当前位置:文档之家› 高考数学(人教a版,理科)题库:函数y=asin(ωx+φ)的图象及性质(含答案)

高考数学(人教a版,理科)题库:函数y=asin(ωx+φ)的图象及性质(含答案)

高考数学(人教a版,理科)题库:函数y=asin(ωx+φ)的图象及性质(含答案)
高考数学(人教a版,理科)题库:函数y=asin(ωx+φ)的图象及性质(含答案)

第4讲 函数y =Asin(ωx +φ)的图象及性质

一、选择题

1.已知函数f (x )=sin ?

????ωx +π3(ω>0)的最小正周期为π,则该函数的图像( )

A .关于点? ??

??

π3,0对称 B .关于直线x =π4对称

C .关于点? ??

??

π4,0对称 D .关于直线x =π3对称

解析 由已知,ω=2,所以f (x )=sin ? ????2x +π3,因为f ? ??

??

π3=0,所以函数

图像关于点? ??

??

π3,0中心对称,故选A.

答案 A 2.要得到函数cos(21)y x =+的图像,只要将函数cos 2y x =的图像( ) A. 向左平移1个单位 B. 向右平移1个单位

C. 向左平移

12 个单位 D.向右平移 1

2

个单位 解析 因为1

cos(21)cos(2()2

y x x =+=+,所以将cos 2y x =向左平移12个单位,

故选C. 答案 C

3. 函数f (x )=A sin(ωx +φ)A >0,ω>0,|φ|<π

2的部分图象如图所示,则将y =f (x )的图象向右平移π

6个单位后,得到的图象对应的函数解析式为

( ).

A .y =sin 2x

B .y =cos 2x

C .y =sin ? ?

?

??2x +2π3

D .y =sin ? ?

?

??2x -π6

解析 由所给图象知A =1,34T =11π12-π6=3π4,T =π,所以ω=2π

T =2,由sin ? ????2×π6+φ=1,|φ|<π2得π3+φ=π2,解得φ=π6,所以f (x )=sin ? ?

?

??2x +π6,则f (x )

=sin ? ?

???2x +π6的图象向右平移π6个单位后得到的图象对应的函数解析式为y =

sin ??????2? ????x -π6+π6=sin ? ????2x -π6,故选D. 答案 D

4.将函数y =sin 2x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值为

( ).

A.π6

B.π

3

C.π

4 D.π12

解析 将函数y =sin 2x 的图象向左平移φ个单位,得到函数y =sin 2(x +φ)=sin(2x +2φ)的图象,由题意得2φ=π2+k π(k ∈Z ),故φ的最小值为π

4. 答案 C

5. 如图,为了研究钟表与三角函数的关系,

建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0? ????

32,12,当秒

针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为

( ).

A .y =sin ? ??

??π

30t +π6

B .y =sin ? ????-π

60t -π6

C .y =sin ? ??

??-π

30t +π6

D .y =sin ? ??

??-π

30t -π3

解析 由题意可得,函数的初相位是π

6,排除B ,D.又函数周期是60(秒)且秒针按顺时针旋转,即T =??????

2πω=60,所以|ω|=π30,即ω=-π30,故选C.

答案 C

6.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<

π2)的图像如图所示,则当t =1

100

秒时,电流

强度是( )

A .-5安

B .5安

C .53安

D .10安

解析 由函数图像知A =10,T 2=4300-1300=1

100.

∴T =150=2πω,∴ω=100π.

∴I =10sin(100πt +φ). 又∵点? ????

1300,10在图像上, ∴10=10sin ?

????

100π×1300+φ ∴

π3+φ=π2,∴φ=π

6

, ∴I =10sin ? ?

???100πt +π6.

当t =

1100时,I =10sin ?

?

???100π×

1100+π6=-5. 答案 A 二、填空题

7.已知函数f (x )=sin(ωx +φ)? ?

???ω>0,-π2≤φ≤π2的图像上的两个相邻的

最高点和最低点的距离为22,则ω=________.

解析 由已知两相邻最高点和最低点的距离为22,而f (x )max -f (x )min =2,由勾股定理可得T

2=

2

2

-22=2,∴T =4,∴ω=

T

π2

.

