当前位置:文档之家› 正态分布与二项分布讲义

正态分布与二项分布讲义

正态分布与二项分布

主要内容

正态分布的概念和特征

标准正态分布

正态分布曲线下的面积

医学参考值范围

二项分布的基本概念和性质二项分布的概率计算方法

体重分布

65.062.560.057.555.052.550.047.545.042.540.060

50

40

30

20

100

Std. Dev = 5.76

Mean = 51.5

N = 300.00

正态分布

正态分布(normal distribution)又称高斯(Gauss)分布,是以均数为中心,左右两侧基本对称的钟型分布。

越接近均数,频数分布越多,离均数越远,频数分布越少。

正态分布是一种重要的连续型分布,是许多统计方法的理论基础。

正态分布的概率密度函数 将正态分布曲线用函数形式表达,称为正态分布的概率密度函数,记为f(x),即正态分布曲线的方程为:

一般用N (μ,σ2)表示均数为μ,方差为

σ2的正态分布。

2

22)(21)(σμσπ--=x e x f

正态分布曲线

3

210-1-2-3μ-σ

μ+σμ

正态分布曲线

密度曲线图中,横轴表示测量指标x,纵轴表示密度函数值f(x)。

?观察值x附近个体值分布越密集,f(x)值越大;

?x附近的个体值分布越稀疏,f(x)值就越小。密度函数f(x)的大小,反映了x附近的测量值的密集程度。

正态分布的特征

正态曲线为位于横轴上方的钟形曲线。

正态分布以μ为中心,左右两侧对称。

正态分布曲线以横轴为其渐近线,但两端与横轴永不相交。

正态分布有两个参数,即μ和σ。

可通过标准化变换将一般正态分布N(μ,σ2)转化为标准正态分布N(0,1)。

正态分布曲线下的面积具有一定的规律性。

正态分布的两个参数:μ和σ

μ是位置参数,用以描述正态分布的集中位置。

?当σ恒定,改变μ,则曲线沿x轴平移,但形状不变,?μ越大,则曲线沿横轴越向右移动;μ越小,则曲线

沿横轴越向左移动。

σ是变异度参数或形状参数,用以描述曲线的离散程度。

?当μ恒定时,改变σ,则曲线的形状会发生变化,而

曲线的中心位置不变,

?σ越大,表示数据越分散,曲线越扁平,变异越大;σ

越小,表示数据越集中,曲线越陡峭,变异越小。

对数正态分布

如果一个随机变量X取对数后,其值的分布为正态分布,则称随机变量X服从对数正态分布。

标准正态分布

如果进行标准化变换(u 变换), 并使μ=0,σ=1,正态分布的中心位置就由μ移到0,一般正态分布N (μ,σ2)转化为标准正态分布N (0,1) 。

σ

μ-=x u

标准正态分布曲线

-2

-3

-1

1

3

2

标准正态分布

标准正态分布也称为u 分布(Z 分布),u 称为标准正态变量或标准正态离差。

标准正态分布可用N (0,1)表示。标准正态分布的概率密度函数为: 2

221)(u e u -=π?

标准正态分布(u分布)的特征

u分布曲线为位于横轴上方的钟形曲线。 u分布以 =0为中心,左右两侧对称。 u分布曲线以横轴为其渐近线,但两端与横轴永不相交。

u分布的μ=0,σ=1 。

u分布曲线下的面积具有一定的规律性。

正态曲线下面积(AUC) 可根据正态分布曲线下某个区间的面积(Area Under the Curve),以估计该区间的例数占总例数的百分数(频率分布),或变量值落在该区间的概率(概率分布)。

正态曲线下的面积,可以通过对正态变量X 的累计分布函数F (X )的积分来求得,它反映了正态曲线下,自-∞到X 的面积,即左侧累计面积。 X X x d e X F ?∞---=22

2)(21)(σμσ

π

正态曲线下面积的分布规律 曲线下横轴上的总面积为100%或1。

服从正态分布的随机变量在一区间上曲线下的面积与其在这一区间上取值的概率相等。 当μ、σ和X 已知时,可先进行u 转换: 然后对u 的累计分布函数Φ(u)进行积分。

