九年级数学上册期末检测数学试卷及答案【精_3套】
- 格式:doc
- 大小:716.00 KB
- 文档页数:26
2022-2023学年九年级上期期末模拟试题(一)测试内容:九年级上全册+九年级下1-2章注意事项:本试卷满分120分,考试时间120分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·浙江九年级期末)对一批校服进行抽查,统计合格校服的套数,得到合格校服的频率频数表如下:抽取件数50 100 150 200 500 800 1000合格频数30 80 120 140 445 720 900合格频率0.6 0.8 0.8 0.7 0.89 0.9 0.9估计出售1200套校服,其中合格校服大约有()A.1080套B.960套C.840套D.720套【答案】A【分析】根据表格中数据估计合格校服的概率约为0.9,再根据概率公式计算即可.【详解】解:根据表格数据可估计合格校服的概率约为0.9,∴估计出售1200套校服,其中合格校服大约有1200×0.9=1080(套),故选:A.【点睛】本题考查频率估计概率、样本估计总体,根据表格数据估计出合格校服的概率是解答的关键.2.(2022·四川巴中市·中考真题)两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BP APAP AB=,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是()A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对【答案】A【分析】点P是AB的黄金分割点,且PB<P A,PB=x,则P A=20−x,则BP APAP AB=,即可求解.【详解】解:由题意知,点P是AB的黄金分割点,且PB<P A,PB=x,则P A=20−x,∴BP APAP AB=,∴(20−x)2=20x,故选:A.【点睛】本题考查黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.3.(2022·石家庄市九年级二模)现从四个数2-,0,1,2中任意选出两个不同的数,分别作为函数y ax b =+中a ,b 的值.那么所得图像中,分布在一二三象限的概率是( )A .16B .112 C .13D .23【答案】A【分析】先利用列表的方法求解从四个数2-,0,1,2中任意选出两个不同的数的结果数,再判断使函数y ax b =+的图像分布在一二三象限的结果数,再直接利用概率公式进行计算即可得到答案. 【详解】解:列表如下:2-0 1 22-()2,0-()2,1-()2,2- 0()0,2-0,1()0,21()1,2-()1,01,22()2,2- ()2,0 ()2,1一共有12种等可能的结果,而y ax b =+分布在一二三象限,a ∴>0,b >0, 所以符合条件的等可能的结果数有2种,所以使y ax b =+分布在一二三象限的概率是21=.126选:.A 【点睛】本题考查的是利用画树状图或列表的方法求解等可能事件的概率,一次函数的性质,灵活应用以上知识解题是解题的关键.4.(2022•绵阳市九年级一模)如图,以O 为圆心的,C 、D 三等分,连MN 、CD ,下列结论错误的是( )A .∠COM =∠CODB .若OM =MN ,则∠AOB =20°C .MN ∥CD D .MN =3CD 【分析】连接ON 、MC 、DN ,过点O 作OE ⊥CD 交于点E ,根据圆周角定理判断A ;根据等边三角形的判定定理和性质定理判断B;根据垂径定理、平行线的判定定理判断C,根据两点之间线段最短判断D.【解析】连接ON、MC、DN,过点O作OE⊥CD交于点E,∵,∴∠COM=∠COD,A选项结论正确,不符合题意;∵OM=MN,OM=ON,∴OM=ON=MN,∴△OMN为等边三角形,∴∠MON=60°,∵,∴∠AOB=20°,B选项结论正确,不符合题意;∵OE⊥CD,∴,∴,∴OE⊥MN,∴MN∥CD,C选项结论正确,不符合题意;∵MC+CD+DN>MN,∴MN<3CD,D选项结论错误,符合题意;故选:D.【点评】本题考查的是圆心角、弧、弦直径的关系、垂径定理、平行线的判定,掌握圆心角、弧、弦直径的关系定理是解题的关键.5.