答案

π2

8.已知函数f (x )=3sin ? ?

???ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完

全相同,若x ∈???

?

??0,π2,则f (x )的取值范围是________.

解析 ∵f (x )与g (x )的图象的对称轴完全相同,∴f (x )与g (x )的最小正周期相等,∵ω>0,∴ω=2,∴f (x )=3sin ? ?

?

??2x -π6,∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴

-12≤sin ? ????2x -π6≤1,∴-32≤3sin ? ????2x -π6≤3,即f (x )的取值范围是??????

-32,3.

答案 ????

??

-32,3

9.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若? ????

π8,5π8是f (x )的一个单调递增区间,

则φ的值为________.

解析 令π2+2k π≤2x +φ≤3π2+2k π,k ∈Z ,k =0时,有π4-φ2≤x ≤3π4-φ

2,此时函数单调递增,若? ????

π8,5π8是f (x )的一个单调递增区间,则必有

????? π4-φ2≤π

8,3π4-φ2≥5π8,

解得?????

φ≥π

4,φ≤π

4,故φ=π4.

答案 π4

10.在函数f (x )=A sin(ωx +φ)(A >0,ω>0)的一个周期内,当x =π

9时有最

大值12,当x =4π9时有最小值-12,若φ∈? ?

???0,π2,则函数解析式f (x )=

________.

解析 首先易知A =12,由于x =π9时f (x )有最大值12,当x =4π

9时f (x )有最

小值-12,所以T =? ????4π9-π9×2=2π3,ω=3.又12sin ? ????3×π9+φ=12,φ∈? ????0,π2,解得φ=π6,故f (x )=12sin ? ?

???3x +π6.

答案 12sin ? ?

???3x +π6

三、解答题

11.已知函数f (x )=3sin2x +2cos 2x . (1)将f (x )的图像向右平移

π

12

个单位长度,再将周期扩大一倍,得到函数g (x )的图像,求g (x )的解析式;

(2)求函数f (x )的最小正周期和单调递增区间. 解 (1)依题意f (x )=3sin2x +2·cos2x +1

2

=3sin2x +cos2x +1 =2sin ?

?

???2x +π6+1,

将f (x )的图像向右平移π12个单位长度,得到函数f 1(x )=2sin ?????

?2? ?

???x -π12+π6+1=2sin2x +1的图像,该函数的周期为π,若将其周期变为2π,则得g (x )=2sin x +1.

(2)函数f (x )的最小正周期为T =π, 当2k π-

π2≤2x +π6≤2k π+π

2(k ∈Z)时,函数单调递增, 解得k π-

π3≤x ≤k π+π

6

(k ∈Z), ∴函数的单调递增区间为?

??

???k π-π3,k π+π6(k ∈Z).

12.已知向量m =(sin x,1),n =(3A cos x ,A

2cos 2x )(A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;

(2)将函数y =f (x )的图象向左平移

π

12

个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在???

???0,5π24上

的值域.

解 (1)f (x )=m ·n =3A sin x cos x +A

2cos 2x =A ? ??

??32sin 2x +12cos 2x =A sin ? ?

???2x +π6.

因为A >0,由题意知A =6. (2)由(1)知f (x )=6sin ? ??

??2x +π6. 将函数y =f (x )的图象向左平移π

12个单位后得到 y =6sin ??????2?

?

???x +π12+π6=6sin ? ????2x +π3的图象; 再将得到图象上各点横坐标缩短为原来的1

2倍,纵坐标不变,得到y =6sin ? ?

???4x +π3的图象.

因此g (x )=6sin ? ?

?

??4x +π3.

因为x ∈??????0,5π24,所以4x +π3∈??????π3,7π6, 故g (x )在???

?

??0,5π24上的值域为[-3,6].

13.已知函数f (x )=23sin x 2+π4cos ? ????

x 2+π4-sin(x +π).

(1)求f (x )的最小正周期;

(2)若将f (x )的图象向右平移π

6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值. 解 (1)因为f (x )=3sin ? ????

x +π2+sin x

=3cos x +sin x =2? ????32cos x +1

2sin x

=2sin ? ??

??

x +π3,

所以f (x )的最小正周期为2π.

