当前位置:文档之家› 生物化学原理——糖

生物化学原理——糖

生物化学原理——糖
生物化学原理——糖

糖分为单糖、寡糖和多糖。

单糖,从化学结构看是多羟基的醛或酮。例如最丰富的六碳糖葡萄糖,

寡糖是少量单糖的聚合物,如常见的二糖麦芽糖、乳糖、蔗糖等。

多糖是一般指的是单糖数目在20个以上的单糖聚合物,包括同多糖和杂多糖。

如果糖链共价结合一个肽链、蛋白质或脂,则形成肽多糖、蛋白多糖、糖蛋白或糖脂。

单糖

单糖是多羟基的醛或酮,分为醛糖和酮糖。最小的单糖是三碳糖,即含有3个碳原子的糖,也称为丙糖。含4、5、6、7个碳原子的糖则分别称为丁糖、戊糖、己糖和庚糖。三碳醛糖称之甘油醛,甘油醛是个手性分子,分子中的C-2是个不对称碳。三碳酮糖称为二羟丙酮,它没有不对称碳,是个非手性分子。其它所有单糖都可以看作是甘油醛和二羟丙酮这两个单糖的碳链的加长,都是手性分子。羟基左侧为L型,右侧为D型。

将H-C-OH或OH-C-H插入到甘油醛C1和C2之间,可生成D-赤藓糖或 D-苏糖。依此类推,可生成五碳醛糖或六碳醛糖。象醛糖那样,也可以将将H-C-OH或OH-C-H插入到C1和C2之间,分别生成相应的多一个碳的酮糖。但同样数目碳的酮糖比醛糖的手性碳数少,例如酮丁糖有D-赤藓酮糖和L-赤藓酮糖,而醛丁糖则有4个立体异构体

醛可与醇先形成半缩醛,形成的半缩醛再结合一个醇可以形成缩醛。同样,酮也可以经两步反应形成缩酮。从葡萄糖Fisher投影式看,葡萄糖是个醛,与醇应当可发生缩醛反应,但却只能与一分子醇反应。研究发现葡萄糖C-1的醛基与C-5的羟基发生分子内反应形成环状结构的衍生物,称为半缩醛。由于成环,羰基碳( C -1)变成了不对称碳(称为异头碳),由此产生了α和β两个立体异构体(分别称为α异头物和β异头物)。α-构型中OH位于异头碳右侧,β -构型中OH位于异头碳左侧。环化的醛糖或酮糖可以呈现两种异头构型中的一种,即α-或β-构型。α-构型和β-构型之间的转换就是变旋现象。在溶液中,有能力形成环结构的醛糖和酮糖,不同环式和开链形式处于平衡中。处于平衡中的单糖的各种不同形式的丰度反映了每种形式的相对稳定性。

在单糖分子中,含有5个以上碳原子的醛糖和含有6个以上碳原子的酮糖的羰基在溶液中都可以与分子内的一个羟基反应形成环式半缩醛或环式半缩酮。环式单糖可以是5元环或6元环结构,环结构中的一员是氧。六元环糖类似于吡喃,所以又称之为吡喃糖,而五元环糖类似于呋喃,称之为呋喃糖。

单糖构象

环中的每个原子的原子轨道都是sp3-杂化(四面体)的,实际上不是一个平面。例如吡喃环倾向于椅式构象或船式构象。由于在椅式构象中可以使环内原子的立体排斥减到最小,所以椅式构象比船式更稳定。

在椅式构象中,每个原子的取代基均呈四面体排布,而在两种可能的椅式构象中,环中取代基-CH2OH处于赤道(平伏)位置的是主要构象。只有β-D-葡萄糖的所有5个非氢取代基-CH2OH和-OH能同时处于赤道(平伏)位置。

一些单糖衍生物

A.磷酸糖

磷酸丙

糖和5-磷酸核糖是最简单的磷酸糖。常见的还有葡萄糖-1-磷酸和葡萄糖-6-磷酸等。

B. 脱氧糖

2-脱氧-D-核糖是用于DNA合成的构件分子。6-脱氧己糖L-岩藻糖(6-脱氧-L-半乳糖)和L-鼠李糖(6-脱氧-L-甘露糖)广泛存在于植物、动物和微生物中,并且常出现在寡糖和多糖中。

C. 氨基糖

氨基糖一般是由原来单糖上的羟基被氨基取代后形成的,有时氨基被乙酰化。 N-乙酰葡萄糖胺是同多糖几丁质的单体。N-乙酰神经氨酸是许多糖蛋白的重要成分,也是称之神经节苷脂脂类的成分。

D. 糖醇

所谓糖醇是原来单糖的羰基氧被还原生成的多羟基醇。

甘油和肌醇都是脂的重要成分,核醇是FMN和FAD的成分,也是磷壁酸的成分,磷壁酸是一个复杂的聚合物,常出现在某些Gram-阳性细菌的细胞壁中。

E. 糖酸

糖酸是由醛糖衍生的羧酸,通过醛糖的C-1的氧化可以生成葡糖酸,或者是通过最高编号的碳的氧化产生葡糖醛酸

F. 糖苷

单糖的半缩醛(或半缩酮)羟基可以与另一个化合物形成缩醛(或缩酮),也称为糖苷。

连接糖与另一个化合物的化学键称为糖苷键,该化合物可以是一个醇、一个胺、一个碱基(嘌呤或嘧啶)或另外一个糖等。

糖的异头碳可能通过O、N、C与这些化合物连接,根据连接类型,糖苷又分为O-苷、N-苷或C-苷等。

糖的还原作用

单糖和大多数多糖都含有一个可反应的羰基,容易被较弱的氧化剂(例如Fe3+或Cu2+)氧化。能够使铁离子或铜离子还原的糖称为还原糖。

如葡萄糖可使Cu2+还原为Cu1+,葡萄糖氧化为葡萄糖酸。

上面反应也称为Fehling反应,是Fehling试剂(含有酒石酸钾钠、氢氧化钠和CuSO4)与葡萄糖的反应,葡萄糖被氧化成葡糖酸,而Cu2+离子被还原为Cu+。

