率的提高,“再生”的难度也随之提高,于是中继部分成了信号传输容量扩大的“瓶颈”。光纤放大器的出现解决了这一难题,其不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了损耗对光网络传输速率与距离的限制,更重要的是它开创了C+L波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。 在目前实用化的光纤放大器中主要有掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)、半导体光放大器(SOA)和光纤喇曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV 网、军用系统(雷达多路数据复接、数据传输、制导等)等领域。在系统中EDFA有三种基本的应用方式:功率放大器(Power booster-Amplifier)、中继放大器(Line-Amplifier)和前置放大器(Pre-Amplifier)。它们对放大器性能有不同的要求,功放要求输出功率大,前放对噪声性能要求高,而中放两者兼顾。 1.掺铒光纤放大器的工作原理 Er3+能级图及放大过程:掺铒光纤放大器之所以能放大光信号的基本原理在于Er3+吸收泵浦光的能量,由基态4I15/2跃迁至处于高能级的泵浦态,对于不同的泵浦波长电子跃迁到不同的能级,当用980nm波长的光泵浦时,如图15-1所示,Er+3从基态跃迁至泵浦态4I11/2。由于泵浦态上的载流子的寿命只有1μs,电子迅速以非辐射方式由泵浦态豫驰至亚稳态,在亚稳态上载流子有较长的寿命,在源源不断的泵浦下,亚稳态上的粒子不断累积,从而实现粒子数反转分布。当有1550nm的信号光通过已被激活的铒光纤时,在信号光的感应下,亚稳态上的粒子以收集受激辐射的方式跃迁到基态,同时释放出一个与感应光子全同的光

掺铒光纤放大器的设计..

东北石油大学课程设计 2014年3月7日

东北石油大学课程设计任务书 课程光电子技术课程设计 题目掺铒光纤放大器的设计 专业电子科学与技术姓名苗培梓学号100901240106 主要内容、基本要求、主要参考资料等 1、主要内容: 的掺铒光纤放通过学习光纤放大器的原理,设计一个能够对波长为1.55m 大器。 2、基本要求 要求在论文中写出掺铒光纤放大器的工作原理,结构与特性,以及优点与应用。 3、参考文献: [1] 刘增基,周洋溢著,光纤通信,西安电子科技大学出版社,2002.6. [2] 雷肇棣著,光纤通信基础,电子科技大学出版社,1999. [3] 马养武,包成芳,光电子学,浙江大学出版社,2003.3. 完成期限2014.3.3 ~2014.3.7 指导教师 专业负责人 年月日

第1章概述 掺铒光纤放大器,即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器,是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。掺铒光纤是在石英光纤中掺入了少量的稀土元素铒离子的光纤,它是掺铒光纤放大器的核心。光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件,在使用光纤的通信系统中,不需要将光信号转换为电信号,直接对光信号进行放大的一种技术。 1.1研究意义 众所周知,现今是信息时代,社会信息化进程正在逐渐的深入,整个社会受信息运行的影响也随之越来越大,随着因特网的普及和网上应用,使人们对一些新型信息服务的需求越来越迫切,例如家庭办公、远程教育、电子商务等,因此这就需要用到功能强大的通信网络,光纤通信作为一种理想的通信手段,具有了诸如较大的通信容量、较长的无中继通信距离、良好的保密性等许多的优点,这使得光纤通信取代其它通信手段是一种必然的趋势。 在光放大器中,掺铒光纤放大器,即EDFA,的技术比较成熟,自身性能较好,所以它的应用比较广泛。它具有高增益、低噪声、输出功率大、串话小,对温度偏振不敏感,藕合效率高,易与传输光纤藕合连接,损耗低,不易自激,对信号速率和格式透明,并具有几十纳米的放大带宽等优点。由于它几乎接近完美的特性及半导体泵浦源的使用,导致了它在波分复用系统中的广泛应用,随着光纤通信向速度更快、带宽更大方向的发展,随之对掺铒光纤放大器的性能也有着更高的要求。 1.2发展趋势及其前景 掺铒光纤放大器的研究始于60年代早期,E.Snitzer发现掺铒玻璃对1.50微米波长的激光有放大作用,提出了掺杂光纤放大器的设想,但由于当时未能解决热淬灭效应问题,而且随后出现了半导体光放大器,使得掺铒光纤放大器的研究停滞不前。直到80年代中期,南安普敦大学的研究人员通过改进的化学气相沉积法(MCVD)成功研制出了掺铒光纤,并在之后制作出了利用650nm波长50mW 的红染料激光器为泵浦的EDFA具有25dB的小信号增益;几乎同时贝尔实验室

