当前位置:文档之家› 基于非参数回归模型的短期风电功率预测

基于非参数回归模型的短期风电功率预测

基于非参数回归模型的短期风电功率预测
基于非参数回归模型的短期风电功率预测

风电功率预测系统功能要求规范

风电功率预测系统功能规范 (试行) 国家电网公司调度通信中心

目次 前言...................................................................... III 1范围. (1) 2术语和定义 (1) 3数据准备 (2) 4数据采集与处理 (3) 5风电功率预测 (5) 6统计分析 (6) 7界面要求 (7) 8安全防护要求 (8) 9系统输出接口 (8) 10性能要求 (9) 附录A 误差计算方法 (10)

前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。 本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。 本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 本规范由国家电网公司国家电力调度通信中心提出并负责解释; 本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。 本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。

风电功率预测系统功能规范 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1 风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2 数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3 风电功率预测 Wind Power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4 短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5 超短期风电功率预测 ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。

风电功率预测系统简介

风电功率预测系统简介

目录 1目的和意义 (3) 2国内外技术现状 (3) 2.1国外现状 (3) 2.2国内现状 (4) 3风电功率预测系统技术特点 (5) 3.1气象信息实时监测系统 (5) 3.2超短期风电功率预测 (5) 3.3短期风电功率预测 (6) 3.4风电功率预测系统软件平台 (8)

1目的和意义 风能是一种清洁的可再生能源,由于其资源丰富、转化效率高、产业化基础好、经济优势明显、环境影响小等优点,具备大规模开发的条件,在可以预见的将来,风能的开发利用将成为最重要的可再生能源发展方向。但由于风电等可再生能源发电具有间歇性、随机性、可调度性低的特点,大规模接入后对电网运行会产生较大的影响,以至于有些地方不得不采取限制风电场发电功率的措施来保证电网的安全稳定运行。 对风电输出功率进行预测被认为是提高电网调峰能力、增强电网接纳风电的能力、改善电力系统运行安全性与经济性的最有效、经济的手段之一。首先,对风电场出力进行短期预报,将使电力调度部门能够提前为风电出力变化及时调整调度计划,从而减少系统的备用容量、降低电力系统运行成本。这是减轻风电对电网造成不利影响、提高系统中风电装机比例的一种有效途径。其次,从发电企业(风电场)的角度来考虑,将来风电一旦参与市场竞争,与其他可控的发电方式相比,风电的间歇性将大大削弱风电的竞争力,而且还会由于供电的不可靠性受到经济惩罚。提前对风电场出力进行预报,将在很大程度上提高风力发电的市场竞争力。 2国内外技术现状 2.1 国外现状 在风电功率预测技术研究方面,经过近20年的发展,风电功率预测已获得了广泛的应用,风电发达国家,如丹麦、德国、西班牙等均有运行中的风电功率预测系统。 德国太阳能技术研究所开发的风电管理系统(WPMS)是目前商业化运行最为成熟的系统。德国、意大利、奥地利以及埃及等多个国家的电网调度中心均安装了该系统,目前该系统对于单个风电场的日前预报精度约为85%左右。丹麦Ris?国家可再生能源实验室与丹麦技术大学联合开发了风电功率预测系统Zephyr,

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

非参数回归模型资料

非参数回归模型

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 非参数回归模型 非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。它不需要先验知识,只需要有足够的历史数据即可。它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。 非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为: ()()∑==n i i i i n Y X W X g 1 其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。 K 近邻法 Friedman 于1977年提出了K 近邻法。其并不是让所有的数据都参与预 测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下: Wki(X:X1,...,Xn)=ki,i=1,..,n 将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为:

短期风电功率预测模型研究综述

短期风电功率预测模型研究综述 作者:崔垚王恺 来源:《电子世界》2012年第23期 【摘要】短期风电功率预测对于电力系统调度运行和电能质量具有重要的意义。而预测性能提高的关键在于预测模型选择和模型优化。本文对目前国内外几种主流风电场功率预测模型(物理预测模型、统计预测模型和组合预测模型)的建模原理和研究现状进行了综述性分析,对每种模型的优缺点和适用性进行了一些总结。并对风电功率预测模型的误差分析和预测的不确定性研究做了探讨,最后对短期风电功率预测领域的研究前景提出了一些可行性的展望。 【关键词】风电场;功率预测;物理;统计;组合;综述 1.引言 随着风力发电机组单机容量的提高和自动化技术的发展,风力发电系统也从原来的用户分布式能源向集中式大规模风电场发展。根据规划,我国将在内蒙、甘肃、河北、吉林、新疆、江苏沿海等地区建设7个千万千瓦级风电基地。预计2010-2020年,七大风电基地的开发规模将占全国风电开发总规模的68%至78%。这将使得风电在电网中比例不断增大,大量并网的风电对电力系统的调度运行和安全稳定带来了严峻挑战。有效的风电功率预测可以减少电力系统备用容量、降低系统运行成本、减轻风力发电对电网造成的不利影响、提高风电在电力系统中的比例[1]。 而风电功率预测的关键在于预测模型的合理选择和模型性能优化,本文对风电场功率预测模型的建模原理和模型适用情况做了一些综述性的分析。在此基础上对风电功率预测模型的误差分析和预测的不确定性研究做了一些探讨,最后对目前研究中面临的问题和未来的研究方向做了一些可行性展望。 2.国内外研究现状 国外(主要是欧洲)经过数十年的技术积累,目前已经拥有了多套较为成熟的风电功率预测模型和预测工具[2],如基于物理学方法的Prediktor、LocalPred-RegioPred等,基于统计学方法的WPPS、GH-FORECASTER等。基于物理-统计学方法组合的Previento、ANEMOS等。这些预测系统已经成为欧美很多大型并网风电场系统管理和控制的基本组成部分。虽然如此,由于风能的间歇性和不确定性,国外相关科研工作者仍在不断探索。 我国对风电场功率预测的研究显得尤为紧迫。虽然国外已有一些相对成熟的预测模型,但是由于我国的风电场与欧洲风电发达国家的风电场风况、容量等情况不同。而风电场功率预测模型的优势往往与风况和容量等因素密切相关。虽然国内已有一些预测效果较好的风电场功率预测系统[3]问世,但是总体上来说,目前我国在风电功率预测领域尚处于探索和发展阶段。

非参数统计模型

非参数统计第二次作业 ——局部多项式回归与样条回归 习题一: 一、本题是研究加拿大工人收入情况,即年龄(age)和收入(income)的关系。 此次共调查了205个加拿大工人的年龄和收入,所有工人都是高中毕业。且本题设定因变量为log.income,协变量为age,运用统计方法来拟合log.income 与age之间的函数关系。 二、模型的建立 1.估计方法的选取 拟合两个变量之间的函数关系,即因变量和协变量之间的关系,用回归估计的方法,回归估计包括参数回归估计和非参数回归估计。参数估计是先假定某种数学模型或已知总体的分布,例如总体服从正态分布,其中某些参数未知,如总体均值、方差等,然后利用样本去估计这些未知参数,常用的方法有极大似然估计,Bayes估计等,线性模型可以用最小二乘法估计。 非参数估计是不假定具有某种特定的数学模型,或总体分布未知,直接利用样本去估计总体的数学模型,常用的方法有局部多项式回归方法和样条函数回归方法。 本题调查了205个加拿大工人的年龄和收入,但是加拿大工人年龄和收入的具体分布未知,即这两个变量所能建立的数学模型未知,而且由协变量和因变量所形成的散点图可以看出它不符合某种特定的已知模型,需要进一步研究,然后拟合它们之间的函数关系。因此本题选用非参数回归估计的方法,来拟合因变量和协变量之间的关系。 针对此问题分别采用非参数估计中的局部多项式回归和样条函数回归方法对log.income 与age之间的函数关系进行估计。 2.局部多项式回归方法 局部多项式的思想是在某个点x附近,用一个多项式函数来逼近未知的光滑函数g(x)。选定局部邻域的大小h,对于任意给定某个点x 0,在其小邻域内展开泰勒公式,用一个p阶多项式来局部逼近g(x),然后再用极大似然估计。 (1)加拿大工人的收入(log.income)与年龄(age)之间的散点图如下所示:

风电功率预测的发展成就与展望

风电功率预测的发展现状与展望 范高锋,裴哲义,辛耀中 (国家电力调度通信中心,北京100031) 摘要:风电场输出功率预测对接入大量风电的电力系统运行有重要意义。本文从电力调度运行的角度,在风电功率预测技术的发展现状、系统建设情况、预测误差、预测评价指标和预测的主体等方面展开了论述,对目前存在的基础数据不完善、预测精度不高、预测的时间尺度较短和风电场普遍没有开展预测的问题进行了分析,提出了加强电网侧和风电场侧风电功率预测系统建设、加快超短期预测功能建设、继续深化预测技术研究、加强标准体系建设和开展跨行业合作等发展建议。 关键词:风电场;功率;预测;系统 中图分类号:TM614 文献标志码:A 文章编号: Wind power prediction achievement and prospect FAN Gao-feng , PEI Zhe-yi , XIN Yao-zhong (National Power Dispatching& Communication Center,Beijing 100031) Abstract: Wind power prediction is important to the operation of power system with comparatively large mount of wind power. This paper summarized the current situation of wind power prediction technology, wind power prediction system construction, prediction error, assessment index, and main market body of prediction from the power dispatch perspective. The main problems includes basic data incomplete, prediction precision relatively low, prediction time scale short and wind farm no wind power system are analyzed. Suggestions of enforcing grid side and wind farm side wind power prediction system construction, speeding up ultra-short term wind power prediction system construction, deepening wind power prediction technology study, strengthening prediction technical standard system and cooperation of different industry are proposed. Keywords: wind farm; power; prediction; system 0引言 电力系统是一个复杂的动态系统。维持发电、输电、用电之间的功率平衡是电网的责任。在没有风电的电力系统,电网调度机构根据日负荷曲线可以制定发电计划,以满足次日的电力需求。风电场输出功率具有波动性和间歇性,风电的大规模接入导致发电计划制定难度大大增加,风电对电力系统的调度运行带来巨大挑战。 目前风电对全网的电力平衡已经带来很大的影响[1-3]。对风电场输出功率进行预测是缓解电力系统调峰、调频压力,提高风电接纳能力的有效手段之一。同时,风电功率预测还可以指导风电场的检修计划,提高风能利用率,提高风电场的经济效益。经过多年的科研攻关与技术创新,我国具有自主知识产权的风电功率预测系统已在电力调度机构获得了广泛应用,12个网省调建立了预测系统,覆盖容量超过12GW,在电网调度运行中发挥了一定作用。本文对近年来风电功率预测方面完成的工作进行了总结,对存在的问题进行了论述,并提出了下一步的发展建议。 1 风电功率预测发展现状 1.1 风电功率预测技术的发展情况 电网调度部门对风电功率预测的基本要求有2个:一是短期预测,即当天预测次日0时起72h的风电场输出功率,时间分辨率为15 min,用于系统发电计划安排;另一个是超短期预测,即实现提前量为0~4h的滚动预测,用于电力系统实时调度[4]。 风电功率预测方法主要分为统计方法、物理方法[5-6]。统计方法是指不考虑风速变化的物理过程,而根据历史统计数据找出天气状况与风电场出力的关系,然后根据实测数据和数值天气预报数据对风电场输出功率进行预测,常用的预测模型有时间序列、神经网络、支持向量机等。物理方法是指风电功率预测的物理方法根据数值天气预报模式的风速、风向、气压、气温等气象要素预报值以及风电场周围等高线、粗糙度、障碍物等信息,采用微观气象学理论或计算流体力学的方法,计算得到风电