另一个用于检测还原糖的试剂是Tollens试剂,即银氨试剂(Ag(NH3)2+)作为氧化剂。如果将银氨试剂加入烧瓶中,当有还原糖时,Ag+被还原为金属Ag,并被沉积在烧瓶内壁上,形成银镜。

寡糖

寡糖指的是由几个单糖分子通过糖苷键连接形成的聚合物。二糖(麦芽糖、异麦芽糖、乳糖、纤维二糖和蔗糖)是O-糖苷键共价连接的两个单糖的产物。

一个单糖的羟基与另一个单糖的异头碳反应时就形成O-糖苷键。

麦芽糖就是由一个葡萄糖的C-1(异头碳)与另一个葡萄糖C-4形成的糖苷键构成的。

麦芽糖是两个葡萄糖通过一个α-糖苷键形成的二糖。糖苷键是通过一个葡萄糖的半缩醛羟基与第二个葡萄糖的C-4上的羟基反应形成的。糖苷键连接的异头碳必须是α-构型,但第二个葡萄糖残基可以呈现α或β异构体。

异麦芽糖也是由两个葡萄糖通过一个α-糖苷键形成的二糖,但糖苷键是通过一个葡萄糖的半缩醛羟基与第二个葡萄糖的C-6上的羟基反应形成的。

纤维二糖(β-D-葡萄糖基-(1→4)-D-葡萄糖)是纤维素中的重复的二糖单位,纤维素降解可以释放出纤维二糖。

纤维二糖与麦芽糖的区别就在于糖苷键,纤维二糖中是β糖苷键,而麦芽糖中是α糖苷键。

第二个葡萄糖残基也可以呈现为α或β异构体。

乳糖(β-D-半乳糖基-(1→4)-D-葡萄糖)是奶中主要的糖,乳糖只在泌乳的乳腺中合成。

由于乳糖中存在着葡萄糖半缩醛羟基的缘故,乳糖也存在着α异构体和β异构体,也是具有还原性的还原糖。

乳糖不耐受性乳糖(也称为奶糖)是在体内小肠中经乳糖酶(β-D-半乳糖酶)水解为组成它的单糖葡萄糖和半乳糖后,被吸收进入血液。半乳糖经酶催化可以转换为葡萄糖,葡萄糖作为能源被利用。

有些人乳糖酶水平低,当他们喝牛奶或食用含乳糖的食物后会有恶心、腹痛、腹胀、腹泻、产气增多等不良反应。这是由于乳糖经由消化道到达结肠,结肠中细菌使乳糖发酵产生大量的CO2、H2和刺激性有机酸引起疼痛性消化不适,这样的现象称为乳糖不耐受性。

蔗糖(α-D-吡喃葡萄糖基-(1→2)-β-D-呋喃果糖苷),或称为食糖,是在自然界中发现的最丰富的二糖,它只在植物中合成。

蔗糖与其它3种二糖的区别在糖苷键,蔗糖中的糖苷键是由两个异头碳连接形成的。蔗糖中的吡喃葡萄糖和呋喃果糖残基被固定,无论那个残基都不存在游离的半缩醛羟基。

蔗糖是个非还原糖。

淀粉和糖原

淀粉和糖原是葡萄糖的同多糖。植物和真菌中贮存最多的葡萄糖同多糖称为淀粉,而在动物中称为糖原。

淀粉又分为直链淀粉和支链淀粉。直链淀粉是没有分支的大约由 100 至 1000个D-葡萄糖通过α(1→4)糖苷键连接形成的聚合物,可以形成螺旋结构。支链淀粉还含有α(1→6)糖苷键。

直链淀粉

有规律的重复单位形成的聚合物,α(1→4)糖苷键连接,形成左手螺旋结构,每一转含有6个葡萄糖残基。碘分子可以填充到淀粉螺旋的内部,复合物呈现蓝色。

α-淀粉酶室内且糖苷酶,随机催化α(1→4)-D-糖苷键水解。β-淀粉酶室外切糖苷酶,可从植物支链淀粉游离的非还原端一次水解下麦芽糖。两种酶均只作用于α(1→4)-D-糖苷键。去分支酶水解α(1→6)糖苷键。

纤维素和几丁质纤维素和几丁质是结构同多糖。纤维素中的葡萄糖残基是通过β(1→4)糖苷键连接的,而不是α(1→4)糖苷键。几丁质是在昆虫和甲壳纲的外骨骼中发现的结构同多糖,也存在于大多数真菌和许多藻类的细胞壁中。几丁质是由β(1→4)连接的N-乙酰葡糖胺残基(GlcNAc)组成的。每个 GlcNAc相对于毗邻的残基旋转180?。相邻链的GlcNAc残基相互形成氢键,导致具有很大强度的线性微原纤维的形成。几

丁质常常与非多糖化合物,例如蛋白质和无机材料紧密联系在一起。几丁质的部分去乙酰化可以生成脱乙酰壳多糖,是一种带正电荷的无毒的聚合物。脱乙酰壳多糖可以用作处理废水和工业废液的吸附剂,也可用作食品保存或美容的包膜。

三种复合糖:肽聚糖、糖蛋白和蛋白糖

(1 )肽聚糖

细胞壁是包围着整个细菌的一种相对刚性的结构。一般来说,Gram(革兰氏)阳性菌的细胞壁比Gram阴性菌的壁厚。

Gram阳性菌和Gram阴性菌的细胞壁的主要成分是连有一个肽的聚糖,称为肽聚糖。

肽聚糖是由N-乙酰葡糖胺(GlcNAc)和N-乙酰胞壁酸(MurNAc)交替组成的杂多糖,其中MurNAc连接着相关的肽。 MurNAc是一个9碳糖,由D-乳酸通过醚键连接在GlcNAc的

C-3上。

金黄色葡萄球菌中肽聚糖的肽成分是一个4肽,它的氨基酸残基序列

L-Ala-D-Isoglu-L-Lys-D-Ala, 其中Isoglu代表异谷氨酸,它是通过γ-羧基与L-赖氨酸连接的。L-丙氨酸通过酰胺键与聚糖的N-乙酰胞壁酸中的乳酸基上的羧基连接。4 肽通过一个连接肽与相邻的肽聚糖分子上的另一个4肽交联,连接肽由 5个甘氨酸残基构成的。伸展的交联肽聚糖必须将肽聚糖转变成一个巨大的分子,并赋予细胞壁以适度的刚性。