(2)∵将f (x )的图象向右平移π

6个单位,得到函数g (x )的图象, ∴g (x )=f ? ????x -π6=2sin[? ????x -π6+π

3]

=2sin ? ??

??

x +π6.

∵x ∈[0,π],∴x +π6∈????

??

π6,7π6,

∴当x +π6=π2,即x =π3时,sin ? ????

x +π6=1,g (x )取得最大值2.

当x +π6=7π6,即x =π时,sin ? ????

x +π6=-12,g (x )取得最小值-1.

14.设函数f (x )=22cos ? ?

???2x +π4+sin 2x .

(1)求f (x )的最小正周期;

(2)设函数g (x )对任意x ∈R ,有g ? ????x +π2=g (x ),且当x ∈???

???0,π2时,g (x )=12-

f (x ).求

g (x )在区间[-π,0]上的解析式. 解 (1)f (x )=22cos ? ?

???2x +π4+sin 2x

=22? ?

???cos 2x cos π4-sin 2x sin π4+1-cos 2x 2

=12-1

2sin 2x ,

故f (x )的最小正周期为π.

(2)当x ∈???

???0,π2时,g (x )=12-f (x )=12sin 2x ,故

①当x ∈??????

-π2,0时,x +π2∈??????0,π2.

由于对任意x ∈R ,g ? ????

x +π2=g (x ),

从而g (x )=g ? ????x +π2=12sin ??????

2? ????x +π2

=12sin(π+2x )=-1

2sin 2x .

②当x ∈??????-π,-π2时,x +π∈???

???0,π2.

从而g (x )=g (x +π)=12sin[2(x +π)]=1

2sin 2x . 综合①、②得g (x )在[-π,0]上的解析式为

g (x )=?????

12sin 2x ,x ∈???

?

??-π,-π2,-12sin 2x ,x ∈????

??

-π2,0.

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

人教版数学必修一函数的单调性与最大值

一、函数的单调性 1.增函数和减函数 一般地,设函数f(x)的定义域为I 如果对于定义域I内某个区间D上的任意两个自变量的值,,当时,都有f()f(),那么就说函数f(x)在区间D上是减函数 2.函数的单调性与单调区间 如果函数y=f(x)在区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有单调性,区间D叫做y=f(x)的单调区间 (1)在某个区间具有单调性:①这个区间可以是整个定义域.如:y=x 在整个定义域R上是增函数,②这个区间也可以是定义域的真子集,如:y=x2在定义域(-∞,+∞)上不具有单调性,但在(-∞,0 ] 上是减函数,在 [ 0,+∞)上是增函数

(2)单调性是函数在某一区间上的“整体”性质,因此定义中的,有以下几个特征:一是任意性,,即“任意取,”,“任意”两字不能丢;二是有大小,通常规定;三是属于同一单调区间(3)单调性能使自变量取值之间的不等关系和函数值得不等关系正逆互推,即由f(x)是增函数且f()< (4)有的函数不具有单调性,如函数y=,它的定义域为R,但不具有单调性,函数y=x+1,x∈Z它的定义域不是区间,也不能说它在其定义域上具有单调性 (5)如果函数f(x)在其定义域内的两个区间A,B 上都是增(减)函数,一般不能认为f(x)在A∪B上是增(减)函数,例如f(x)=在(-∞,0)上是减函数,在(0,+∞)上是减函数,但是不能说其在(-∞,0)∪(0,+∞)上是减函数,在这里,正确的写法应为:“(-∞,0),(0,+∞)”或“(-∞,0)和(0,+∞)” (6)图像特征:在某区间上,单调递增的函数f(x),从左向右看,其图像时上升的,单调递减的函数f(x),从左向右看,其图像时下降的 (7)函数在某一点处的单调性无意义

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

余弦函数图像和性质练习含答案

课时作业10 余弦函数、正切函数的图象与性质(一) 时间:45分钟 满分:100分 一、选择题(每小题6分,共计36分) 1.函数f (x )=cos(2x -π 6)的最小正周期是( ) A.π2 B .π C .2π D .4π 解析:本题考查三角函数的周期. T = 2π 2 =π. 余弦型三角函数的周期计算公式为2π ω (ω>0). 答案:B 2.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π 3个 单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13 B .3 C .6 D .9 解析:将f (x )向右平移π3个单位长度得g (x )=f (x -π 3)= cos[ω(x -π3)]=cos(ωx -π3ω),则-π 3 ω=2k π, ∴ω=-6k ,又ω>0,∴k <0,当k =-1时, ω有最小值6,故选C.