基于卡尔曼滤波原理对风电功率短期预测

1 基于卡尔曼滤波原理的风电功率预报 林可薇 (西安交通大学电气工程学院,陕西省,西安市,710000) Prediction of wind power based on the principle of Calman filter LIN Ke-wei (School of Electrical Engineering, Xi'an Jiaotong University, Xi'an710000, Shanxi Province, China) ABSTRACT:focuses on the principle of Calman filter and Calman filter algorithm,Understanding both based applications in the wind power forecast.Wind power forecasting system based on digital weather forecast meteorological parameters related to output close to the ground can not accurately predict the output power,Departure from the principle of Kalman filtering,Kalman filter algorithm can take advantage of wind capacity to be corrected digital output weather forecast,Improve forecast accuracy. KEY WORD:Kalman filter;Power prediction;Accuracy 摘要:本文重点介绍卡尔曼滤波原理和卡尔曼滤波算法,了解基于两者在风电预测的应用。风电预测系统根据数字天气预报输出的贴近地面的相关气象参数不能精确预测输出功率,从卡尔曼滤波的原理出发,利用用卡尔曼滤波算法可以对数字天气预报输出的风速量进行修正,提高预测精确度。 关键词:卡尔曼滤波;功率预测;精确度 1 引言 由于常规能源的日益枯竭及人们对改善生存环境的迫切需求, 清洁、可再生的风能资源受到了世界各国的广泛关注.在众多绿色能源中,风能逐步成为新能源电力的主力军。世界风能协会统计,2012年中国新增风电机组装机容量13200MW(其中海上风电装机容量127MW),累计风电机组装机容量75564MW,均位居世界第一,美国紧随其后[1]。风电已超过核电,成为继煤电和水电之后中国的第三大主力电源。按照 GWEA《世界风电展望》报告的分析预测,风电在 2030年将占到全球电力供应的5%。结果显示风电不但能够满足全球未来30年对于清洁电力的需求,而且对供电系统的渗透还将持续增长。然而风的间歇性会带来不稳定电参量,严重时,小故障就可引发电网电压较大波动造成大面积风电机组脱网。解决这一难题对风电事业的良好发展具有非常重要的意义。本文将着眼于关键技术问题之一的风电功率预测,对卡尔曼原理及其算法进行简单介绍。 2 卡尔曼滤波原理 卡尔曼于1960年发表了关于递归解决线性离散数据滤波器的论著, 自此卡尔曼滤波器得到了广泛的研究与应用. 卡尔曼滤波器是一个最优化自回归数据处理算法,主要用于于解决大部分随机量估计问题,所应用的方法属于统计学中的估计理论,最常用的是最小二乘法,最小方差估计等等。主要能根据一系列的对随机状态的观测值进行定量的推断,通过最小均方误差使估计值尽可能准确的接近真实值。 3 卡尔曼滤波算法 卡尔曼滤波算法是一种有效的以小均方误差来估计系统状态的计算方法, 即通过将前一时刻预报误差反馈到原来的预报方程中, 及时修正预报方程系数, 以提高下一时刻的预报精度.在卡尔曼滤波算法中, 描述系统的数学模型是状态方程和量测方程, 分别为 t t t t w x F x+ = -1 (1) t t t t v x H y+ =(2) 式中: t x为未知过程在t时刻的状态向量; t y 为t 时刻的观测向量; t F和 t H分别为系统矩阵 及观测矩阵, 且必须在滤波器应用之前确定; t w 和 t v分别为系统噪声和量测噪声, 均假定为高斯白噪声且相互独立, 与其相对应的协方差矩阵分别为t w和 t v卡尔曼滤波算法提供了一种在观测向量更 新为 t y基础上的递归来估计未知状态的算法。假定 现有系统状态为 t x, 则在上一状态 1-t x及其协方差 矩阵 1-t P的基础上, 可以得到t 时刻的预测状态及其协方差矩阵的预测方程, 即

风电功率预测模型

第一页 答卷编号: 论文题目:A 题风电功率预测问题 指导教师: 参赛学校: 报名序号: 证书邮寄地址: (学校统一组织的请填写负责人)

第二页 答卷编号:

A 题风电功率预测问题 摘要 风能是一种可再生、清洁的能源,风力发电技术的进一步研究和开发对解决能源危机、缓解环境压力以及提升经济发展水平具有重大的意义。据此,本文通过建立一系列数学模型来研究和探索风电功率的预测以及提高预测精度问题。 针对第一问,本文提出指数平滑法、小波神经网络以及时间序列ARMA 三种预测模型对风电功率进行预测。指数平滑法采用平滑公式为:s t x t 1 (1 )S t 1,0 1,t 3,通过调整平滑参数来优化预测精度;小波 神经网络采用的小波基函数为Morlet 母小波基函数,小波神经修正采用梯度修正法;ARMA 模型通过确定自回归阶数和移动平均阶数来构造预测表达式。结 针对第二问,本文在第一问所求结果的基础上,使用熵值赋权法对三种模型 进行归一化处理,所得权值向量为w (0.3246,0.3344,0.341) ,得到一组基于以上 三种模型的预测数据。使用拟合与聚类分析得出单机系统对多机系统P4 的相关性高于对总机系统的相关性,据此,使用基于李雅普诺夫中心极限定理的通过假设相对误差小于题目要求的概率模型,求得单机组和多机组的通过检验概率为: 最后得出普遍性规律为:由于多机预测较精确,可以用多机系统的预测结果对单机进行预测。修正单机系统预测所带来的相对误差,提高精度。 针对问题三,本文建立基于遗传算法的ARMA 模型,对ARMA 模型的阶数进行优化。定义平均相对变动值( ARTD ),并令遗传算法的适应度函数为: f(x) ARTD。最后得到具有更高预测精度的模型。具体指标值如下表: 本文提出的模型对风电功率的预测具有重大的借鉴意义,并可将其模型推广应用至工程预测、股票分析、生产计划等问题上。 关键字:风电功率预测、时间序列、指数平滑法、小波神经网络、遗传算法

风电功率预测问题

第一页 答卷编号:论文题目: 指导教师: 参赛学校: 报名序号: 证书邮寄地址: (学校统一组织的请填写负责人) 第二页 答卷编号:

风功率预测问题设计 摘要 未来风力发电可能成为和太阳能比肩的新能源行业。随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力。一方面煤炭、石油和天然气等化石燃料的储量由于大量开采而日益减少:另一方面是大量使用化石燃料对自然环境产生了严重的污染和破坏。这两方面的问题已经引起世界各国政府和人民的高度重视,并在积极寻求一条可持续发展的能源道路,以风能首当其冲。风速的随机性,给,和风电场的功率输Hj带来很大的困难。本文旨在研究分电功率在一段时间的变化规律,本文组建三个模型来解决风电功率的预测问题通过对历史数据的分析,挖掘5月31号到6月6日风电功率的变化趋势,以便直观的检验模型与实际数据是否相吻合。 在问题一中考虑天气变化的随机性,分析不同时间点的数据,将Pa,Pb,Pc,Pd,P58表中5月30日第81时间点到96时间点的数据提取出来运用灰色理论作为预测2006年5月31日开始前四个小时内的16个时间点的数据预。同理以表中已给出的5月31日1-16时间点的数据预测出17-32时间的数据,然后运用此模型得出时间范围a,b内各时间点的风电功率。然后可与题目中以给的数据相比较得出误差。第二种预测方法运用指数平滑模型得出时间范围a,b内各时间点的风电功率。第三种预测方法运用移动平均模型,预测出时间范围a,b内各时间点的风电功率。通过三种预测方法的误差分析我们推荐指数平滑预测法。 在问题二中,通过比较分析问题一的预测结果,比较单台风电机组功率(P A ,P B ,P C , P D )的相对预测误差与多机总功率(P 4 ,P 58 )预测的相对误差,得出风电机组的汇聚程 度越高,对于预测风电功率结果误差影响越小。 在问题三中,选用了BP神经网络的预测方法,加入了更多的自变量,使得预测结果更精确。 (关键词:风速的随机性,风速的预测,风电功率数值,灰色理论,指数平滑模型,移动平均模)