蛋白水解酶大多对L-氨基酸具有专一性,因此肽聚糖中的D-氨基酸对蛋白酶具有抗性。而存在于眼泪以及蛋清中的溶菌酶可以催化肽聚糖的N-乙酰胞壁酸和N-乙酰葡糖胺之间的β(1→4)键的水解,使得细菌细胞壁降解,所以溶菌酶具有杀菌作用。细菌用溶菌酶处理可以形成原生质体(没有了细胞壁的细菌),没有了细胞壁保护,渗透压的微小变化都有可能引起原生质体的破裂。

青霉素青霉素之所以杀菌是由于青霉素的结构类似于转肽酶的底物末端的二肽 D-Ala-D-Ala,而转肽酶催化肽聚糖合成的最后反应。青霉素结合在转肽酶的活性部位,抑制转肽酶的活性,阻止了肽聚糖的进一步合成,所以青霉素的抗菌作用就是抑制了细菌细胞壁合成中的一步反应。

对青霉素有抗性的细菌是由于它们中含有β-内酰胺酶(青霉素酶),该酶可以催化青霉素的β-内酰胺环开环,导致青霉素失活。编码β-内酰胺酶的基因一般是位于抗性细菌的质粒中。

人没有与青霉素专一结合的酶,所以青霉素对人没有毒性,可以用于临床治疗,但青霉素的副反应要高度重视。

三种主要类型糖蛋白

肽和寡糖之间的键的性质,糖蛋白分为二种主要类型:N-糖苷键型糖蛋白、O-糖苷键型糖蛋白。

数的O-糖苷键型糖蛋白中,N-乙酰半乳糖胺(GalNAc)残基通过O-糖苷键与一个丝氨酸或苏氨酸残基连接形成。在大多数的O-糖苷键型糖蛋白中,N-乙酰半乳糖胺残基通过O-糖苷键与一个丝氨酸或苏氨酸残基相连。在N-糖苷键型糖蛋白中,N-乙酰葡糖胺残基通过N-糖苷键与一个天冬酰胺残基相连。

血型抗原人们所熟悉的O、A、B和AB血型的区别在于血型抗原的不同,即与红细胞膜蛋白连接的O-联聚糖的不同。A、B血型抗原中,除了具有与O型同样的聚糖成分外,A 型多出一个GalNAc( N-乙酰半乳糖胺),而B型多一个Gal(半乳糖)。

在具有A型抗原的个体,其血液中含有抗B抗体;

而具有B型抗原的个体的血液中含有抗A抗体;

同时含有A抗原和B抗原的AB型个体的血液中,既没有抗A抗体,也没有抗B抗体;

但O型个体,虽然不携带A抗原,也不携带B抗原,但其血液中含有抗A抗体和抗B 抗体。

因此,如果将A型血输给B型个体,那么A型血红细胞就会与B型个体血液中的抗A 抗体发生抗原-抗体反应,导致输入的红细胞凝集,导致致死性血管堵塞。

蛋白聚糖

糖胺聚糖与核心蛋白和连接蛋白相互作用形成蛋白聚糖。蛋白聚糖是结缔组织(例如软骨)的主要成分,与其它蛋白聚糖、蛋白质和糖胺聚糖相互作用为结缔组织提供一定的强度和弹性。

软骨蛋白聚糖聚集体的分子量非常大(大约为2×108),其中含有透明质酸、硫酸角质素、硫酸软骨素、连接蛋白、核心蛋白和大量的寡糖链。中心的透明质酸链穿过聚集体,带有糖胺聚糖的核心蛋白粘附在透明质酸链的侧面,象是透明质酸链长出的支链。

透明质酸是通过非共价键(主要静电相互作用)与核心蛋白相互作用,这些相互作用又被大量的连接蛋白与透明质酸和核心蛋白的相互作用(也主要是静电作用)所稳定。

每个核心蛋白大约共价结合100个分子的硫酸软骨素。

生物化学原理- 糖酵解

第十五章糖酵解 本章主线: 糖酵解 丙酮酸代谢命运 (乙醇发酵乳酸发酵) 糖酵解调控 巴斯德效应 3种单糖代谢 (果糖、半乳糖、甘露糖) 一、糖酵解 糖酵解概述: ●位置:细胞质 ●生物种类:动物、植物以及微生物共有 ●作用:葡萄糖分解产生能量 ●总反应:葡萄糖+2ADP+2 NAD++2Pi →2 丙酮酸+2ATP+2NADH+2H++2H2O 具体过程: 第一阶段(投入A TP阶段): 1分子葡萄糖转换为2分子甘油醛-3-磷酸;投入2分子ATP。 ○1 反应式:葡萄糖+ ATP→葡萄糖-6-磷酸+ADP 酶:己糖激酶(需Mg2+参与) 是否可逆:否 说明: ●保糖机制——磷酸化的葡萄糖被限制在细胞内,磷酸化的糖带有负电荷的磷酰基,可防 止糖分子再次通过质膜。(应用:解释输液时不直接输葡萄糖-6-磷酸的原因) ●己糖激酶以六碳糖为底物,专一性不强。 ●同功酶——葡萄糖激酶,是诱导酶。葡萄糖浓度高时才起作用。 ○2 反应式:葡萄糖-6-磷酸→果糖-6-磷酸 酶:葡萄糖-6-磷酸异构酶 是否可逆:是 说明:

●是一个醛糖-酮糖转换的同分异构化反应(开链?异构?环化) ●葡萄糖-6-磷酸异构酶表现出绝对的立体专一性 ●产物为α-D-呋喃果糖-6-磷酸 ○3 反应式:果糖-6-磷酸+ATP→果糖-1,6-二磷酸+ADP 酶:磷酸果糖激酶-I 是否可逆:否 说明: ●磷酸果糖激酶-I的底物是β-D-果糖-6-磷酸与其α异头物在水溶液中处于非酶催化的快 速平衡中。 ●是大多数细胞糖酵解中的主要调节步骤。 ○4 反应式:果糖-1,6-二磷酸→磷酸二羟丙酮+甘油醛-3-磷酸 酶:醛缩酶 是否可逆:是 说明: ●平衡有利于逆反应方向,但在生理条件下,甘油醛-3-磷酸不断地转化成丙酮酸,大大 地降低了甘油醛-3-磷酸的浓度,从而驱动反应向裂解方向进行。 ●注意断键位置:C3-C4 ○5 反应式:磷酸二羟丙酮→甘油醛-3-磷酸 酶:丙糖磷酸异构酶 是否可逆:是 说明: ●葡萄糖分子中的C-4和C-3 →甘油醛-3-磷酸的C-1; 葡萄糖分子中的C-5和C-2 →甘油醛-3-磷酸的C-2; 葡萄糖分子中的C-6和C-1 →甘油醛-3-磷酸的C-3。 ●缺少丙糖磷酸异构酶,将只有一半丙糖磷酸酵解,磷酸二羟丙酮堆积。 第二阶段(产出A TP阶段):此阶段各物质的量均加倍 2分子甘油醛-3-磷酸转换为2分子丙酮酸;产出4分子ATP ○6 反应式:甘油醛-3-磷酸+NAD++Pi→1,3-二磷酸甘油酸+NADH+H+ 酶:甘油醛-3-磷酸脱氢酶 是否可逆:是 说明: ●酵解中唯一一步氧化反应。是一步吸能反应,与第7步反应耦联有利于反应进行。 ●NAD+是甘油醛-3-磷酸脱氢酶的辅酶 ●1,3-二磷酸甘油酸中形成一个高能酸酐键。 ●无机砷酸(AsO43-)可取代无机磷酸作为甘油酸- 3-磷酸脱氢酶的底物,生成一个不稳

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

2015高级生物化学及实验技术试题答案

高级动物生化试题 问答题: 1. 简述非编码RNA(non-coding RNA)的种类、结构特点及其主要功能。 非编码RNA的种类结构和功能 1tRNA转运RNA(transfer RNA,tRNA) 结构特征之一是含有较多的修饰成分,核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。5’末端具有G(大部分)或C。3’末端都以ACC的顺序终结。有一个富有鸟嘌呤的环。有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。有一个胸腺嘧啶环。tRNA具有三叶草型二级结构以及“L”型三级结构,tRNA 的不同种类及数量可对蛋白质合成效率进行调节。tRNA负责特异性读取mRNA中包含的遗传信息,并将信息转化成相应氨基酸后连接到多肽链中。 tRNA为每个密码子翻译成氨基酸提供了结合体,同时还准确地将所需氨基酸运送到核糖体上。鉴于tRNA在蛋白质合成中的关键作用,又把tRNA称作第二遗传密码。tRNA还具有其他一些特异功能,例如,在没有核糖体或其他核酸分子参与下,携带氨基酸转移至专一的受体分子,以合成细胞膜或细胞壁组分;作为反转录酶引物参与DNA合成;作为某些酶的抑制剂等。有的氨酰-tRNA还能调节氨基酸的生物合成。 2rRNA核糖体RNA(ribosomal RNA, rRNA) 核糖体RNA是细胞中最为丰富的RNA,在活跃分裂的细菌细胞中占80%以上。

他们是核糖体的组分,并直接参与核糖体中蛋白质的合成。核糖体是rRNA 提供了一个核糖体内部的“脚手架”,蛋白质可附着在上面。这种解释很直接很形象,但是低估了rRNA在蛋白质合成中的主动作用。较后续的研究表明,rRNA并非仅仅起到物理支架作用,多种多样的rRNA可起到识别、选择tRNA以及催化肽键形成等多种主动作用。例如:核糖体的功能就是,按照mRNA的指令将氨基酸合成多肽链。而这主要依靠核糖体识别tRNA 并催化肽键形成而实现。可以说核糖体是一个大的核酶( ribozyme)。而核糖体的催化功能主要是由rRNA来完成的,蛋白质并没有直接参与。 3 tmRNA tmRNA主要包括12个螺旋结构和4个“假结”结构,同时还包括一 个可译框架序列的单链RNA结构。tmRNA中H1由5’端和3’端两个末端形成,与tRNA的氨基酸受体臂相似。H1和H2的5’部分之间有一个由10-13nt 形成的环,类似tRNA中的二氢尿嘧啶环,称为“D”环。H3和H4,H6和H7,H8和H9,H10和H11之间分别形成Pk1,pK2,pK3,pK4。H4和H5之间则由一段包含编码标记肽ORF的单链RNA连接。H12由5个碱基对和7nt 形成的环组成,类似tRNA中的TΨC臂和TΨC环,称为“T”环。tmRNA 结构按照功能进行划分可分为tRNA类似域(TLD)和mRNA类似域(MLD),TLD主要包括H1,H2,H12,“D”环和“T”环,MDL则包括ORF和H5,这两部分分别具有类似tRNA和mRNA的功能。tmRNA是一类普遍存在于各种细菌及细胞器(如叶绿体,线粒体)中的稳定小分子RNA。它具有mRNA分子和tRNA分子的双重功能,它在一种特殊的翻译模式——反式翻译模式中发挥重要作用。同时,它与基因的表达调控以及细胞周期的调控等生命过程密切相关,是细菌体内蛋白质合成中起“质量控制”的重要分子之一。识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径:

过程 2 H 2 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变 构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 第一阶段:糖酵解途径 G (Gn ) 丙酮酸胞液

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3.氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。 8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其