3.设f (x )是定义域为R ,最小正周期为3π 2 的函数,若f (x )= ????? cos x ? ?? ?? -π2≤x ≤0,sin x 0

人教版高一数学函数及其性质知识点归纳与习题

O O O O (1) (2) (3) (4) 时间 时间 时间 时间 离开家的距离 离开家的距离 离开家的距离 离开家的距离 人教版高一数学函数及其性质知识点归纳与习题 第一部分 函数及其表示 知识点一:函数的基本概念 1、函数的概念: 一般地,设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数。记作: A x x f y ∈=,)(。 x 叫自变量,x 的取值范围A 叫做函数的定义域,y 叫函数值,y 的取值范围叫函数的值域。 说明:①函数首先是两个非空数集之间建立的对应关系 ②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的“一对一”或“多对一”。 ③认真理解)(x f y =的含义:)(x f y =是一个整体,)(x f 并不表示f 与x 的乘积,它是一种符号,可以是解析式,也可以是图象,还可以是表格; 2、函数的三要素:定义域,值域和对应法则 3、区间的概念:三种区间:闭区间、开区间、半开半闭区间 4、两个函数相等:同时满足(1)定义域相同;(2)对应法则相同的两个函数才相等 5、分段函数: 说明:①在求分段函数的函数值时,首先要确定自变量在定义域中所在的范围,然后按相应的对应关系求值。 ②分段函数是一种重要的函数,它不是几个函数,而是同一个函数在不同范围内的表示方法不同。 6、函数图像 练习 1.下列图象中表示函数图象的是 ( ) (A ) (B) (C ) (D) 2.下列各组函数中,表示同一函数的是( ) A .x x y y ==,1 B .1,112 -=+?-=x y x x y C .3 3 ,x y x y = = D . 2 )(|,|x y x y == 3.下列所给4个图象中,与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 A 、(1)(2)(4) B 、(4)(2)(3) C 、(4)(1)(3) D 、(4)(1)(2) 4.下列对应关系:( ) ①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :2 2x x →- ④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方 其中是A 到B 的映射的是 A .①③ B .②④ C .③④ D .②③ 5.在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重()040x x <≤克的函数,其表达式为()f x =____ ____ 6.设函数? ??<+≥-=10110 2)(2x x x x x f ,则)9(f = ,)15(f = 7.设函数?? ?<-≥-=5 35 2)(2 x x x x x f ,若)(x f =13,则x= 。 8.函数()1,3,x f x x +?=?-+? 1, 1,x x ≤>则()()4f f = . 9.下列各组函数是同一函数的有 ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =; ③0 ()f x x =与0 1()g x x = ;④2()21f x x x =--与2 ()21g t t t =--。 10.作出函数(]6,3,762 ∈+-=x x x y 的图象 x y 0 x y 0 x y 0 x y 0

北京--正弦函数图象的对称性(檀晋轩)CASIO

课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性 教材:人教版全日制普通高级中学数学教科书(必修)第一册(下) 授课教师: 北京市第十九中学 檀晋轩 【教学目标】 1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正弦函数的对称性. 2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力. 3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识. 【教学重点】 正弦函数图象的对称性及其代数表示形式. 【教学难点】 用等式表示正弦函数图象关于直线2π= x 对称和关于点)0,(π对称. 【教学方法】 教师启发引导与学生自主探究相结合. 【教学手段】 计算机、图形计算器(学生人手一台). 【教学过程】 一、复习引入 1.展示生活实例 对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图).