第四次实验报告-测量掺铒光纤放大器放大特性

现代通信光电子学实验报告 实验名称:测量掺铒光纤放大器放大特性 学生姓名: 学号: 同组学生姓名:何子力 实验日期:2017.5.14 报告提交日期:2017.5.28

目录 一、实验目的和要求 (1) 二、实验内容和原理 (2) 2.1 掺铒光纤放大器的工作原理 (2) 2.2 增益特性分析 (5) 三、主要仪器设备 (6) 四、操作方法与实验步骤 (6) 五、实验结果记录 (9) 六、实验结果分析 (12) 七、结论与思考 (15) 八、参考资料 (16) 九、附件 (16)

一、实验目的和要求 1、了解掺铒光纤放大器的工作原理 2、理解惨耳光纤放大器(EDFA)的基本结构和功能; 3、测试掺铒光纤放大器(EDFA)的各种参数并通过测量的参数计算增益, 输出饱和功率,噪声系数 4、了解影响掺铒光纤放大器放大率的因素 5、了解怎样使用实验仪器 6、确定掺铒光纤放大器工作的临界状态,绘制放大特性曲线 二、实验内容和原理 在光纤放大器实用化以前,为了克服光纤传输中的损耗,每传输一段距离都要进行“再生”,即把传输后的弱光信号转换成电信号,经过放大、整形后,再去调制激光器,生成一定强度的光信号,即所谓的O—E—O光电混合中继。但随着传输码率的提高,“再生”的难度也随之提高,于是中继部分成了信号传输容量扩大的“瓶颈”。光纤放大器的出现解决了这一难题,其不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了损耗对光网络传输速率与距离的限制,更重要的是它开创了C+L波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用、密集波分复用、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。

掺铒光纤放大器实验

实验十二掺铒光纤放大器实验 实验目的: 1. 理解掺铒光纤放大的原理; 2. 学习Optisystem 软件的使用; 3. 加深对光放大技术的认识。 实验仪器: 1. Optisystem 软件 实验原理: 1. EDFA的概念 EDFA采用掺铒离子单模光纤为增益介质,在泵浦光作用下产生粒子数反转,在信号光诱导下实现受激辐射放大。 信号光与波长较其为短的光波(泵浦光)同沿光纤传输,泵浦光的能量被光纤中的稀土元素离子吸收而使其跃迁至更高能级,并可通过能级间的受激发射转移为信号光的能量。信号光沿光纤长度得到放大,泵浦光沿光纤长度不断衰减。 泵浦波长可以是520、650、800、980、1480nm,波长短于980nm的泵浦效率低,因而通常采用980和1480nm泵浦。

2. 掺铒光纤放大器的基本结构 掺铒光纤:当一定的泵浦光注入到掺铒光纤中时, Er3+从低能级被激发到高能级上,由于在高能级上的寿命很短,很快以非辐射跃迁形式到较低能级上,并在该能级和低能级间形成粒子数反转分布。 半导体泵浦二极管:为信号放大提供足够的能量,使物质达到粒子数反转。 波分复用耦合器:将信号光和泵浦光合路进入掺铒光纤中。 光隔离器:使光传输具有单向性,放大器不受发射光影响,保证稳定工作。 EDFA 的三种泵浦方式进行比较: 同向泵浦(前向泵浦)型:好的噪声性能 反向泵浦(后向泵浦)型:输出信号功率高 双向泵浦型:输出信号功率比单泵浦源高3dB ,且放大特性与信号传输方向无关 实验内容: 增益G 是描述光放大器对信号放大能力的参数。定义为: G 与光放大器的泵浦功率、掺杂光纤的参数和输入光信号有很复杂的关系。用Optisystem 软件完成如下测量。 1. 增益对输入光功率的依存关系 2. 增益G 与输入光波长的关系 3. 小信号增益随泵浦功率的关系 4. 小信号增益随EDF 长度的关系 实验报告要求: 根据实验内容,完成器件选择与数据测量,绘图并对实验现象进行分析。