生物化学习题集:第五章 糖 代 谢

第五章糖代谢 一、知识要点 (一)糖酵解途径: 糖酵解途径中,葡萄糖在一系列酶的催化下,经10步反应降解为2分子丙酮酸,同时产生2分子NADH+H+和2分子A TP。 主要步骤为(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛和磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸,脱去的2H被NAD+所接受,形成NADH+H+。 (二)丙酮酸的去路: (1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1分子NADH+H+。乙酰辅酶A进入三羧酸循环,最后氧化为CO2和H2O。 (2)在厌氧条件下,可生成乳酸和乙醇。同时NAD+得到再生,使酵解过程持续进行。 (三)三羧酸循环: 在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧和脱羧生成琥珀酰CoA;琥珀酰CoA发生底物水平磷酸化产生1分子GTP和琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。三羧酸循环每循环一次放出2 分子CO2,产生3分子NADH+H+,和一分子FADH2。 (四)磷酸戊糖途径: 在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段和非氧化阶段被氧化分解为CO2,同时产生NADPH + H+。 其主要过程是G-6-P脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。6分子核酮糖-5-磷酸经转酮反应和转醛反应生成5分子6- 磷酸葡萄糖。中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。 (五)糖异生作用: 非糖物质如丙酮酸,草酰乙酸和乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。糖异生作用不是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程是在线粒体和细胞液中进行的。2分子乳酸经糖异生转变为1分子葡萄糖需消耗4分子ATP和2分子GTP。 (六)蔗糖和淀粉的生物合成 在蔗糖和多糖合成代谢中糖核苷酸起重要作用,糖核苷酸是单糖与核苷酸通过磷酸酯键结合所形成的化合物。在植物体中主要以UDPG为葡萄糖供体,由蔗糖磷酸合酶催化蔗糖的合成;淀粉的合成以ADPG或UDPG 为葡萄糖供体,小分子寡糖引物为葡萄糖受体,淀粉合酶催化直链淀粉合成,Q酶催化分枝淀粉合成。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

生物化学-生化知识点_第五章 糖与糖代谢.

①①①糖与糖代谢 §5.1 糖的生物学作用:上册P1 (1章) 糖类是细胞中非常重要一类物质,在几乎所有重要生理过程中都有举足轻重的作用。 ①①①糖的生物学作用: ①1①生物体的结构成分:动植物躯壳,如纤维素和甲壳素(昆虫和甲壳类动物 的外骨骼)。 ①2①能源物质:贮存能源的糖类,如淀粉、糖原和葡萄糖。 ①3①转变为其他物质(碳源物质):为合成其他生物分子如氨基酸、核苷酸和脂 肪酸等提供碳骨架。 ①4①作为细胞识别的信息分子:大多数蛋白质是糖蛋白,如免疫球蛋白、激素、 毒素、凝集素、抗原以至酶和结构蛋白。在糖蛋白中起信息分子作用的为糖链。如B-型血外端的半乳糖用α- 半乳糖苷酶(来自海南产的咖啡豆中)切除掉,则B-抗原活性丧失,呈现O-型血的典型特征。 糖在几乎所有重要生理过程中都有举足轻重的作用。 1.生命开始,卵细胞受精、细胞凝集、胚胎形成,细胞的运转和粘附。 2.细胞间的相互识别,通讯与相互作用。 3.免疫保护(抗原与抗体),代谢调控(激素与受体),形态发生、发育,器 官的移植。 4.癌症发生与转移,衰老、病变等过程。 糖是生物体内重要信息物质,在细胞识别、信号传递与传导、免疫过程、细胞通讯和代谢调控中都扮演重要作用。糖生物学已发展成为生命科学研究的重要内容。 ①①①糖的结构特点: 糖的分子结构比蛋白质和核酸复杂。如葡萄糖有4个不对称碳原子,成环后C 又形成α、β两个异头体结构,葡萄糖同分异构体有25=32个。结构复杂多样的糖1 分子成为携带生物信息的极好载体。多肽与核酸携带信息仅依赖于其组成单体的种类、数量和连接顺序,而糖链携带信息除单体种类、数量和排列外还有分支结构和异头碳构型。因此糖的聚合体单位重量携带的信息量比蛋白质和核酸大的多。 ①①①糖工程: 糖工程即糖类药物的研究,包括药用寡糖及类似物的合成,糖蛋白及糖脂中糖的改性修饰,糖与蛋白的联结等内容。糖类药物的研究与开发在极快发展,如“抗粘附”类寡糖药物的研究,其原理为细胞感染首先是入侵病原体表面的糖蛋白(粘附蛋白)识别正常人细胞表面的寡糖(配体),继而发生粘附作用。若引入与寡糖结构(配体)相同或类似的游离寡糖,并使它们与病原体上的粘附蛋白结合即可避免病原体对细胞的感染,而成为“抗粘附”类寡糖药物,此类药物在与病原体的粘附蛋白结合后会被排出体外而防止感染。如已开发出对付幽门螺旋杆菌的药物,可防治胃炎、胃溃疡和十二指肠溃疡;已鉴定了与人体发炎过程及癌细胞转移密切相关的粘附蛋白E-Selectin中四糖的结构等。 糖工程研究内容首先进行天然产物(如粘附蛋白)的分离和纯化,然后进行微量寡糖的分析,确认结构,最后进行寡糖的合成,为此已发展了寡糖的液相和

生物化学原理——RNA合成

第11章RNA合成 本章概念总结: 1、遗传学中心法则: 2、转录: 3、模板链: 4、编码链: 5、核心酶: 6、RNA聚合酶: 7、启动子: 8、内含子: 9、外显子: 10、终止因子: 11、核酶: 12、剪接体: 13、RNA加工过程: 14、RNA剪接: 15、转录因子: 16、操纵子: 17、操纵基因: 18、结构基因: 19、基因: 20、阻遏物: 21、衰减作用: 希望同学们明确以上概念的含义,加油!!! 一、转录概述: 蛋白质合成不是直接由DNA指导的,而是通过一个中介物mRNA实现的。所有的RNA都可与DNA的互补序列杂交,即所有的RNA都是从DNA模板转录来的。要注意:DNA复制要求染色体两条链同时进行完全复制,而遗传信息的表达却只是基因组中某些单链区域。转录就是将遗传信息由DNA转给RNA,也叫作RNA合成。转录的模板只是双链DNA中的某一条链,能作为模板的链称为模板链,互补链叫做编码链。从DNA到RNA的转录是由RNA聚合酶催化的。 同时,请同学们注意RNA合成和DNA复制之间存在的差别: ① RNA合成的底物是核糖核苷三磷酸; ②在RNA中,尿嘧啶与腺嘌呤配对; ③ RNA合成不需要一个预先存在的引物; ④ RNA合成的选择性非常强,只有基因中很小的一部分被转录。 二、RNA聚合酶 大肠杆菌RNA聚合酶的核心酶是由5个蛋白亚基组成的,分别被命名为β,βˊ,α(2个)和ω亚基。其中β亚基是催化亚基。 请注意:RNA聚合酶全酶还含有第6个亚基,称之σ亚基(也称为ζ因子),与核心的RNA聚合酶瞬时结合,其功能是识别模板上的启动子,使RNA聚合酶与启动子结合。一旦延伸开始σ亚基就脱离聚合酶。 三、转录起始