σ

μ-=x u u

u

u d e u ?∞--=Φ2221

)(π

正态曲线下面积的分布规律

为了计算方便,统计学家已按公式编制成附表2,标准正态分布曲线下的面积。

即在实际应用中,经u变换后,再用该附表,可把求解任意一个正态分布曲线下面积的问题,转化成标准正态分布曲线下相应的面积。

正态曲线下面积的分布规律

曲线下对称于0的区间,面积相等。区间(-∞,-u)和区间(u,+∞)的面积相等,因而附表2中只列出Φ(-u)的值,

Φ(u)=1-Φ(-u)。

正态曲线下面积的计算公式为:

P(u

1 < U < u

2

) =Φ(u

2

) Φ(u

1

)。

正态分布资料

第三章正态分布 一、教学大纲要求 正态分布 正态分布 normal distribution 一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。遵从正态分布的随机变量的概率规律为取μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。 正态分布最早由 A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。 生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。 正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。 设一组数据x1,x2,x3,…xn,各数据与它们的平均数为X的差的平方分别是(x1-X)2、 (x2-X)2、那么我们用它们的平均数,即用: S2=1/n[(x1-X) 2+(x2-X) 2+(x3-X) 2+…] 来衡量这组数据的波动大小,并把它叫做这组数据的方差,一组数据方差越大,说明这组数据波动越大。为什么要这样定义方差?在表示各数据与其平均数的偏离程度时,为了防止正偏差与负偏差的相互抵消。

社会统计学习题集--二项分布与正态分布.

第七章假设检验 第一节二项分布 二项分布的数学形式·二项分布的性质 第二节统计检验的基本步骤 建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定 第三节正态分布 正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法 第四节中心极限定理 抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理 第五节总体均值和成数的单样本检验 σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验·关于总体成数的检验一、填空 1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于(正态)分布。 2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( 显著性水平,它决定了否定域的大小。 3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(大),原假设为真而被拒绝的概率越(小)。 4.二项分布的正态近似法,即以将B(x;n,p视为(( np ,npq查表进行计算。 5.已知连续型随机变量~(0,1,若概率P{≥}=0.10,则常数= ()。 6.已知连续型随机变量~(2,9,函数值,则概率=()。 二、单项选择

1.关于学生t分布,下面哪种说法不正确( B )。 A 要求随机样本 B 适用于任何形式的总体分布 C 可用于小样本 D 可用样本标准差S代替总体标准差 2.二项分布的数学期望为( C )。 A n(1-np B np(1- p C np D n(1- p。 3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为( D )。 A 大于0.5 B -0.5 C 1 D 0.5。 4.假设检验的基本思想可用( C )来解释。 A 中心极限定理 B 置信区间 C 小概率事件 D 正态分布的性质 5.成数与成数方差的关系是(D)。 A 成数的数值越接近0,成数的方差越大 B 成数的数值越接近0.3,成数的方差越大 C 成数的数值越接近1,成数的方差越大 D 成数的数值越接近0.5,成数的方差越大 6.在统计检验中,那些不大可能的结果称为( D 。如果这类结果真的发生了, 我们将否定假设。 A 检验统计量 B 显著性水平 C 零假设 D 否定域 7.对于大样本双侧检验,如果根据显著性水平查正态分布表得Zα/2=1.96,则当零假设被否定时,犯第一类错误的概率是( C 。 A 20% B 10% C 5% D.1% 8.关于二项分布,下面不正确的描述是( A )。 A 它为连续型随机变量的分布;

二项分布与正态分布 练习题

二项分布与正态分布 1.用电脑每次可以自动生成一个(0,1)内的实数,且每次生成每个实数都是等可能的,若用该电脑连续生成3个实数,则这3个实数都大于1 3 的概率为( ) A.1 27 B.23 C. 827 D.49 解析:选C 由题意可得,用该电脑生成1个实数,且这个实数大于1 3的概率为P = 1-13=23,则用该电脑连续生成3个实数,这3个实数都大于13的概率为? ????233=8 27.故选 C. 2.(2019·汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和3 4,甲、乙两人是否获得一等奖相互独立,则这两个人中 恰有一人获得一等奖的概率为( ) A.34 B.23 C.57 D.512 解析:选D 根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是23×? ????1-34+34×? ????1-23=5 12 ,故选D. 3.(2018·厦门二模)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( ) A.25 B.35 C.18125 D.54125 解析:选D 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率为35,∴3次中恰有2次抽到黄球的概率是P =C 23? ????352? ????1-35= 54 125 . 4.(2018·唐山二模)甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( ) A.2 9 B.49