(2022·广西·九年级专题练习)如图,在△ABC中,点D在AC上,点F是BD的中点,连接AF 并延长交BC点E,BE:BC=2:7,则AD:CD=()A.2:3 B.2:5 C.3:5 D.3:7【答案】A【分析】过点D作DH∥AE交BC于H,根据平行线的性质得BE=EH,即可得EH:CH=2:3,根据平行线等分线段定理即可得23 AD EHDC CH==.【详解】解:如图,过点D作DH∥AE交BC于H,∵BF =DF ,FE ∥DH ,∴BE =EH ,∴BE :BC =2:7,∴EH :CH =2:3, ∵AE ∥DH ,∴23AD EH DC CH ==,故选:A . 【点睛】本题考查了平行线等分线段定理,解题的关键是学会添加辅助线,利用平行线等分线段成比例定理解决问题.6.(2022·江苏·南京郑和外国语学校九年级期中)如图,正方形ABCD 和正三角形AEF 内接于O ,DC 、BC 交EF 于G 、H ,若正方形ABCD 的边长是4,则GH 的长度为( )A .22B .44233-C .463D .8233- 【答案】A【分析】连接AC 交EF 于M ,连接OF ,根据正方形的性质、等边三角形的性质及等腰三角形的性质即可求解.【详解】解:连接AC 交EF 于M ,连接OF ,四边形ABCD 是正方形,90B ∴∠=︒,AC ∴是O 的直径,ACD ∴∆是等腰直角三角形,242AC AD ∴==,22OA OC ∴==,AEF ∆是等边三角形,AM EF ∴⊥,30OFM ∠=︒,122OM OF ∴==,2CM ∴=,45ACD ∴∠=︒,90CMG ∠=︒,45CGM ∴∠=︒,CGH ∴∆是等腰直角三角形,222GH CM ∴==.故选:A .【点睛】本题考查正多边形与圆的关系,涉及到特殊锐角三角函数值、正方形的性质、等边三角形的性质及等腰三角形的性质,解题的关键是综合运用所学知识.7.(2022·河南南阳·二模)如图,平面直角坐标系中,A (4,0),点B 为y 轴上一点,连接AB ,tan ∠BAO =2,点C ,D 为OB ,AB 的中点,点E 为射线CD 上一个动点、当△AEB 为直角三角形时,点E 的坐标为( )A .(4,4)或(25+2,4)B .(4,4)或(25-2,4)C .(12,4)或(25+2,4)D .(12,4)或(25-2,4)【答案】C【分析】根据已知可得OA =4,OB = 8,从而利用勾股定理可求出AB ,然后分两种情况,当∠AE 1B =90°,当∠BAE 2=90°,进行计算即可解答. 【详解】解:∵A (4,0),∴OA =4, 在Rt △ABO 中,tan ∠BAO =2BOOA=,∴OB =2OA =8, ∴22228445AB OA OB =+=+=, ∵点C ,D 为OB ,AB 的中点,∴142OC OB ==,122CD OA ==,//CD OA 如图,分两种情况:当∠AE 1B =90°,点D 为AB 的中点, ∴DE 1=1252AB =,11225CE CD DE =+=+,∴E 1(52+2,4 ), 当∠BAE 2=90°,过点E 2作E 2F ⊥x 轴,∴∠BAO +∠E 2AF = 90°, ∵∠BOA =90°,∴∠ABO +∠BAO =90°,∴∠ABO =∠E 2AF , ∵∠BOA =∠AFE 2=90°,∴△BOA ∽△AFE 2,∴2BO AF OA E F =,∴844AF =,∴AF =8,∴OF =OA +AF =12,∴E 2(12,4). 综上所述,当△AEB 为直角三角形时,点E 的坐标为(52+2,4 )或(12,4).【点睛】本题考查了解直角三角形,相似三角形的判定与性质,三角形的中位线定理,勾股定理的逆定理,坐标与图形的性质,熟练掌握一线三等角构造相似模型是解题的关键,同时渗透了分类讨论的数学思想.8.(2022·重庆九年级开学考试)重庆实验外国语学校坐落在美丽且有灵气的华岩寺旁边,特别是金灿灿的大佛让身高1.6米的小王同学很感兴趣,刚刚学过三角函数知识,他就想测一下大佛的高度,小王到A 点测得佛顶仰角为37︒,接着向大佛走了10米来到B 处,再经过一段坡度4:3i =,坡长为5米的斜坡BC 到达C 处,此时与大佛的水平距离 6.2DH =米(其中点A 、B 、C 、E 、F 在同一平面内,点A 、B 、F 在同一条直线上),请问大佛的高度EF 为( )(参考数据:tan370.75︒≈,sin370.60︒≈,cos370.80)︒≈.A .15米B .16米C .17米D .18米【答案】B【分析】过点C 作CM BF ⊥于点M ,过点G 作GN EF ⊥于点N ,设4CM x =,3BM x =,则由勾股定理可以求出x =1,再证明四边形DHFM 和四边形AGNF 是矩形,得到 6.2DH FM ==米,从求出19.2AF GN ==米,最后解直角三角形即可.