风电功率预测问题数学建模全国一等奖0000

风电功率预测问题数学建模全国一等奖0000

答卷编号:论文题目:风电功率预测问题 指导教师:金海 参赛学校:北京理工大学 报名序号:1550 证书邮寄地址:北京理工大学中关村校区徐厚宝(学校统一组织的请填写负责人)

风电功率预测问题 摘要: 本文着力研究了风电功率的预测问题。根据相关要求,本文中我们分别利用ARMA模型、卡尔曼滤波预测模型和小波神经网络预测模型对该风电场的风电功率进行预测。通过对预测结果各项评价指标的综合分析,发现:小波神经网络预测模型的精确度最高;单台风电机组预测误差与总机组预测误差成正相关性;多个风电机组的汇聚会使得总体的预测误差减小。另外,从神经网络的训练过程中,我们发现突加扰动是阻碍风电功率实时预测精度进一步改善的主要因素,风电功率的预测精度不可能无限提高。 对于问题一,我们分别建立了ARMA、卡尔曼滤波、小波神经网络三种预测模型对指定的发电机组的输出功率进行了预测,取得了较为理想的结果。ARMA 模型的预测精确度为75.4%—79.3%,卡尔曼滤波模型的预测精确度为 81.3%-95%,小波神经网络模型的预测精确度为92.1%—94.7%,故小波神经网络的预测效果最好。 对于问题二,我们分析比较了三种模型下单台机组和多机组5月21日至6月6日的平均相对预测误差,得知风电机组的汇聚会使得总体的预测误差减小。 针对问题三,我们在问题一小波神经网络模型的基础上建立了遗传神经网络模型。经过仿真,我们发现该模型能显著减小峰值误差,有力地抑制时间延迟现象,有效地提高了预测的精确度。对仿真误差进行分析,我们指出突加的扰动是阻碍风电功率实时预测精度进一步改善的主要因素,预测的精度不可能无限提高。 关键词:ARMA,卡尔曼滤波,小波神经网络,遗传神经网络

风电功率预测文献综述

风电功率预测方法的研究 摘要 由于风能具有间歇性和波动性性等特点,随着风力发电的不断发展风电并网对电力系统的调度和安全稳定运行带来了巨大的挑战。进行风电功率预测并且不断提高预测精确度变得越来越重要。通过对国内外研究现状的了解,根据已有的风电功率预测方法,按照预测时间、预测模型、预测方法等对现有的风电功率预测技术进行分类,着重分析几种短期风电功率预测方法的优缺点及其使用场合。根据实际某一风电场的数据,选取合适的风电预测模型进行预测,对结果予以分析和总结。 关键词:风电功率预测;电力系统;风力发电;预测方法; 引言 随着社会不断发展人们对能源需求越来越大而传统化石能源日益枯竭不可再生,以及化石能源带来了环境污染等问题影响人类生活,人们迫切需要新的清洁能源代替传统化石能源。风能是清洁的可再生能源之一,大力发展风力发电成为各国的选择。根据相关统计,截止至2015年,全球风电产业新增装机63013MW,,同比增长22%[1]。其中,中国风电新增装机容量达30500MW,占市场份额48.4%。全球累计装机容量为432419MW,其中中国累计装机容量为145104,占全球市场份额的33.6%。 目前风力发电主要利用的是近地风能,近地风能具有波动性、间歇性、低能量密度等特点,因而风电功率也是波动的。当接入到电网的风电功率达到一定占比时,风电功率的大幅度波动将破坏电力系统平衡和影响电能质量,给电力系统的调度和安全平稳运行带来严峻挑战。根据风速波动对风力发电的影响按照时间长度可分为三类:一种是在几分钟之内的超短时波动,该时段内的波动影响风电机组的控制;另一种是几小时到几天内的短时波动,该时段内的波动影响风电并网和电网调度;最后一种是数周至数月的中长期波动,该时段内的波动影响风电场与电网的检修和维护计划。本文主要研究不同的风电功率短期预测方法的优缺点。 通过对短期风电功率预测,能够根据风电场预测的出力曲线优化常规机组出力,降低运行成本;增强电力系统的可靠性、稳定性;提升风电电力参与电力市场竞价能力。