C.23 D.79 解析:选D 甲不跑第一棒共有A 13·A 3 3=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A 33=6种情况;(2)乙不跑第一棒,共有A 12·A 12·A 2 2=8 种情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+818=79 .故选D. 5.(2019·福建四校联考)某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩X 近似服从正态分布N (100,a 2)(a >0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的1 10,则此次数学考试成绩在100 分到110分之间的人数约为( ) A .400 B .500 C .600 D .800 解析:选A 由题意得,P (X ≤90)=P (X ≥110)=110,所以P (90≤X ≤110)=1-2× 1 10=45,所以P (100≤X ≤110)=2 5,所以此次数学考试成绩在100分到110分之间的人数约为 1 000×2 5 =400.故选A. 6.(2018·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5, 则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 解析:选C 设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=1 5,则在第一次闭合后出现红灯的条件 下第二次闭合出现红灯的概率是P (B |A )=P AB P A =1 512 =25 .故选C. 7.(2019·淄博一模)设每天从甲地去乙地的旅客人数为随机变量X ,且X ~ N (800,502),则一天中从甲地去乙地的旅客人数不超过900的概率为( )

正态分布的介绍资料

0.1 正态分布,熟悉的陌生人 (2) 0.2 邂逅,正态曲线的首次发现 (4) 0.3 最小二乘法,数据分析的瑞士军刀 (7) 0.4 众里寻她千百度,误差分布曲线的确立 (10) 0.5 曲径通幽处,禅房花木深 (16) 0.5.1 高斯(1809)的推导 (17) 0.5.2 赫歇尔(1850)和麦克斯韦(1860) 的推导 (19) 0.5.3 兰登(1941)的推导 (20) 0.5.4 基于最大娟的推导 (22) 0.6 开疆拓土,正态分布的进一步发展 (24) 0.6.1 论剑中心极限定理 (24) 0.6.2 进军近代统计学 (28) 0.6.3 数理统计三剑客 (32) 0.7 正态魅影 (34) 0.8 大道至简,大美天成 (36) 0.9 推荐阅读 (39) 1

2 神说,要有正态分布,就有了正态分布。 神看正态分布是好的,就让 随机误差服从了正态分布。 创世纪—数理统计 0.1 正态分布,熟悉的陌生人 学过基础统计学的同学大都对正态分布非常熟悉。 这个钟形的分布曲 线不但形状优雅,它对应的密度函数写成数学表达式 f (x ) = 1 e ? √2πσ (x ?μ)2 2σ2 也非常具有数学的美感。 其标准化后的概率密度函数 1 x 2 f (x ) = √2π e 更加的简洁漂亮,两个最重要的数学常量π队e 都出现在这公式之中。 在我 个人的审美之中,它也属于top-N 的最美丽的数学公式之一,如果有人问 我数理统计领域哪个公式最能让人感觉到上帝的存在,那我一定投正态分 布的票。 因为这个分布戴着神秘的面纱,在自然界中无处不在,让你在纷 繁芜杂的数据背后看到隐隐的秩序。 Figure 1: 正态分布曲线 正态分布又通常被称为高斯 分布,在科学领域,冠名权那是一个很高 的荣誉。 2002年以前去过德国的兄弟们还会发现,德国1991年至2001年间 ? 2