【详解】解:过点C 作CM BF ⊥于点M ,过点G 作GN EF ⊥于点N , 斜坡BC 的坡度4:3i =,5BC =米,∴设4CM x =,3BM x =,∵222CM BM BC += 222(4)(3)5x x ∴+=,解得1x =,4CM ∴=米,3BM =米, ∵DH ⊥EF ,AB ⊥EF ,DM ⊥AB ,GA ⊥AB ,∴四边形DHFM 和四边形AGNF 是矩形, 6.2DH FM ∴==米,10AB =米,103 6.219.2AF GN AB BM MF ∴==++=++=米,在Rt ENG ∆中,37EGN ∠=︒,tan 370.75ENNG∴︒=≈, 0.750.7519.214.4EN NG ∴=⨯=⨯=米,14.4 1.616EF EN NF ∴=+=+=米.故选B .【点睛】本题主要考查了坡比,勾股定理,解直角三角形,矩形的性质与判定等等,解题的关键在于能够熟练掌握相关知识进行求解.9.(2022·四川旌阳·九年级期末)关于x 的函数2|2|41y x x x k =---++的图象与x 轴有四个不同的公共点,则k 的取值范围是( ) A .134k <且3k ≠ B .1334k <<C .134k >D .134k <【答案】B【分析】首先根据绝对值的意义将2|2|41y x x x k =---++整理为2253(2)31(2)x x k x y x x k x ⎧-++≥=⎨-+-<⎩,根据图象与x 轴有四个不同的公共点得到判别式24>0b ac ∆=-,代入列出不等式组求解即可.【详解】解:∵2|2|41y x x x k =---++∴2253(2)31(2)x x k x y x x k x ⎧-++≥=⎨-+-<⎩,由题意得22(5)4(3)0(3)4(1)0k k ⎧--+>⎨--->⎩,且当2x =时,>0y ,即4810k -++>,解得:1334k <<.故选:B . 【点睛】此题考查了绝对值的意义,二次函数的判别式和与x 轴交点的关系,解题的关键是熟练掌握.抛物线与x 轴交点个数由△决定:Δ=b 2﹣4ac >0时,抛物线与x 轴有2个交点;Δ=b 2﹣4ac =0时,抛物线与x 轴有1个交点;Δ=b 2﹣4ac <0时,抛物线与x 轴没有交点.10.(2022·绵阳市·九年级期末)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,下列结论:①abc <0;②9a +3b +c <0;③a >3c;④若方程ax 2+bx +c =0两个根x 1和x 2,则3<|x 1﹣x 2|<4,其中正确的结论有( )A .①②③B .①②④C .①③④D .②③④【答案】A【分析】①根据对称轴的位置可判断出ab 的符号,然后根据函数和y 轴的交点坐标可判断出c 的正负,进而可判断出abc 的正负;②根据二次函数的对称性可得当x =3时,即可判断函数值y 的正负;③首先由对称轴公式得出a 与b 的关系,然后根据当x =1时函数值y 为负求解即可; ④根据二次函数与x 轴的交点坐标的取值范围求解即可.【详解】①抛物线对称轴在y 轴右侧,则a ,b 异号,而c >0,则abc <0,故结论正确; ②由图象可知x =3时,y =9a +3b +c <0,故结论正确; ③∵2b a=2,∴b =﹣4a ,∵当x =1时,y =a +b +c <0,∴﹣3a +c <0,∴a >3c,故结论正确; ④若方程ax 2+bx +c =0两个根x 1和x 2,由图象可知,0<x 1<1,3<x 2<4, ∴则2<|x 1﹣x 2|<4,故结论错误;故选:A .【点睛】此题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质. 