2.复习对称概念 初中我们已经学习过轴对称图形和中心对称图形的有关概念: 轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合. 3.作图观察 请同学们用图形计算器画出正弦函数的图象 (见右图),仔细观察正弦曲线是否是对称图形? 是轴对称图形还是中心对称图形? 4.猜想图形性质 经过简单交流后,能够发现正弦曲线既是轴对 称图形也是中心对称图形,并能够猜想出一部分对 称轴和对称中心.(教师点评并板书) 如何检验猜想是否正确? 我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明. 今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题) 二、探究新知 分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质. (一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线 2π=x 对称的研究. 1.直观探索——利用图形计算器的绘图功能进行 探索 请同学们在同一坐标系中画出正弦曲线和直线 2 π=x 的图象,选择恰当窗口并充分利用画图功能对问题进行探索研究(见右图),在直线2 π=x 两侧正弦函数值有什么变化规律? 给学生一定的时间操作、观察、归纳、交流,最

广州艺术生高考数学复习资料3三角函数性质与图像

三角函数性质与图像 知识清单: .......... 函数s i n ()y A x ω?=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x =????→图例变化为 ②sin()y A x ω?=+(A >0,ω>0)相应地, ①的单调增区间2,22 2 k k ππππ??-++?? ? ? ??? →变为 222 2 k x k π π πω?π- +++≤≤ 的解集是②的增区间. 注:⑴)sin(?ω+=x y 或cos()y x ω?=+(0≠ω )的周期ω π 2= T ; ⑵sin()y x ω?=+的对称轴方程是2 x k π π=+ (Z k ∈),对称中心(,0)k π; cos()y x ω?=+的对称轴方程是x k π=(Z k ∈) ,对称中心1(,0) 2 k ππ+; )tan(?ω+=x y 的对称中心( 0,2πk ). 课前预习 1.函数sin cos y x x =-的最小正周期是 2π . 2. 函数1 π2sin()23 y x =+ 的最小正周期T = 4π . 3.函数sin 2 x y =的最小正周期是2π

4.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是]6 5, 3 [ ππ 5.函数22cos()( )3 6 3 y x x π π π=- ≤≤的最小值是1 6.为了得到函数)6 2sin(π-=x y 的图象,可以将函数x y 2cos =的图象向左平移3 π 个单位长度 7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移 3 π 个单位,所得图象的解析式是y=sin( 2 1x+ 6 π ). 8. 函数sin y x x =+ 在区间[0, 2 π ]的最小值为___1___. 9.已知f (x )=5sin x cos x -35cos 2 x + 3 2 5(x ∈R ) ⑴求f (x )的最小正周期;y=5sin(2x-3π ) T=π ⑵求f (x )单调区间;[k 12 π π- ,k π+ 12 5π], [k 12 5ππ+ ,k π+ 12 11π]k Z ∈ ⑶求f (x )图象的对称轴,对称中心。x=1252ππ+k ,( 0,6 2π π+ k ) k Z ∈ 典型例题 例1、三角函数图像变换 将函数1 2cos()3 2 y x π=+的图像作怎样的变换可以得到函数cos y x =的图像? 变式1:将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 例2、已知简谐运动π π()2sin 32f x x ????? ?=+< ? ???? ?的图象经过点(01),,则该简谐运动的最 小正周期T 和初相?分别为6T =,π6 = 例3、三角函数性质 求函数34sin(2)2 3 y x ππ= + 的最大、最小值以及达到最大(小)值时x 的值的集合.; 变式1:函数y =2sin x 的单调增区间是[2k π-2 π ,2k π+ 2 π ](k ∈Z ) 变式2、下列函数中,既是(0, 2 π)上的增函数,又是以π为周期的偶函数是( B) (A)y =lg x 2 (B)y =|sin x | (C)y =cos x (D)y=x 2sin 2 变式3、已知? ? ???? ∈2, 0πx ,求函数)12 5cos( )12 cos( x x y +--=ππ 的值域y=2sin (x+ 6 π )?? ? ??2,22 变式4、已知函数12 ()log (sin cos )f x x x =- y=log 2 1()4 sin(2π -x ) ⑴求它的定义域和值域;(2k 4 52,4 πππ π+ + k ) k ∈Z ?? ? ?? ?+∞- ,21