正态分布表资料

正态分布的应用 1、用Z 的公式将原始分数转换成标准分数 条件是原始分数的分布是正态的。 例如:已知某班期末考试中语文的平均分为76,标准差为10,数学的平均分为83,标准差为15。某学生在这次期 末考试的语文成绩为79,数学成绩为87,问该生这两科成绩哪一个更好一些? 答:该考生的语文成绩更好一些。 2、确定录用分数线 在选拔兴或竞赛性的考试中,录取或授奖的人数(或比赛)往往是事先确定的。这就是用标准分数的作用发挥。假定为正态分布,可将录取或授奖的人数比率作为正态分布中分线右侧,即上端的面积,由此找出相应标准分数Z 值,然后根据Z 公式计算出原始分数X. 例如:在某年的高考中某省的平均分为420,标准差为100,分数呈正态分布,某考生得了456分。设当年的该省的 录取率为40%,问该生的成绩是否上线? 解:根据Z 分数的计算公式,得 当P=0.40时,0.5-0.40=0.10 然后查附表,找到对应的Z=0.25 因为0.36>0.25, 所以该考生上线了。 又如:某年某市参加数学竞赛的学生有850人,考试的平均分为68,标准差为9。而这次计划只给最优秀的5%颁 奖,问授奖分数线为多少?某个考生在这次考试中得了76分,问这位考生是否获奖? 解:根据0.05的P 值计算差表,得Z=1.65 因为82.85>76, 所以该考生不可能获奖。 例.某区拟对参加数学竞赛的2000人中的前500人予以奖励,考试的平均分数为75分,标准差为9 分,问授奖的分数线是多少?(授奖分数线为81.03分。) 例:某考试2500人参加,成绩服从正态分布,μ=80 σ2=25,求分数在88分以上的人数。 解: n =N·P =2500×0.0548=137(人) 例:某招生考试,选拔20%,考生成绩服从正态分布,μ=70 σ=10,录取标准应划在哪里? 解 Z =0.84 X =10×0.84+70=78.4 分数线为78.4 例:某地13岁女孩118人的身高(cm)资料,估计该地13岁正常女孩身高在135厘米以下及155 厘米以上者各占正常女孩总人数的百分比。 身高(X )~N (μ,σ2),但μ和σ未知,只知来自该总体的样本的身高均数x =144.29(cm)和标准差s =5.41(cm),由于样本含量n=118很大,所以可以用x 和s 估计μ和σ来计算u 值。 身高(X )小于135(cm)的概率为:()()11135u U P x X P <==< 00()0.20(0)0.3 p Z Z p Z Z >=?<<=

二项分布与正态分布

二项分布与正态分布 [最新考纲] 1.了解条件概率和两个事件相互独立的概念. 2.理解n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 知 识 梳 理 1.条件概率及其性质 设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 若事件A ,B 相互独立,则P (B |A )=P (B );事件A 与B ,A 与B ,A 与B 都相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). (2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发 生的概率为p ,则P (X =k )=C k n p k (1-p ) n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 4.正态分布 (1)正态分布的定义及表示 如果对于任何实数a ,b (a

机变量X 服从正态分布,记为X ~N (μ,σ2). 函数φμ,σ(x )=,x ∈R 的图象(正态曲线)关于直线x =μ对称,在x =μ处达到峰值1σ2π. (2)正态总体三个基本概率值 ①P (μ-σ

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

二项分布与正态分布的特点及联系

二项分布与正态分布的特点及他们的联系 2008-05-23 09:22:10| 分类:数学|举报|字号订阅 正态分布的特点如下: 1.正态分布的形式是对称的,它的对称轴是过平均数点的垂直线,即关于x=u对称。 2.曲线在Z=0处为最高点,向左右延伸时,在正负1个标准差之内,既向下又向内弯。从正负1个标准差开始,既向下又向外弯。拐点位于正负一个标准差处,曲线两端向靠近基线处无限延伸和接近,但不相交。 3.正态分布下的面积为1,过平均数的垂直线将面积分为左右各0.50的部分。正态曲线下的每一面积都可以被看成是概率,即对应着横坐标值的随机变量出现的概率。 4.正态分布是一族分布,它随着随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。但是所有的正态分布都可以通过公式Z=(Xl—M)/S,转换成标准正态分布,即平均数为0,标准差为1的正态分布。 5.在正态分布曲线中,标准差与概率(面积)有一定的关系。 二项分布的特点如下: 1、二项分布的均值为np,方差为npq。 2、以事件A出现的次数为横坐标,以概率为纵坐标,画出二项分布的图象,可以看出: (1)、二项分布是一种离散性分布 (2)、当p=q=0.5时,图象对称;当p不等于q时,图形是偏斜的。p>q 时,呈负偏态; 3、n->∞时,趋近于正态分布N(np,npq)

一般1/2np>=5且nq>=5时,二项分布就非常接近正态分布。 二项分布函数在教育中主要用来判断试验结果的机遇性与真实性的界限,例如,求测验猜测行为的判断标准:在选择题测验中,通过二项分布计算得出被试凭猜测答对N道以上的概率。 阅读(744)|评论(0)

二项分布概念及图表和查表方法

二项分布概念及图表 二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。 目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。

医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。 考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 二项分布公式 P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。

二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均 为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ???? ==?= ? ????? ∴; 12 13 1448(1)55125 P X C ???? ==?= ? ?????; 21 231412(2)55125P X C ???? ==?= ? ?????; 3 33 141(3)55125 P X C ???? ==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101 (2)15 C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 超几何分布和二项分布都是离散型分布