非参数回归模型

非参数回归模型 非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。它不需要先验知识,只需要有足够的历史数据即可。它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。 非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为: ()()∑==n i i i i n Y X W X g 1 其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。 K 近邻法 Friedman 于1977年提出了K 近邻法。其并不是让所有的数据都参与预测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下: Wki(X:X1,...,Xn)=ki,i=1,..,n 将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为: ()()()()K t V t V g t V K i i ∑=+==+111

国家能源局关于印发风电功率预报与电网协调运行实施细则

国家能源局关于印发风电功率预报与电网协调运行实施细则(试行)的 通知 国能新能[2012]-12文件 各省(区、市)发展改革委、能源局、中国气象局,国家电网公司、南方电网公司、华能集团公司、大唐集团公司、华电集团公司、国电集团公司、中电投集团公司、神华集团公司、中广核集团公司、三峡集团公司、中国节能环保集团公司、水电水利规划设计总院、各相关协会: 为促进风电功率预测预报与电网调度运行的协调,根据《风电场功率预测预报管理暂行办法》的有关要求,现将〈风电功率预报与电网协调运行实施细则~(试行)印发你们,请参照执行。 附:风电功率预报与电网协调运行实施细则(试行) 风电功率预报与电网协调运行实施细则(试行) 第-章总则 第一条根据《中华人民共和国可再生能源法》和《节能调度管理办法},为贯彻落实国家能源局《风电场功率预测预报管理暂行办法}C国能新能(2011 ) 177号),制定本实施细则。 第二条中国气象局负责建立风能数值天气预报服务平台和业务运行保障体系,为风电功率预测提供数值天气预报公共服务产品和相关技术支持系统。 第三条风电开发企业负责风电场发电功率预报工作,按照要求上报风电场发电功率预报曲线,并执行电网调度机构下发的发电功率计划曲线。 第四条电网调度机构负责电力系统风电发电功率预测工作,建立以风电功率预测预报为辅助手段的电力调度运行机制,保障风电优先调度,落实风电全额保障性收购措施。 风电功率预测预报和并网运行的有关考核办法另行制定。 第五条各有关单位应保证安全接收、传送、应用气象和电力运行等信息,确保涉密信息的获取和使用符合国家相关保密规定。 第二章气象数据服务及功率预测

非参数回归模型与半参数回归模型

第七章 非参数回归模型与半参数回归模型 第一节 非参数回归与权函数法 一、非参数回归概念 前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。 设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称 g (X ) = E (Y |X ) (7.1.1) 为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即 22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2) 这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。 细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数类不作任何限制是完全没有意义的。正象世界上没有绝对的自由一样,我们实际上从来就没有说放弃对L(X)的一切限制。在下面要研究的具体非参数回归方法,不管是核函数法,最近邻法,样条法,小波法,实际都有参数选择问题(比如窗宽选择,平滑参数选择)。 所以我们知道,参数回归与非参数回归的区分是相对的。用一个多项式去拟合(Y i ,X i ),属于参数回归;用多个低次多项式去分段拟合(Y i ,X i ),叫样条回归,属于非参数回归。 二、权函数方法 非参数回归的基本方法有核函数法,最近邻函数法,样条函数法,小波函数法。这些方法尽管起源不一样,数学形式相距甚远,但都可以视为关于Y i 的线性组合的某种权函数。也就是说,回归函数g (X )的估计g n (X )总可以表为下述形式: ∑==n i i i n Y X W X g 1 )()( (7.1.3)