二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·江苏)小红在地上画了半径为2m 和3m 的同心圆,如图,然后在一定距离外向圈内掷小石子,若每一次都掷在大圆形成的封闭区域内,则掷中阴影部分的概率是________________.【答案】59【分析】用阴影部分的面积除以大圆的面积即可求得概率. 【详解】解:S 阴影=π(32﹣22)=5π(cm 2), 所以掷中阴影部分的概率是55==99S S 阴影大圆ππ,故答案为:59.【点睛】考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.12.(2022·黑龙江·九年级期中)设a 、b 为两实数,且满足2430a a --=,2430b b --=,则b aa b+=______.13.(2022·四川旌阳·九年级期末)点11(2,)P y -,22(2,)P y ,33(3,)P y 均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是________(用“>”连接). 【答案】231y y y >>【分析】根据二次函数的解析式求得开口方向和对称轴,根据二次函数的性质可得离对称轴越远的点的函数值越小,分别计算123,,P P P 到对称轴1x =的距离,进而即可求得1y ,2y ,3y 的大小关系. 【详解】解:22y x x c =-++,∴对称轴为212x =-=-,10a =-< ∴二次函数的图象开口向下,则离对称轴越远的点的函数值越小,点11(2,)P y -,22(2,)P y ,33(3,)P y 均在二次函数22y x x c =-++的图象上, 点123,,P P P 到对称轴1x =的距离分别为3,1,2,则231y y y >>故答案为:231y y y >> 【点睛】本题考查了二次函数图象的性质,掌握二次函数的图象的性质是解题的关键.14.(2022·河南·郑州中原一中实验学校九年级月考)如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【答案】0.8或2【分析】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQBA BC=时,BPQ BAC ∽,即824816t t-=;当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案. 【详解】解:设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQ BA BC=时,BPQ BAC ∽,即824816t t-=,解得:2t =; 当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t-=,解得:0.8t =; 综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.15.(2022·辽宁·沈阳实验中学二模)如图,新疆部A 位于学校主教学楼P 南偏东45°方向,且距离教学楼60米,某同学从这里出发沿着正北方向走了一段时间后,到达位于主教学楼北偏东30°方向的综合楼B 处,此时这位同学一共走的距离为______米.【答案】(2306.【分析】过P 作PC ⊥AB 于C ,由新疆部A 位于学校主教学楼P 南偏东45°方向,可得∠A =45°可证PC =AC ,由P A =60米,由三角函数可得A C=PC =2B 处在教学楼北偏东30°方向,可得∠B =30°,可求PB =2PC =602Rt △BCP 中,BC =PB cos30°=6AB =BC +AC (302306=米即可.【详解】解:过P 作PC ⊥AB 于C ,∵新疆部A 位于学校主教学楼P 南偏东45°方向, ∴∠A =45°∴∠CP A =90°-∠A =45°,∴PC =AC , 设A C=PC =x ,∵P A =60米∴A C=PC =P A cos45°=6023022⨯=, ∵综合楼B 处在教学楼北偏东30°方向,∴∠B =30°,∴PB =2PC =602, 在Rt △BCP 中,BC =PB cos30°36023062=⨯=, ∴AB =BC +AC ()302306=+米.故答案为:()302306+.【点睛】本题考查解直角三角形应用,掌握方位角,三角函数定义,以及三边之间关系是解题关键. 