生物化学习题糖类

糖类化学 一、填空题 1.纤维素是由________________组成,它们之间通过________________糖苷键相连。 2.常用定量测定还原糖的试剂为________________试剂和________________试剂。 3.人血液中含量最丰富的糖是________________,肝脏中含量最丰富的糖是 ________________,肌肉中含量最丰富的糖是________________。 4.乳糖是由一分子________________和一分子________________组成,它们之间通过________________糖苷键相连。 5.鉴别糖的普通方法为________________试验。 6.蛋白聚糖是由________________和________________共价结合形成的复合物。 7.糖苷是指糖的________________和醇、酚等化合物失水而形成的缩醛(或缩酮)等形式的化合物。 8.判断一个糖的D-型和L-型是以________________碳原子上羟基的位置作依据。 9.多糖的构象大致可分为________________、________________、________________和________________四种类型,决定其构象的主要因素是________________。 二、是非题 1.[ ]果糖是左旋的,因此它属于L-构型。 2.[ ]从热力学上讲,葡萄糖的船式构象比椅式构象更稳定。 3.[ ]糖原、淀粉和纤维素分子中都有一个还原端,所以它们都有还原性。 4.[ ]同一种单糖的α-型和β-型是对映体。 5.[ ]糖的变旋现象是指糖溶液放置后,旋光方向从右旋变成左旋或从左旋变成右旋。 6.[ ]D-葡萄糖的对映体为L-葡萄糖,后者存在于自然界。 7.[ ]D-葡萄糖,D-甘露糖和D-果糖生成同一种糖脎。 8.[ ]糖链的合成无模板,糖基的顺序由基因编码的转移酶决定。 9.[ ]醛式葡萄糖变成环状后无还原性。 10.[ ]肽聚糖分子中不仅有L-型氨基酸,而且还有D-型氨基酸。 三、选择题 1.[ ]下列哪种糖无还原性 A.麦芽糖 B.蔗糖 C.阿拉伯糖 D.木糖 E.果糖 2.[ ]环状结构的己醛糖其立体异构体的数目为 .3 C 3.[ ]下列物质中哪种不是糖胺聚糖 A.果胶 B.硫酸软骨素 C.透明质酸 D.肝素 E.硫酸粘液素 4.[ ]下图的结构式代表哪种糖 A.α-D-葡萄糖 B.β-D-葡萄糖

生化技术原理

第一章生命大分子物质的制备 某一骨骼肌的无细胞粗抽提液每毫升含蛋白质32mg,在适宜条件下,10/-l该抽提液以每分钟O.14,umol 的速度催化一个反应。用硫酸铵沉淀法分级分离50ml上述抽提液,将饱和度为20% - 40%的沉淀物重新溶于10ml溶液中,测得其蛋白质含量为50rng/m1’取ioy.i该溶液催化一反应,其速度为每分钟o.65弘mol。试计算纯化倍数和回收率。(2. 97,92.8%) 第二章沉淀法 1.兔肌醛缩酶的p常数与盐析常数(在离子强度为摩尔浓度时)分别为6.30和2. 84。试求硫酸铵浓度分别为2mol/L、3mol/L时的溶解度。(4.2mg/ml,6.03 X10-3 mg/ml) 2.含25%硫酸铵饱和度的细胞色素c溶液150ml,需加多少克硫酸铵或多少毫升饱和硫酸铵溶液,才能使其达55%饱和度? (28. 95g, 100ml) .10.某一蛋白质的盐析范围为饱和硫酸铵30%-60%,试简述具体操作(若有500ml盐析液)。 第三章吸附层析 7. 利用薄层层析如何确定蛋白质的纯度? 第四章疏水层析 1.疏水作用层析的固定相和流动相与普通吸附层析有何区别?为什么?(P63 , T1) 第五章离子交换层析 1.离子交换剂由哪几部分组成?何为阳离子和阴离子交换剂? 2.弱酸性和弱碱性的纤维素离子交换剂分别适宜在哪些pH范围内应用?为什么? 7.影响离子交换剂膨胀度的因子有哪些?其中哪个为关键因子?为什么? 8.在层析柱中污染杂质后应如何处理?为什么某些亲水性离子交换剂在含乙醇的乙酸盐溶液中可以防止微生物污染? 9.试设计利用离子交换剂分离一种含等电点分别为4.0、6.0、7.5和9.0的蛋白质合液的方案,并简述理由。并绘制洗脱曲线。 10.梯度溶液的变化速率、交换剂的膨胀程度、装柱的均匀度等因子,对样品的分辨率有何影响?11.梯度溶液的变化速率是受哪些因素控制的?试举例说明如何借助速率变化来提高分离效果?13.用离子交换剂测定蛋白质的等电点时,为什么一定要用强性离子交换剂?

生物化学糖代谢习题 ()

糖代谢习题 一、名词解释 1.糖酵解 2.三羧酸循环 3.糖原分解 4.糖原的合成 5.糖原异生作用 6.发酵 7.糖的有氧氧化 8.糖核苷酸 9.乳酸循环 10.Q酶 二、填空题 1.α淀粉酶和β–淀粉酶只能水解淀粉的_________键,所以不能够使支链 淀粉完全水解。 2.1分子葡萄糖转化为2分子乳酸净生成______________分子ATP 3.糖酵解过程中有3个不可逆的酶促反应,这些酶是 __________、 ____________ 和_____________。 4.糖酵解抑制剂碘乙酸主要作用于___________酶。 5.调节三羧酸循环最主要的酶是____________、、 ______________。 6.2分子乳酸异升为葡萄糖要消耗_________ATP。