掺铒光纤放大器(电子版) 2

光纤通信技术课程设计

掺铒光纤放大器(EDFA Erbium-Doped Fiber Amplifier)的设计 0概述 光线通信中采用光纤来传输光信号,一般它会受到两个方面的限制:损耗和色散。 就损耗而言,目前光纤的典型值在1.3um波段为0.35dB/km,在1.55um波段为0.20dB/km,由于光纤损耗的限制,所以在无中继传输距离一般为50—100km。20世纪80年代末期,波长为1.55um的摻铒光纤放大器(EDFA Erbium-Doped Fiber Amplifier)的研制成功并投入使用,打破了光纤通信传输距离受光纤色散和损耗的制约,使全光通信距离延长至几千公里,给光纤通信带来了革命性变化,把光纤通信技术推向一个新的高度,成为光纤通信发展史上一个重要的里程碑。 1 摻铒光纤放大器的工作原理 铒是一种稀土元素,原子序数三68,原子量为167.3。铒的自由离子具有不连续的能级,当Er3+被结合到硅光纤时,它们的每个能级被分裂为许多紧密相关的能级---能带。 而能带的作用是,第一:使EDFA对光信号的放大不只是单个波长而是一组波长的能力,即在一段波长范围内的光波长都可以得到放大;第二:避免了细调泵浦激光波长。 下图1是掺铒光纤放大器的工作原理,说明了光信号被放大的原因。EDFA采用掺铒离子单模光纤为增益介质,在泵浦光作用下产生粒子数反转,信号光诱导实现受激辐射放大。从图1可以看出,在掺铒光纤放大器中,铒离子有三个能级:能级1代表基态,能量是最低的;能级2是亚稳态,处在中间能级;能级3代表激发态,能量最高。 Er3+在未任何光激励的情况下,处于最低能级基态上。在泵浦光的作用下,当泵浦光的光子能量等于能级3和能级1的能量差时,电子不断从基态能级吸收泵浦光的能量跃迁到激发态,但是电子在激发态的生存期很短,而且激发态是很不稳定的,平均寿命为1us,电子迅速以“非辐射方式跃迁至亚稳态,在亚稳态上电子有较长的寿命,在源源不断的泵浦下,亚稳态上的粒子数积累,从而实现粒子数反转分布;铒离子被泵浦光不断地泵浦到亚稳态上,此时电子在亚稳态上生存期较长(~10ms),不断地积累实现粒子数反转分布。 图1

掺饵光纤放大器 光纤通信课程设计

掺饵光纤放大器光纤通信课程设计

光纤通信课程设计题目:掺饵放大器 学院:物理与电子科学学院 年级专业: 08级电子<1>班 作者:侯进 学号: 200840620110 指导教师:刘广东

目录 概述 (3) 1. 铒离子的电子能级图 (3) 2. 掺铒光纤的光放大原理 (5) 3.掺饵光纤放大器的基本结构 (6) 4. 掺饵光纤放大器的特点 (7) 4.1 优点 (7) 4.2 缺点 (7) 5. 掺饵光纤放大器的应用 (8) 6. EDFA的增益特性 (8) 6.1 EDFA的放大特性 (8) 6.2 EDFA对增益的影响 (8) 7. 技术展望 (9) 参考文献 (9)

掺饵光纤放大器 概述 光纤通信中采用光纤来传输光信号,一般它受到两方面的限制:损耗和色散。就损耗而言,目前光纤损耗的典型值在1.3μm波段为0.35dB/km,在1.55μm波段为 0.20dB/km。由光纤损耗限制的光纤无中继传输距离为 50-100km. 90年代初期EDFA的研制成功,打破了光纤通信传输距离受光纤损耗的限制,使全光通信距离延长至几千公里,给光纤通信带来了深刻的变化。 一般,光放大器都由增益介质、泵源、输入输出耦合结构组成。根据增益介质的不同,目前主要有两类放大器,一类采用活性介质,如半导体材料和掺稀土元素的光纤。掺稀土光放大器,是在光纤芯层中掺入极小浓度的稀土元素,如饵、谱或铥等离子制作出相应的掺饵、掺镨或掺铥光纤。光纤中掺杂离子在受到泵浦光激励后跃迁到亚稳定的高激发态,在信号光诱导下,产生受激辐射,形成对信号光的相干放大。主要有: 掺铒光纤放大器(EDFA-Erbium Doped Fiber Amplifier)、掺镨光纤放大器(PDFA- Praseodymium Doped Fiber Amplifier) 和掺铥 光纤放大器 (TDFA- Thulium Doped Fiber Amplifier)