16.(2022·黑龙江龙凤·九年级期末)如图,平行四边形ABCD 中,AC BC ⊥,5AB =,3BC =,点P 在边AB 上运动以P 为圆心,PA 为半径作P ,若P 与平行四边形ABCD 的边有四个公共点,则AP 的长度满足条件是_______.【答案】201295AP <<或52AP =【分析】求出⊙P 与BC ,CD 相切时AP 的长以及⊙P 经过A ,B ,C 三点时AP 的长即可判断. 【详解】解:如图1中,当⊙P 与BC 相切时,设切点为E ,连接PE . 在Rt △ABC 中,由勾股定理得:22AB BC -=4,设AP=x ,则BP=5-x ,PE=x ,∵⊙P 与边BC 相切于点E ,∴PE ⊥BC , ∵BC ⊥AC ,∴AC ∥PE ,∴PE PB AC AB =,∴545x x -=,∴2020,99x AP ==;如图2中,当⊙P与CD相切时,设切点为E,连接PE.∵S平行四边形ABCD=2×12×3×4=5PE,∴PE=125,观察图象可知:209<AP<125时⊙P与平行四边形ABCD的边的公共点的个数为4,②⊙P过点A、B、C三点,如图3,⊙P与平行四边形ABCD的边的公共点的个数为4,此时AP=52,综上所述,AP的值的取值范围是:201295AP<<或AP=52.故答案为:201295AP<<或AP=52.【点睛】本题考查平行四边形的性质,勾股定理,直线与圆的位置关系等知识,解题的关键是学会利用特殊位置解决问题.三、解答题(本大题共8小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2022·江苏·常州外国语学校九年级月考)计算:(1)2tan45°•sin30°+cos30°•tan60°;(2)cos60°2cos45°+3tan230°.【答案】(1)52;(2)1.【分析】(1)将tan45°=1,sin30°=12,cos30°=3tan60°= 3(2)将cos60°=12,cos45°=22,tan230°=231()=33分别代入,再计算解题.【详解】解:(1)2tan45°•sin30°+cos30°•tan60°13=21+322⨯⨯⨯3=1+25=2;(2)cos60°﹣22cos45°+3tan230°21223=3()2223-⨯+⨯1113223=-+⨯1=.【点睛】本题考查特殊角的锐角函数值、锐角三角函数值的混合运算等知识,是重要考点,掌握相关知识是解题关键.18.(2022·广东广州·九年级期末)为落实“双减”,进一步深化白云区“数学提升工程”,提升学生数学核心素养,2021年12月3日开展“双减”背景下白云区初中数学提升工程成果展示现场会,其中活动型作业展示包括以下项目:①数独挑战;②数学谜语;③一笔画;④24点;⑤玩转魔方.为了解学生最喜爱的项目,随机抽取若干名学生进行调查,将调查结果绘制成两个不完整的统计图,如图:(1)本次随机抽查的学生人数为__________人,补全图(Ⅰ);(2)参加活动的学生共有500名,可估计出其中最喜爱①数独挑战的学生人数为__________人,图(Ⅱ)中扇形①的圆心角度数为__________度;(3)计划在①,②,③,④四项活动中随机选取两项作为重点直播项日,请用列表或画树状图的方法,求恰好选中①,④这两项活动的概率【答案】(1)60,见解析;(2)125、90;(3)1 6【分析】(1)由②的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)由该校人数乘以最喜爱“①数独挑战”的人数所占的比例得出该校学生最喜爱“①数独挑战”的人数,再用360°乘以最喜爱“①数独挑战”的人数所占的比例即可;(3)画树状图,再由概率公式求解即可.【详解】解:(1)本次随机抽查的学生人数为:18÷30%=60(人),则喜爱⑤玩转魔方游戏的人数为:60-15-18-9-6=12(人),补全图(Ⅰ)如下:故答案为:60;(2)估计该校学生最喜爱“①数独挑战”的人数为:500×1560=125(人),图(Ⅱ)中扇形①的圆心角度数为:360°×1560=90°,故答案为:125,90; (3)画树状图如图:共有12个等可能的结果,恰好选中“①,④”这两项活动的结果有2个, ∴恰好选中“①,④”这两项活动的概率为212=16. 