二项分布、泊松分布和正态分布的区别及联系

二项分布、泊松分布和正态分布的区别及联系 二项分布、泊松分布和正态分布的区别及联系?被浏览8,9732 个回答猴子微信公众号:猴子聊人物之前你已经了解概率的基础知识(如果还不知道概率能干啥,在生活中有哪些应用的例子,可以看我之前的《投资赚钱与概率》)。 今天我们来聊聊几种特殊的概率分布。这个知识目前来看,还没有人令我满意的答案,因为其他人多数是在举数学推导公式。我这个人是最讨厌数学公式的,但是这并不妨碍我用统计概率思维做很多事情。相比熟悉公式,我更想知道学的这个知识能用到什么地方。可惜,还没有人讲清楚。今天,就让我来当回雷锋吧。 首先,你想到的问题肯定是:1. 什么是概率分布?2. 概率分布能当饭吃吗?学了对我有啥用?好了,我们先看下:什么是概率分布? 1. 什么是概率分布?要明白概率分布,你需要知道先两个东东:1)数据有哪些类型2)什么是分布数据类型(统计学里也叫随机变量)有两种。第1种是离散数据。离散数据根据名称很好理解,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就2种数值(也就是2种结果,要么是正面,要么是反面)。你可以把离散数据想象成一块一块垫脚石,你可以从一个数值调到另一个数

值,同时每个数值之间都有明确的间隔。 第2种是连续数据。连续数据正好相反,它能取任意的数值。例如时间就是一个典型的连续数据1.25分钟、1.251分钟,1.2512分钟,它能无限分割。连续数据就像一条平滑的、连绵不断的道路,你可以沿着这条道路一直走下去。 什么是分布呢?数据在统计图中的形状,叫做它的分布。 其实我们生活中也会聊到各种分布。比如下面不同季节男人的目光分布.。 各位老铁,来一波美女,看看你的目光停在哪个分布的地方。美女也看了,现在该专注学习了吧。现在,我们已经知道了两件事情:1)数据类型(也叫随机变量)有2种:离散数据类型(例如抛硬币的结果),连续数据类型(例如时间)2)分布:数据在统计图中的形状现在我们来看看什么是概率。概率分布就是将上面两个东东(数据类型+分布)组合起来的一种表现手段:概率分布就是在统计图中表示概率,横轴是数据的值,纵轴是横轴上对应数据值的概率。很显然的,根据数据类型的不同,概率分布分为两种:离散概率分布,连续概率分布。那么,问题就来了。为什么你要关心数据类型呢?因为数据类型会影响求概率的方法。对于离散概率分布,我们关心的是取得一个特定数值的概率。例如抛硬币正面向上的概率为:p(x=正面)=1/2而对于连续概率分布来说,我们无法给出每一个数值的概率,因为我们不可能列举每一

二项分布、超几何分布、正态分布总结归纳与练习

二项分布?还是超几何分布 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列; ( 2)不放回抽样时,取到黑球的个数Y的分布列. 解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率 均为1 , 3 次取球可以看成 3 次独立重复试验,则 1 ,.5X~B 35 0312 ∴ P(X 0) C301 464 ;P(X 1)C31 1 448 ; 5512555125 21 P(X 3) C33 130 P(X 2) C321 412 ;4 1 .5512555125 因此, X 的分布列为 X0123 P 6448121 125125125125 (2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有: P(Y 0)C20C837 ;P(Y1)C21C82 7 ;P(Y2)C22C81 1 . C10315C10315C10315 因此, Y 的分布列为 Y012 771 P 1515 15 例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4 ( 1)根据频率分布直方图,求重量超过505 克的产品数量 , ( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克 的产品数量,求Y 的分布列; ( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505 克的概率。

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 22 ()2,1(),(,)2x x e x μσμσ?πσ --=∈-∞+∞ 式中的实数 μ、)0(>σσ是参数,分别表示总体的平均数与标准差, ,()x μσ ?的图象为 正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ 和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