7.丙酮酸还原为乳酸,反应中的NADH来自于________的氧化。8.延胡索酸在________________酶作用下,可生成苹果酸,该酶属于EC 分类中的_________酶类。 9 磷酸戊糖途径可分为______阶段,分别称为_________和 _______,其中 两种脱氢酶是_______和_________,它们的辅酶是_______。 10 ________是碳水化合物在植物体内运输的主要方式。 三、选择题 1.在厌氧条件下,下列哪一种化合物会在哺乳动物肌肉组织中积累?() A、丙酮酸 B、乙醇 C、乳酸 D、CO2 2.磷酸戊糖途径的真正意义在于产生( )的同时产生许多中间物 如核糖等。 A、NADPH+H+ B、NAD+ C、ADP D、CoASH 3.磷酸戊糖途径中需要的酶有() A、异柠檬酸脱氢酶 B、6-磷酸果糖激酶 C、6-磷酸葡萄糖脱氢酶 D、转氨酶

生物化学中英文名词解释汇总

生物化学上册中英文名词解释汇总 第一部分:糖类 1.糖(Saccharide):糖是多羟醛或多羟酮及其缩聚物和某些衍生物的总称。 2.单糖(monosaccharide):也称简单糖,不能被水解成更小分子的糖类,是多羟醛或多 羟酮。常见的单糖有葡萄糖(Glucose)、果糖(Fructose)、半乳糖(galactose)。 3.寡糖(oligosaccharide):又称低聚糖,是由2~20个单糖通过糖苷键连接而成的糖类 物质。可分为二糖、三糖、四糖、五糖等。 4.二糖(disaccharide):又称双糖,是最简单的寡糖,由2个分子单糖缩合而成。常见 的二糖有蔗糖(sucrose)、乳糖(lactose)、麦芽糖(maltose)。 5.多糖(polysaccharide):由多分子单糖或单糖的衍生物聚合而成。 6.同多糖(homopolysaccharide)由同一种单糖聚合而成,如淀粉(starch)、糖原 (glycogen)、纤维素(cellulose)。 7.杂多糖(heteropolysaccharide)有不同种单糖或单糖衍生物聚合而成,如透明质酸 (hyaluronic acid,HA)、肝素(heparin,Hp)等。 8.糖胺聚糖(glycosaminoglycan,GAG)又称粘多糖,氨基多糖和酸性多糖。是动植物特 别是高等动物的结缔组织中的一类结构多糖。例如透明质酸.硫酸软骨素.硫酸角质素等。 9.蛋白聚糖(proteoglycan):由一条或多条糖胺聚糖和一个核心蛋白共价连接而成,糖 含量可超过95%。主要存在于软骨、腱等结缔组织,构成细胞间质。由于糖胺聚糖有密集的负电荷,在组织中可吸收大量的水而赋予粘性和弹性,具有稳定、支持和保护细胞的作用。 10.糖蛋白(glycoprotein):短链寡糖与蛋白质以共价键连接而形成的复合物,其总体性质 更接近蛋白质。糖蛋白的寡糖链参与分子识别和细胞识别。 11.糖脂(glycolipid) 12.脂多糖(lipopolysaccharide) 第二部分脂质 1.脂质:lipid是一类低溶于水而高溶于非极性溶剂的生物有机分子。 2.储存脂质(storage lipid)、结构脂质(structure lipid)、活性脂质(active lipid) 3.单纯脂质(simple lipid)、复合脂质(compound lipid)、衍生脂质(derived lipid) 4.脂肪(真脂(fat)、脂肪酸(fatty acid,FA)

生物化学 复习资料 重点+试题 第五章 糖代谢

第五章糖代谢 一、知识要点 (一)糖酵解途径: 糖酵解途径中,葡萄糖在一系列酶的催化下,经10步反应降解为2分子丙酮酸,同时产生2分子NADH+H+与2分子ATP。 主要步骤为(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛与磷酸二 羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H及磷酸变成丙酮酸,脱去的2H被NAD+所接受,形成NADH+H+。 (二)丙酮酸的去路: (1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1分子NADH+H+。 乙酰辅酶A进入三羧酸循环,最后氧化为CO2与H2O。 (2)在厌氧条件下,可生成乳酸与乙醇。同时NAD+得到再生,使酵解过程持续进行。 (三)三羧酸循环: 在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧与脱羧生成琥珀酰CoA; 琥珀酰CoA发生底物水平磷酸化产生1分子GTP与琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。三羧酸循环每循环一次放出2分子CO2, 产生3分子NADH+H+,与一分子FADH2。 (四)磷酸戊糖途径: 在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段与非氧化阶段被氧化分解为CO2,同时产 生NADPH + H+。 其主要过程就是G-6-P脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。6分子核酮糖-5-磷酸经转酮反应与转醛反应生成5分子6-磷酸葡萄糖。中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸就是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。 (五)糖异生作用: 非糖物质如丙酮酸,草酰乙酸与乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。 糖异生作用不就是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程就是在 线粒体与细胞液中进行的。2分子乳酸经糖异生转变为1分子葡萄糖需消耗4分子ATP与2 分子GTP。 (六)蔗糖与淀粉的生物合成 在蔗糖与多糖合成代谢中糖核苷酸起重要作用,糖核苷酸就是单糖与核苷酸通过磷酸酯键结合所形成的化合物。在植物体中主要以UDPG为葡萄糖供体,由蔗糖磷酸合酶催化蔗糖的 合成;淀粉的合成以ADPG或UDPG为葡萄糖供体,小分子寡糖引物为葡萄糖受体,淀粉合酶催化直链淀粉合成,Q酶催化分枝淀粉合成。 糖代谢中有很多变构酶可以调节代谢的速度。酵解途径中的调控酶就是己糖激酶,6-磷酸果糖激酶与丙酮酸激酶,其中6-磷酸果糖激酶就是关键反应的限速酶;三羧酸反应的调控酶就是柠檬酸合酶,柠檬酸脱氢酶与α-酮戊二酸脱氢酶,柠檬酸合酶就是关键的限速酶。糖异生作用的调控酶有丙酮酸羧激酶,二磷酸果糖磷酸酯酶,磷酸葡萄糖磷酸酯酶。磷酸戊糖途径的调控酶 就是6-磷酸葡萄糖脱氢酶;它们受可逆共价修饰、变构调控及能荷的调控。 二、习题 (一)名词解释: 1.糖异生 (glycogenolysis) 2.Q酶 (Q-enzyme) 3.乳酸循环 (lactate cycle) 4.发酵 (fermentation) 5.变构调节 (allosteric regulation)