风电功率预测系统设计方案

风功率预测系统设计方案 随着社会的发展,传统能源出现面临枯竭的危险,发展新能源经济是当今世界的历史潮流和必然选择。而二次能源开发中利用风力发电是最有潜力最为环保的方式之一,但这也引出了分布式发电并网难的问题。由于风能发电的间歇性、不稳定性,并网后对电网冲击巨大,因此,做好风能发电的预测和调控是风力发电并网稳定运行和有效消纳的重要条件。 国外的经验证明,对风力发电进行有效预测,可以帮助电网调度部门做好各类电源的调度计划,减少风电限电,由此大大提高了电网消纳风电的能力,进而减少了由于限电给风电业主带来的经济损失,增加了风电场投资回报率。为此,国能日新自主研发的风电功率预测系统,为国家的风电事业发展贡献自己的一份力量。 风就是水平运动的空气,空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。这种高纬度与低纬度之间的温度差异,形成了南北之间的气压梯度,使空气作水平运动,风沿水平气压梯度方向吹,即垂直与等压线从高压向低压吹。

地球在自转时,使空气水平运动发生偏向的力,称为地转偏向力,这种力使北半球南方吹向北方的风向东偏转,北方吹向南方的风向西偏转,南半球则相反。所以地球大气运动除受气压梯度力外,还要受地转偏向力的影响,大气真实运动是这两种力综合影响的结果。 国能日新开发的风电功率预测系统SPWF-3000,具备高精度数值气象预报功能、风电信号数值净化、高性能物理模型、网络化实时通信、通用风电信息数据接口等高科技模块;可以准确预报风电场未来168小时功率变化曲线。在即使没有测风塔的情况下,采用国能日新的虚拟测风塔技术,风功率系统短期预测精度超过80%,超短期预测精度超过90%。

风电功率预测问题_数学建模全国一等奖论文

答卷编号:论文题目:风电功率预测问题 指导教师:金海 参赛学校:北京理工大学 报名序号:1550 证书邮寄地址:北京理工大学中关村校区徐厚宝(学校统一组织的请填写负责人)

风电功率预测问题 摘要: 本文着力研究了风电功率的预测问题。根据相关要求,本文中我们分别利用ARMA模型、卡尔曼滤波预测模型和小波神经网络预测模型对该风电场的风电功率进行预测。通过对预测结果各项评价指标的综合分析,发现:小波神经网络预测模型的精确度最高;单台风电机组预测误差与总机组预测误差成正相关性;多个风电机组的汇聚会使得总体的预测误差减小。另外,从神经网络的训练过程中,我们发现突加扰动是阻碍风电功率实时预测精度进一步改善的主要因素,风电功率的预测精度不可能无限提高。 对于问题一,我们分别建立了ARMA、卡尔曼滤波、小波神经网络三种预测模型对指定的发电机组的输出功率进行了预测,取得了较为理想的结果。ARMA 模型的预测精确度为75.4%—79.3%,卡尔曼滤波模型的预测精确度为 81.3%-95%,小波神经网络模型的预测精确度为92.1%—94.7%,故小波神经网络的预测效果最好。 对于问题二,我们分析比较了三种模型下单台机组和多机组5月21日至6月6日的平均相对预测误差,得知风电机组的汇聚会使得总体的预测误差减小。 针对问题三,我们在问题一小波神经网络模型的基础上建立了遗传神经网络模型。经过仿真,我们发现该模型能显著减小峰值误差,有力地抑制时间延迟现象,有效地提高了预测的精确度。对仿真误差进行分析,我们指出突加的扰动是阻碍风电功率实时预测精度进一步改善的主要因素,预测的精度不可能无限提高。 关键词:ARMA,卡尔曼滤波,小波神经网络,遗传神经网络

国标风电功率预测系统功能规范送审参考模板

风电功率预测系统功能规范 1 范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2 术语和定义 2.1风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预算未来一定时间的大气运动状态和天气现象的方法。 2.3风电功率预测 Wind power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率,预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测 ultra-short term Wind Power Forecasting 0h-4hd的风电输出功率预测,时间分辨率不小于15min。 3.数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据 风电场的历史功率数据应不少于1a,时间分辨率应不小于5min 3.2历史测风塔数据 a)测风塔位置应在风电场5km范围内; b)应至少包括10m、70m及以上搞成的风速和风向以及气温、气压等信息; C)数据的时间分辨率不小于10min。 3.3历史数值天气预报

相关主题
文本预览
相关文档 最新文档