知识讲解正态分布(理)资料讲解

2 正态分布 【学习目标】 1. 了解正态分布曲线的特点及曲线所表示的意义。 2. 了解正态曲线与正态分布的性质。 【要点梳理】 要点诠释: 要点一、概率密度曲线与概率密度函数 1 ?概念: 对于连续型随机变量 X ,位于x 轴上方,X 落在任一区间(a , b ]内的概率等于它与 x 轴、直线x a 与直线x b 所围成的曲边梯形的面积(如图阴影部分) ,这条概率曲线叫做 X 的概率密度曲线,以其作 为图象的函数f (x)叫做X 的概率密度函数。 i X y ■~ 工) > i 2、性质: ① 概率密度函数所取的每个值均是非负的。 ② 夹于概率密度的曲线与 x 轴之间的 平面图形”勺面积为1 要点二、正态分布 (1)定义 如果对于任何实数 a,b(a b)随机变量X 满足:P(a X b) 则称随机变量X 服从正态分布。记为 X : N( , 2)。 (2 )正态分布的期望与方差 若X : N( , 2),贝U X 的期望与方差分别为: EX 要点诠释: ③ P(a X b)的值等于由直线x a , x b 与概率密度曲线、 x 轴所围成的平面图形”的面积。 1.正态变量的概率密度函数 正态变量的概率密度函数表达式为: , (x) 其中x 是随机变量的取值; □为正态变量的期望; 2 .正态分布 (X )2 2 2 e 2 (x 是正态变量的标准差 R),( 0, , (x)dx , DX

(1 )正态分布由参数和确定。

参数是均值,它是反映随机变量取值的平均水平的特征数,可用样本的均值去估计。 标准差,它是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计。 (2 )经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布. 在现实生活中,很多随机变量都服从或近似地服从正态分布?例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品 的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的 平均气温、平均湿度、降雨量等;一般都服从正态分布. 要点三、正态曲线及其性质: 1. 正态曲线 1 ■(^^ 如果随机变量X的概率密度函数为f(x)------------------- e 2(x R),其中实数和为参数 V2 ( 2 ?正态曲线的性质: ①曲线位于x轴上方,与x轴不相交; ②曲线是单峰的,它关于直线x 对称; ③曲线在x时达到峰值

二项分布与正态分布习题理含答案

一、选择题 1.某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是() A.0.18B.0.28 C.0.37 D.0.48 [答案] A [解析]C0.43·0.6+C·0.44=0.1792.故应选A. 2.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为() A.0.2 B.0.41 C.0.74 D.0.67 [答案] C [解析]设事件A为“预报一次,结果准确”P=P(A)=0.8,至少有4次准确这一事件是下面两个互斥事件之和:5次预报,恰有4次准确;5次预报,恰有5次准确,故5次预报,至少有4次准确的概率为P5(4)+P5(5)=C×0.84×0.2+C×0.85×0.20≈0.74.故应选C. 3.(2011·湖北理,5)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=() A.0.6 B.0.4 C.0.3 D.0.2 [答案] C [解析]本题考查利用正态分布求随机变量的概率. ∵P(ξ<4)=0.8,∴P(ξ≥4)=0.2,又μ=2, ∴P(0<ξ<2)=P(2<ξ<4)=0.5-P(ξ≥4) =0.5-0.2=0.3.

4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率是.质点P移动五次后位于点(2,3)的概率是() A.()5B.C()5 C.C()3D.CC()5 [答案] B [解析]由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动二次,向上移动三次,故其概率为C()3·()2=C()5=C()5.故应选B. 5.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是() A.[0.4,1) B.(0,0.6] C.(0,0.4] D.[0.6,1) [答案] A [解析]CP(1-P)3≤CP2(1-P)2,4(1-P)≤6P,P≥0.4,又01>σ2>σ3>0 B.0<σ1<σ2<1<σ3 C.σ1>σ2>1>σ3>0 D.0<σ1<σ2=1<σ3 [答案] D [解析]当μ一定时,曲线由σ确定,当σ越小,曲线越高瘦,反之越矮胖.故选D. 二、填空题 7.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0).若X在(0,1)内取值的概率为0.4,则X在(0,2)内取值的概率为________. [答案]0.8