人教版_数学Ⅰ_131函数的单调性

1 ” 课题:§ 1.3.1函数的单调性 教学目的:(i )通过已学过的函数特别是二次函数,理解函数的单调性及其几何意 义; (2 )学会运用函数图象理解和研究函数的性质; (3 )能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、 引入课题 1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: ① 随x 的增大,y 的值有什么变化? ② 能否看出函数的最大、最小值? ③ 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律: 1 . f(x) = x ② 从左至右图象上升还是下降 __________ ? ②在区间 _______________ 上,随着x 的增 大,f(x)的值随着 ___________ . 2. f(x) = -2x+1 ② 从左至右图象上升还是下降 __________ ? ②在区间 _______________ 上,随着x 的增 大,f(x)的值随着 ___________ . 3. f(x) = x 2 ②在区间 _______________ 上,f(x)的值随 -* ----- 1 ----- ? -1 1 x y 」 lb 1 ■ -1 1 x -1 ■ y 」 1 1 --- ■ -1 1 x -1 y 小

-厂 着x 的增大而_________ . ③在区间________________ 上,f(x)的值随 着x 的增大而_________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x) 的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量X1 , X2,当X1VX2时,都有f(x 1)

(完整word)高考专题函数对称性

函数对称性 一知识点精讲: I 函数)(x f y =图象本身的对称性(自身对称) 1、)()(x b f x a f -=+?)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线a b x +=的对称点为 (Q a b +∴点Q 推论1推论2推论32、f ((Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -= 的对称点为00(,)Q b a x y --,Q 000[()]()f b b a x f a x y ---=+= ∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2 b a x -= 的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2 b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点( ,0)2 b a -对称. 证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2 b a -的对称点为00(,)Q b a x y ---,Q 000[()]()f b b a x f a x y ----=-+=- ∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2 b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析: 11x (log 2f 解析:)(x f -(log f 234 5 解析:的,故6、设y )2(x f =解析:)2(x f 是由2 1=x ,=x 7个实根之和为解析:)(x f y =的图象关于直线3=x 对称,故五个实根,有两对关于直线3=x 对称,它们的和为12,还有一个根就是3。故这5个实根之和为15,正确答案为15 8、设函数)(x f y =的定义域为R ,则下列命题中, ①若)(x f y =是偶函数,则)2(+=x f y 图象关于y 轴对称; ②若)2(+=x f y 是偶函数,则)(x f y =图象关于直线2=x 对称; ③若)2()2(x f x f -=-,则函数)(x f y =图象关于直线2=x 对称; ④)2(-=x f y 与)2(x f y -=图象关于直线2=x 对称, 其中正确命题序号为_______。 解析:①错)2(+=x f y 关于直线2-=x 对称,②对③错若)2()2(x f x f -=-,则函数)(x f y =图象关于直线0=x 对称;④对正确答案为②④

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

高中数学教师备课必备系列(三角函数(一)专题9 三角函数图像与性质

专题九三角函数图像与性质.正弦函数、余弦函数、正切函数的图像 .三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是, 的递增区间是, .函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。 .由=的图象变换出=(ω+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进

行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换 (伸缩变换) 先将=的图象向左(>)或向右(<=平移||个单位,再将图象上各点的横坐标变为原来的 倍(ω>),便得=(ω+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将=的图象上各点的横坐标变为原来的倍(ω>),再沿轴向左(>)或向右(<=平移 个单位,便得=(ω+)的图象。 .由=(ω+)的图象求其函数式: 给出图象确定解析式(ω)的题型,有时从寻找“五点”中的第一零点(-,)作为突破口, 要从图象的升降情况找准 ..第一个零点的位置。 .对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 .求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; .求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法。 .五点法作(ω)的简图: 五点取法是设ω,由取、、π、、π来求相应的值及对应的值,再描点作图。 四.典例解析