光电技术实验-掺铒光纤放大器

掺铒光纤放大器(EDFA)特性参数测量 一、实验目的 1.了解掺铒光纤放大器的工作原理及相关特性; 2.掌握掺铒光纤放大器性能参数的测量方法; 二、实验原理 掺铒光纤放大器(Er Droped Fiber Amplifier,EDFA)的出现是光纤通信发展史上一个重要里程碑。1986年英国南安普敦大学制作出了最初的掺铒光纤放大器。在此之前,由于不能直接放大光信号,所有的光纤通信系统都只能采用光-电-光中继方式。光纤放大器可直接放大光信号,这就可使光-电-光中继变为全光中继。这是一次极为重要的飞跃,把光通信推向了一个新的阶段,其意义可与当年用晶体管代替电子管相提并论。当作为掺铒光纤放大器泵浦源的0.98um和1.48um的大功率半导体激光器研制成功后,掺铒光纤放大器趋于成熟,进入了实用化阶段。掺铒光纤放大器的意义不仅在于可进行全光中继,它还在多方面推动了光纤通信的发展,引起了光纤通信的革命性变革。其中最突出的是在波分复用(WDM)光纤通信系统中的应用。波分复用是在一根光纤上传输多个光信道,从而充分利用光纤带宽,有效扩展通信容量的光纤通信方式。由于掺铒光纤放大器具有约40nm的极宽带宽,可覆盖整个波分复用信号的频带,因而用一只掺铒光纤放大器就可取代与信道数相应的光一电一光中继器,实现全光中继。这极大地降低了设备成本,提高了传输质量。这一优越性推动了波分复用技术的发展。现在EDFA+WDM已成为高速光纤通信网发展的主流,代表新一代的光纤通信技术。(1)EDFA的工作原理 铒(Er)是一种稀土元素(属于镧系元素),原子序数是68,原子量为167.3。EDFA利用了镧系元素的4f能级,图1是Er+3的能级图。在掺铒光纤中.由于石英基质的作用,4f的每一个能级分裂成一个能带。图中4I15/2能带称为基态;4I 能带称为亚稳态,在亚稳态上粒子的平均寿命时间达到10ms。4I11/2能带为13/2 泵浦态,粒子在泵浦态上的平均寿命为1us。除图中标出的吸收带外,Er+3还有800nm等其它吸收带。由于980 nm和1 480 nm大功率半导体激光器已完全商用化,并且泵浦效率高于其它波长,故得到了最广泛的应用。 掺铒光纤之所以能放大光信号的基本原理在于Er+3吸收泵浦光的能量,由基态4I15/2跃迁至处于高能级的泵浦态。对于不同的泵浦波长,电子跃迁至不同的

掺铒光纤放大器和拉曼光纤放大器分析和比较

掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。 关键词:掺铒光纤放大器;光纤拉曼放大器 0、综述 20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。 1、光放大器分类及原理 光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。一个好的光放大器应具有输出功率高、放大带宽宽、噪声系数低、增益谱平坦等特性。光放大器主要分为光纤型放大器(FA)和半导体放大器(SOA)两大类,其中光纤型放大器(FA)还可再分为掺稀土光纤放大器和常规光纤放大器,具体分类详见图1(2).本文中,仅对掺铒光纤放大器(EDFA)和光纤拉曼放大器(FRA)作以介绍和分析。

实验二十掺铒光纤放大器的性能测试

实验二十掺铒光纤放大器(EDFA)的性能测试 一、实验目的 1.测试掺铒光纤放大器(EDFA)的各种参数,并根据测量的参数计算增益、输出饱和功率和噪声系数; 2.了解掺铒光纤放大器(EDFA)的基本结构和功能。 二、实验原理 在光纤放大器实用化以前,为了克服光纤传输中的损耗,每传输一段距离都要进行“再生”,即把传输后的弱光信号转换成电信号,经过放大、整形后,再去调制激光器,生成一定强度的光信号,即所谓的O—E—O光电混合中继。但随着传输码率的提高,“再生”的难度也随之提高,于是中继部分成了信号传输容量扩大的“瓶颈”。光纤放大器的出现解决了这一难题,其不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了损耗对光网络传输速率与距离的限制,更重要的是它开创了C+L波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。 在目前实用化的光纤放大器中主要有掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)、半导体光放大器(SOA)和光纤喇曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV网、军用系统(雷达多路数据复接、数据传输、制导等)等领域。在系统中EDFA有三种基本的应用方式:功率放大器(Power booster-Amplifier)、中继放大器(Line-Amplifier)和前置放大器(Pre-Amplifier)。它们对放大器性能有不同的要求,功放要求输出功率大,前放对噪声性能要求高,而线放两者兼顾。 3.掺铒光纤放大器的工作原理