高考复习资料之正态分布

高考复习资料之正态分布 一、 基础知识回顾 1.正态分布:若总体密度曲线就是或近似地是函数()22()2 (),,2x f x e x μσπσ--=∈-∞+∞的图象 其中:π是圆周率;e 是自然对数的底;x 是随机变量的取值,为正态分布的平均值;σ是正态分布的标准差.这个总体是无限容量的抽样总体,其分布叫做正态分布.正态分布由参数μ,σ唯一确定,记作ξ~2(,)N μσ,E(ξ)=μ,D(ξ)=2 σ. 2.函数f(x)图象被称为正态曲线. (1)从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为....x=μ...,并在...x=μ...时取最大....值. 。(2)从x =μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的,(3)当μ的值一定时, σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”.总体分布越集中. 3. 把ξ~(0,1)N 即μ=0,σ=1称为标准正态分布,这样的正态总体称为标准正态总体,其密度函数为 21 2()2x f x e π-=,x ∈(-∞,+∞),相应的曲线称为标准正态曲线. 4.利用标准正态分布表可求得标准正态总体在某一区间内取值的概率. (1)对于标准正态总体(0,1)N ,)(0x Φ是总体取值小于0x 的概率,即: )()(00x x P x <=Φ,其中00>x ,其值可以通过“标准正态分布表” 查得,也就是图中阴影部分的面积,它表示总体取值小于0x 的概率. (2)标准正态曲线关于y 轴对称。因为当00>x 时,)()(00x x P x <=Φ; 而当00

(仅供参考)如何统计分析非正态分布的数据

如何统计分析非正态分布的数据 小飞看了9月23日医咖会微信推送的“降糖药物利拉鲁肽,还能治疗心衰吗?”的研究(FIGHT 研究)后[1],不明白研究方法II中的Wilcoxon秩和检验到底是什么,于是来找小咖讨论。 小飞:Wilcoxon秩和检验到底是个什么鬼? 小咖:这是一种非参数检验方法。 小飞:非参数检验又是个什么鬼啊? 小咖:平时我们常用的t检验、卡方检验、方差分析等方法都要求样本服从特定的分布(比如t检验要求样本服从正态分布),这些方法被称为参数检验方法。但有些数据并不符合参数检验的要求,最常见的情况是数据不符合正态分布,这时可以使用非参数检验的方法。 非参数检验有很多种,Wilcoxon秩和检验就是其中一种。 小飞:不明觉厉...你还是来个栗子呗。

小咖:好吧。某医生为了评价A药对绝经后妇女的骨质疏松症是否有效,将30名绝经后妇女随机分为两组,干预组研究对象15例,给予A药+乳酸钙治疗;对照组15例,仅给予乳酸钙治疗。24周之后观察两组L2-4骨密度的改善率。数据如下图: 两组骨密度改善率(%) 干预组对照组 ID 改善率ID 改善率 1 -0.20 1 -0.83 2 0.21 2 0.26 3 1.86 3 0.48 4 1.97 4 1.03 5 2.31 5 1.06 6 2.80 6 1.19 7 3.30 7 1.27 8 3.60 8 1.71 9 4.31 9 1.75 10 4.40 10 2.33 11 5.29 11 2.66 12 5.87 12 2.80 13 6.06 13 3.22 14 6.08 14 3.34 15 7.00 15 3.34 小飞:嗯,我明白了。对于这种两组平行设计、结局是不符合正态分布的连续变量,就应当使用Wilcoxon秩和检验对吧? 小咖:很聪明,给你满分。接下来给你演示一下用SPSS 22.0怎么操作。 (1)数据录入SPSS

二项分布与正态分布习题

二项分布与正态分布 1.某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是( ) A .0.18 B .0.28 C .0.37 D .0.48 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为( ) (A)0.960 (B)0.864 (C)0.720 (D)0.576 3.甲、乙两市都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天的条件下,乙市也为雨天的概率为( ) (A)0.6 (B)0.7 (C)0.8 (D)0.66 4.在5道题中有三道数学题和两道物理题,如果不放回的依次抽取2道题,则在第一次抽到数学题的条件下,第二次抽到数学题的概率是( ) A. 35 B. 25 C. 1 2 D. 13 5.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=( ) A .0.6 B .0.4 C .0.3 D .0.2 6.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率是 1 2 .质点P 移动五次后位于点(2,3)的概率是( ) A .51()2 B .2551()2 C C .3351()2C D .235 551()2C C 7.一袋中装着5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时,取球的次数为ξ,ξ是一个随机变量,则P(ξ=12)=( ) A . 10 10 2123 5()()8 8 C B . 9 10 21135()()8 8 C C . 10 10 21135()()8 8 C D . 9 10 2 1235()()8 8 C 8.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________. 9.在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐,已知只有5发子弹备用,首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是2 3,每次命 中与否互相独立,求油罐被引爆的概率______. 10.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE(阴影部分)

相关主题
文本预览
相关文档 最新文档