高中数学人教版习题《函数的单调性》

基础梳理 1.如果函数f(x)对区间D内的任意x1,x2,当x1<x2时都有f(x1)<f(x2),则f(x)在D内是增函数;当x1<x2时都有f(x1)>f(x2),则f(x)在D内是减函数. 例如:若f(x)=2x-1,能证明出函数f(x)在R上为增函数吗?____. 2.函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)[或f(x1)>f(x2)]. 例如:f(x)是R上的单调函数,若f(3)>f(2),则y=f(x)是R上的单调____函数;若f(3)>f(2),则y=f(x)是R上的单调增函数吗?____. 3.若函数y=f(x)在区间I上是单调增函数或是单调减函数,那么就说函数y=f(x)在区间I上具有单调性,单调增区间和单调减区间统称为单调区间. 4.若函数y=f(x)是R上的增函数,当a>b时,则f(a)____f(b); 若函数y=f(x)是R上的减函数,当a>b时,则f(a)____f(b).5.函数f(x)=x2+2x+11的单调增区间是________, 基础梳理 1.能 2.递增不是 4.>< 5.[-1,+∞) 思考应用 1.如果f(x)在区间D上是单调函数,则函数f(x)是增函数(减函数)的说法正确吗? 1.解析:不正确.函数的单调性是函数的局部性质,所以必须说明函数在哪个区间上是增(减)函数. 2. 函数f(x)在区间D上是增(减)函数,对于任意x1,x2∈D,则有“若x1<x2,则f(x1)<f(x2)[f(x1)>f(x2)]”,反之是否也成立呢? 2.解析:成立.即函数f(x)在D上是增(减)函数,对于?x1,x2∈D,若f(x1)<f(x2)[f(x1)>f(x2)],则x1<x2,这个性质从函数单调性的图形定义中能形象地体现出来. 自测自评 1.下列结论正确的是()

三角函数图象的对称性

三角函数图象的对称性质及其应用 观察三角函数的图象,不难发现它们都具有对称性 ,虽然历届高考中关于三角函数图象的对称性问题屡有涉及,但教材中却是一个盲点。为此,本文谈谈三角函数图象的对称性质及其应用。 一、正弦曲线和余弦曲线都是轴对称图形 性质1、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 2ππ?ω+=+k x )(Z k ∈,则ω ?π22)12(-+= k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω?π-=k x 。 例1、函数)62sin(3π+ =x y 图象的一条对称轴方程是( ) (A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+ πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,3 2π=x ,故选(B )。 例2、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 解:由性质1知, 令1)33cos(±=+ πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)3 3cos()(π+=x x f 的图象的对称轴方程是9 3ππ-=k x )(Z k ∈。 二、正弦曲线和余弦曲线都是中心对称图形 性质2、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形; )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得

高考数学重点难点讲解之三角函数的图像和性质

难点15 三角函数的图象和性质 三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用. ●难点磁场 (★★★★)已知α、β为锐角,且x(α+β-2π)>0,试证不等式f(x)=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立. ●案例探究 [例1]设z1=m+(2-m2)i,z2=cos θ+(λ+sin θ)i,其中m,λ,θ∈R ,已知z1=2z2,求λ的取值范围. 命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目. 知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决. 错解分析:考生不易运用等价转化的思想方法来解决问题. 技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题. 解法一:∵z1=2z2, ∴m+(2-m2)i=2cos θ+(2λ+2sin θ)i,∴ ???+=-=θλθ sin 222cos 22m m ∴λ=1-2cos2θ-sin θ=2sin2θ-sin θ-1=2(sin θ-41)2-89 . 当sin θ=41时λ取最小值-89 ,当sin θ=-1时,λ取最大值2. 解法二:∵z1=2z2 ∴ ???+=-=θλθsin 222cos 22m m

∴??????? --==222sin 2cos 2 λθθm m , ∴4)22(42 22λ--+m m =1. ∴m4-(3-4λ)m2+4λ2-8λ=0,设t=m2,则0≤t ≤4, 令f(t)=t2-(3-4λ)t+4λ2-8λ,则 ???????? ?≥≥≤-≤ ≥?0 )4(0)0(424300 f f λ或f(0)·f(4)≤0 ∴??? ??? ??? ≤≥≤≤≤≤--≥02204345 89λλλλλ或或 ∴-89 ≤λ≤0或0≤λ≤2. ∴λ的取值范围是[-89 ,2]. [例2]如右图,一滑雪运动员自h=50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v0不为,并以倾角θ起跳,落至B 点,令OB=L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大? 命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目. 知识依托:主要依据三角函数知识来解决实际问题. 错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活. 技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题. 解:由已知条件列出从O 点飞出后的运动方程:

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

相关主题
文本预览
相关文档 最新文档