掺铒光纤放大器实验

实验十二掺铒光纤放大器实验 实验目的: 1. 理解掺铒光纤放大的原理; 2. 学习Optisystem 软件的使用; 3. 加深对光放大技术的认识。 实验仪器: 1. Optisystem 软件 实验原理: 1. EDFA 的概念 EDFA 采用掺铒离子单模光纤为增益介质,在泵浦光作用下产生粒子数反转,在信号光 诱导下实现受激辐射 放大。 1530nm-i 570nm 980nm or 」 信号光与波长较其为短的光波 (泵浦光)同沿光纤传输,泵浦光的能量被光纤中的稀土元 素离子吸收而使其跃迁至更高能级, 并可通过能级间的受激发射转移为信号光的能量。 信 号 光沿光纤长度得到放大,泵浦光沿光纤长度不断衰减。 泵浦波长可以是 520、650、800、980、1480nm,波长短于980nm 的泵浦效率低,因而 通常采用980和 1480nm Amplified output signal Fiber containing

9ft0nm 畢态H80uin ■ ? ■ ■ ■

2. 掺铒光纤放大器的基本结构 Er-DOPED FIBER AMPLIFIER 掺铒光纤:当一定的泵浦光注入到掺铒光纤中时, 从低能级被激发到高能级上, 由 于在高能级上的寿命很短,很快以非辐射跃迁形式到较低能级上, 并在该能级和低能级间形 成粒子数反转分布。 半导体泵浦二极管:为信号放大提供足够的能量,使物质达到粒子数反转。 波分复用耦合器:将信号光和泵浦光合路进入掺铒光纤中。 光隔离器:使光传输具有单向性,放大器不受发射光影响,保证稳定工作。 EDFA 勺三种泵浦方式进行比较 : 同向泵浦(前向泵浦)型:好的噪声性能 反向泵浦(后向泵浦)型:输出信号功率高 双向泵浦型:输出信号功率比单泵浦源高 3dB,且放大特性与信号传输方向无关 实验内容: 增益G 是描述光放大器对信号放大能力的参数。定义为: p G (dB ) 1Olog 10 s,out Fs,in G 与光放大器的泵浦功率、掺杂光纤的参数和输入光信号有很复杂的关系。 用Optisystem 软 件完成如下测量。 1. 增益对输入光功率的依存关系 2. 增益G 与输入光波长的关系 3?小信号增益随泵浦功率的关系 4?小信号增益随EDF 长度的关系 实验报告要求: 根据实验内容,完成器件选择与数据测量,绘图并对实验现象进行分析。 Pump L*MF Inpul Signal I Er^Dopfid Fiber Ootlc.1 PumpSlQn*! 器鶯呎 PT AfflplWied Signal ■ Optical IsoLatof

实验七__掺铒光纤放大器(EDFA)的性能测试

实验七掺铒光纤放大器(EDFA)的性能测试 一、实验目的 1.测试掺铒光纤放大器(EDFA)的各种参数,并根据测量的参数计算增益、输出饱和功率和噪声系数; 2.了解掺铒光纤放大器(EDFA)的基本结构和功能。 二、实验原理 在光纤放大器实用化以前,为了克服光纤传输中的损耗,每传输一段距离都要进行“再生”,即把传输后的弱光信号转换成电信号,经过放大、整形后,再去调制激光器,生成一定强度的光信号,即所谓的O—E—O光电混合中继。但随着传输码率的提高,“再生”的难度也随之提高,于是中继部分成了信号传输容量扩大的“瓶颈”。光纤放大器的出现解决了这一难题,其不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了损耗对光网络传输速率与距离的限制,更重要的是它开创了C+L波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。 在目前实用化的光纤放大器中主要有掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)、半导体光放大器(SOA)和光纤喇曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV网、军用系统(雷达多路数据复接、数据传输、制导等)等领域。在系统中EDFA有三种基本的应用方式:功率放大器(Power booster-Amplifier)、中继放大器(Line-Amplifier)和前置放大器(Pre-Amplifier)。它们对放大器性能有不同的要求,功放要求输出功率大,前放对噪声性能要求高,而线放两者兼顾。 3.掺铒光纤放大器的工作原理