【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.19.(2022·四川成都·九年级期末)如图,在平面直角坐标系中,ABC 的顶点坐标分别为A (0,2),B (1,3),C (2,1).(1)请在平面直角坐标系中,以原点O 为位似中心,画出ABC 的位似图形A 1B 1C 1,使它与ABC 的相似比为2:1;(2)求出A 1B 1C 1的面积. 【答案】(1)见解析 (2)6【分析】(1)分别作出三个顶点的对应点,再首尾顺次连接即可; (2)用矩形的面积减去四周三个三角形的面积. (1)如图所示,即为所求.(2)△A 1B 1C 1的面积为4×4-12×4×2-12×2×2-12×2×4=6.【点睛】本题主要考查作图—位似变换,解题的关键是掌握位似变换的定义与性质.20.(2022·贵州遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,AB 是灯杆,CD 是灯管支架,灯管支架CD 与灯杆间的夹角60BDC ∠=︒.综合实践小组的同学想知道灯管支架CD 的长度,他们在地面的点E 处测得灯管支架底部D 的仰角为60°,在点F 处测得灯管支架顶部C 的仰角为30°,测得3AE =m ,8EF =m (A ,E ,F 在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD 的长(结果保留根号);(2)求灯管支架CD 的长度(结果精确到0.1m 3 1.73≈). 【答案】(1)33m (2)1.2m【分析】(1)解Rt ADE △即可求解;(2)延长FC 交AB 于点G ,证明DGC ∴是等边三角形,解Rt AFG △,根据DC DG AG AD ==-即可求解.(1)在Rt ADE △中,tan tan 603ADAED AE∠==︒= 3AE =m 333AD AE ∴==m(2)如图,延长FC 交AB 于点G ,3,8AE EF == 11AF AE EF ∴=+= 3tan tan30AG F AF ==︒=113AG ∴=Rt AFG 中,90,30A F ∠=︒∠=︒60AGF ∴∠=︒60BDC GDC ∠=∠=︒ DGC ∴是等边三角形1123333 1.233DC DG AG AD ∴==-=≈ 答:灯管支架CD 的长度约为1.2m .【点睛】本题考查了解直角三角形的应用,等边三角形的性质与判定,掌握以上知识是解题的关键. 21.(2022·内蒙古呼和浩特·)某市计划在十二年内通过租房建设,解决低收入人群的住房问题,已知前7年,每年竣工投入使用的公租房面积y (单位:百万平方米),与时间x (第x 年)的关系构成一次函数(1≤x ≤7且x 为整数),且第一和第三年竣工投入使用的公租房面积分别为236和72百万平方米;后五年竣工面积与时间的关系是y =18-x +154(7<x ≤12且x 为整数).(1)已知第六年竣工使用的公租房面积可解决20万人的住房问题,如果人均住房面积最后一年比第六年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨的影响,已知这12年中,每年投入使用的租金与时间的函数解析式为m =2x +36.假设每年的公租房当年全部出租完,写出这12年中每年竣工的公租房年租金W 关于时间x 的函数解折式,并求出W 的最大值(单位:亿元).如果在W 取得最大值的这一年,老张租用了58平方米的房子,计算老张这一年应交的租金为多少?【答案】(1)最后一年竣工投入使用的公租房面积可解决12.5万人的住房问题;(2)()()2212144173131357124x x x W x x x ⎧-++≤≤⎪⎪=⎨⎪-++<≤⎪⎩,,;W 的最大值为1.47亿元;老张这一年应交的租金为2436元.【分析】(1)用待定系数法求出一次函数表达式,算出第六年对应的y 值,由已知条件即可求得答案;(2)分别算出17x ≤≤和712x <≤时,W 的函数表达式,配方求得最值,对比分析即可知道W 的最大值,进一步求得老张应交的租金. 【详解】解:设()0,17y kx b k x =+≠≤≤由已知得:236732k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:164k b ⎧=-⎪⎨⎪=⎩∴()14176y x x =-+≤≤ 当6x =时,164=36y =-⨯+∴30020=15÷(平方米),15(120)18⨯+=%(平方米)当12x =时,115912=844y =-⨯+∴910018=12.54⨯÷(万人)所以最后一年可解决12.5万人的住房问题.