生物化学名词解释

氨基酸的等电点(isoelectric point, pI):在某一PH溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH,成为氨基酸的等电点。 肽:是氨基酸通过肽键连结的化合物。 肽单元(peptide unit):参与肽键的6个原子Cα1,C,N,O,H,Cα2,位于同一平面,此同一平面的6个原子构成了肽单元。 模体:模体是蛋白质分子中具有特定空间构像和特定功能的结构成分。 结构域(domain):分子量较大的蛋白质常可折迭成多个结构较为紧密且稳定的区域,并各行其功能,成为结构域。 蛋白质的一级结构:在蛋白质分子中,从N-端到C-端的氨基酸排列顺序成为蛋白质的一级结构。 蛋白质的二级结构:是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构像。 蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。 超二级结构:由2个或2个以上具有二级结构的肽段在空间上互相接近,形成一个具有规则的二级结构组合,称为超二级结构。 蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。 蛋白质的变性:在某些物理和化学因素作用下,其特定的空间结构被破坏,从而导致其理化性质的改变和生物学活性的丧失。 蛋白质的复性:若蛋白质的变性程度较轻,去除变性因素后,有些蛋白质仍可以恢复或部分恢复其原有的构像和功能,称为复性。 分子伴侣:是蛋白质合成过程中形成空间结构的控制因子,广泛存在于从细菌到人的细胞中。分子伴侣在新生肽链的折迭、加工和穿膜进入细胞器的转位过程中起关键作用。 蛋白质组学:是在整体水平上研究细胞内所有蛋白质的组成及其动态变化规律的新兴学科。 分子病:由蛋白质一级结构发生变异而引起的疾病。

生化分离技术原理及应用复习提纲

《生物分离工程》 复习题 1、什么是等电点沉淀? 调节溶液的 pH至溶质的等电点,溶质所带净电荷为零时,其分子间的吸引力增加,分子相互吸引,把该溶质从溶液中沉淀出来,即等电点沉淀 2、什么是微滤? 微滤(micfiltation,MF)是以多孔细小薄膜为过滤介质,靠膜两侧的压力差来对物质进行选择性透过,达到膜分离的目的。微滤膜的孔径分布范围在0.05? 10um之间;采用的压力一般在0.05?0.5MPa范围内。 3、什么是超滤? 超滤(ultafiltationUF)是利用膜两侧的压力差为动力将分子有选择地透过膜的过程,透过膜的分子除溶剂水外,还可以将溶质中的小分子(如无机盐等)通过膜,因此它属于一种“膜分离”过程。超滤的分离介质与微滤膜类似,但孔径更小,为0 001?0.05um,采用的压力常为0.1?1.0MPa。 4、什么是反萃取? 反萃取(backextraction):将萃取液和反萃取剂(含无机酸或碱的水溶液、水等)相接触,使某种被萃取到有机相的溶质转人水相,可看作是萃取的逆过程。 5、什么是溶剂萃取 溶剂萃取:利用物质在互不相溶的两相溶剂中溶解度的不同,将物质从一相溶剂转移到另一相溶剂中,从而进行分离、浓缩和提纯目的产物的方法. 6、什么是色谱技术? 色谱技术是一组相关分离方法的总称,色谱柱的一般结构含有固定相和流动相,根据物质在两相间的分配行为不同,经过多次分配(吸附-解吸-吸附-解吸…),达到分离的目的。 7、什么是膜分离技术? 膜分离技术利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。

生物化学习题及答案糖代谢

糖代谢 (一)名词解释: 1.糖异生 (glycogenolysis) 2.Q酶 (Q-enzyme) 3.乳酸循环 (lactate cycle) 4.发酵 (fermentation) 5.变构调节 (allosteric regulation) 6.糖酵解途径 (glycolytic pathway) 7.糖的有氧氧化 (aerobic oxidation) 8.肝糖原分解 (glycogenolysis) 9.磷酸戊糖途径 (pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) (二)英文缩写符号: 1.UDPG(uridine diphosphate-glucose) 2.ADPG(adenosine diphosphate-glucose) 3.F-D-P(fructose-1,6-bisphosphate) 4.F-1-P(fructose-1-phosphate) 5.G-1-P(glucose-1-phosphate) 6.PEP(phosphoenolpyruvate) (三)填空题 1.α淀粉酶和β–淀粉酶只能水解淀粉的_________键,所以不能够使支链淀粉完全水解。

2.1分子葡萄糖转化为2分子乳酸净生成______________分子ATP 3.糖酵解过程中有3个不可逆的酶促反应,这些酶是__________、 ____________ 和_____________。 4.糖酵解抑制剂碘乙酸主要作用于___________酶。 5.调节三羧酸循环最主要的酶是____________、__________ _、______________。 6.2分子乳酸异升为葡萄糖要消耗_________ATP。 7.丙酮酸还原为乳酸,反应中的NADH来自于________的氧化。 8.延胡索酸在________________酶作用下,可生成苹果酸,该酶属于EC分类中的_________酶类。 9 磷酸戊糖途径可分为______阶段,分别称为_________和_______,其中两种 脱氢酶是_______和_________,它们的辅酶是_______。 10 ________是碳水化合物在植物体内运输的主要方式。 11.植物体内蔗糖合成酶催化的蔗糖生物合成中葡萄糖的供体是__________ ,葡萄糖基的受体是___________ ; 12.糖酵解在细胞的_________中进行,该途径是将_________转变为_______,同时生成________和_______的一系列酶促反应。 13.淀粉的磷酸解过程通过_______酶降解α–1,4糖苷键,靠 ________和________ 酶降解α–1,6糖苷键。 14.TCA循环中有两次脱羧反应,分别是由__ _____和________催化。 15.乙醛酸循环中不同于TCA循环的两个关键酶是_________和________。16.乳酸脱氢酶在体内有5种同工酶,其中肌肉中的乳酸脱氢酶对__________ 亲和力特别高,主要催化___________反应。 17在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是_______________ 和________________ 18.糖异生的主要原料为______________、_______________和

相关主题
文本预览
相关文档 最新文档