(完整版)掺铒光纤放大器的原理与应用毕业设计

毕业设计(论文)报告 题目掺铒光纤放大器的原理与应用 系别尚德光伏学院 专业应用电子技术(光电子技术方向)班级0903 学生姓名刘钰华 学号090264 指导教师

2012年4 月

掺铒光纤放大器的原理与应用 摘要:光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信具有通信容量大、传输速率高、使用寿命长,等诸多特点。因而得到了普遍的应运,其中光放大器是光纤系统中的重要组成部分。光纤放大器(简写OFA)是指运用于光纤通信线路中,实现信号放大的一种新型全光放大器。 本论文介绍了掺铒光纤放大器(简写EDFA)的相关理论。首先对光纤放大器的种类进行大致的简介,其次阐述了掺铒光纤放大器的历史和发展,以及对掺铒光纤放大器工作原理进行了介绍。重点关注了掺铒光纤放大器在现代光纤通信系统中的应运。 关键字:光纤、光纤通信、掺铒光纤放大器、应运

Principles and applications of the erbium-doped fiber amplifier Abstract:Optical Fiber Communication, is the use of optical fiber to transmit light waves carry information in order to achieve the purpose of communication. Large capacity optical fiber communication with the communication, transmission rate, long life and many other features. And so it generally should be shipped, in which optical fiber amplifier is an important component of the system. Fiber amplifier is used in optical fiber communication lines. A new type of signal amplification to achieve all-optical amplifiers.

保偏掺铒光纤放大器的实验研究

朱军,曹志刚,阮于华,俞本立 (安徽大学 光电信息获取与控制教育部重点实验室,安徽 合肥 230039) E-mail: zhuj@https://www.doczj.com/doc/aa16825948.html, 摘 要: 给出了一种全保偏掺铒光纤放大器。通过对放大器结构和光纤参数的优化,提高了泵浦效率、输出信噪比和输出功率,使放大器的输出性能达到最佳。实验表明,该放大器的输出功率可达105mW,偏振消光比在15dB以上,输出信噪比达到40dB以上。 关键词:掺铒光纤放大器 保偏 高功率 中图分类号:TN253 1. 引 言 随着光纤通信技术以及光纤传感技术的发展,特别是在一些相干通信和相干型传感系统当中,需要具有单频线偏振而且高功率输出的光源。一般保偏光纤激光器虽然可以满足线偏振输出,但功率上却很难达到要求。这种情况下,通过光放大器来提高功率是一个很好的方案,但普通掺铒光纤放大器由于在其放大过程中会改变激光的偏振状态,所以并不能满足要求,这就需要一种既能保持激光的偏振特性又可以实现高增益的光纤放大器。目前,国外已有相关机构展开了这方面的研究[1-2],而此类研究在国内还未见到报道。本文在双向泵浦光纤放大器结构的基础上,利用保偏器件和保偏掺铒光纤,构建了一种全保偏掺铒光纤放大器,并且通过实验对放大器的结构以及光纤参数进行了优化,使放大器输出性能达到最佳。2. 实验装置 一般掺铒光纤放大器(EDFA)往往采用双向泵浦结构如图1所示,这种泵浦方式结合了同向泵浦和反向泵浦的优点,使泵浦光在掺铒光纤(EDF)中均匀分布,从而实现增益在EDF中的均匀分布。然而在小信号放大的EDFA中,输出端剩余的泵浦光功率一般仍然大于粒子数反转的阈值功率,似乎意味着增加EDF的长度仍可增大增益,但当EDF的长度增加到大于最佳长度,又会导致输入端附近的反向ASE功率大大增加,它又将以消耗反转粒子的方式阻碍增益的增加[3]。因此,采用这种双向泵浦结构虽然可以使增益在EDF中均匀分布,但是总的泵浦利用效率尚显不高。 图1 普通双向泵浦EDFA原理图 1本课题得到安徽省优秀青年科技基金(项目编号:04042045)资助。

光纤通信仿真实验

光纤通信仿真实验

————————————————————————————————作者:————————————————————————————————日期: ?

实验一光通讯系统WDM系统设计 一.实验目的 1.了解光通讯系统WDM系统的组成; 2.学会掌握使用optisystem仿真软件; 二.实验原理 (1)WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。 (2)双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。 2.光中继放大器 经过长距离(80~120km)光纤传输后,需要对光信号进行光中继放大,目前使用的光放大器多数为掺铒光纤光放大器(EDFA)。在WDM系统中必须采

相关主题
文本预览
相关文档 最新文档