(2)当17x ≤≤时,()2112364214463W x x x x ⎛⎫=+-+=-++ ⎪⎝⎭;当712x <≤时,()21151********44W x x x x ⎛⎫=+-+=-++ ⎪⎝⎭∴这12年中每年竣工的公租房年租金W 关于时间x 的函数解折式为()()2212144173131357124x x x W x x x ⎧-++≤≤⎪⎪=⎨⎪-++<≤⎪⎩,, 又∵当17x ≤≤时,()22112144314733W x x x =-++=--+∴当3x =时,=147W ;∵当712x <≤时,()22113135614444W x x x =-++=--+∴当8x =时,=143W ;∵147>143∴当3x =时,年租金最大,W 的最大值为1.47亿元 当3x =时,233642m =⨯+=∴58422436⨯=(元) 所以老张这一年应交的租金为2436元【点睛】本题考查一次函数实际应用,二次函数的应用.能够从大量文字中提取出解题所需要的条件,并能够列出符合题意的表达式,利用配方法将二次函数一般式配成顶点式,从而求出最值是解题的关键.22.(2022·杭州市十三中教育集团九年级)如图,OAB 中,OA OB =,O 过AB 中点C ,且与OA 、OB 分别交于点E 、F .(1)求证:直线AB 是O 的切线;(2)延长AO 交O 于点D ,连结DF 、DC ,求证:EDC FDC ∠=∠;(3)在(2)的条件下,若10DE =,6DF =,求CD 的长.【答案】(1)见解析;(2)见解析;(3)45【分析】(1)连接OC ,证OC AB ⊥即可证直线AB 是O 的切线;(2)由圆周角定理可得12EDC AOC ∠=∠,12FDC BOC ∠=∠,由(1)证AOC BOC ∠=∠即可;(3)作ON DF ⊥于N ,延长DF 交AB 于M ,在t R CDM 中求出DM 、CM 即可求出CD . 【详解】解(1)证明:连接OC ,如下图:∵OA=OB ,C 为AB 的中点,∴OC AB ⊥,∵点C 在O 上,∴AB 是O 的切线;(2)根据圆周角定理可知,12EDC AOC ∠=∠,12FDC BOC ∠=∠,由(1)可得AOC BOC ∠=∠,∴EDC FDC ∠=∠; (3)作ON DF ⊥于N ,延长DF 交AB 于M ,如下图:∵ON DF ⊥,=OD OF ,∴1===32DN NF DF ,在t R ODN 中,∵=90OND ∠︒,1==52OD DE ,=3DN ,∴22==4ON OD DN -,∵=OD OC ,∴=OCD EDC ∠∠,∵=EDC FDC ∠∠,∴=OCD FDC ∠∠,∴OC ∥DM , ∵OC AB ⊥,∴DM AB ⊥,∴四边形OCMN 是矩形,∴4ON CM ==, 5MN OC ==, 在t R CDM 中,=90DMC ∠︒,4CM =,==35=8DM DN MN ++∴22228445CD DM CM ++=【点睛】本题比较综合,考查了圆的切线,圆周角与圆心角的关系,勾股定理等相关知识,熟练掌握并能灵活运用每一个细小的知识点,是解决此类综合大题的关键.23.(2022.成都市初三一诊)天府新区某校数学活动小组在一次活动中,对一个数学问题作如下探究: (1)问题发现:如图1,在等边△ABC 中,点P 是边BC 上任意一点,连接AP ,以AP 为边作等边△APQ ,连接CQ .求证:BP = CQ ;(2)变式探究:如图2,在等腰△ABC 中,AB =BC ,点P 是边BC 上任意一点,以AP 为腰作等腰△APQ ,使AP =PQ ,∠APQ =∠ABC ,连接CQ .判断∠ABC 和∠ACQ 的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC 中,点P 是边BC 上一点,以AP 为边作正方形 APEF ,Q 是正方形APEF 的中心,连接CQ .若正方形APEF 的边长为6,22CQ =,求正方形ADBC 的边长.【答案】(1)证明见解析;(2)ABC ACQ ∠=∠,理由见解析;(3)正方形ADBC 的边长为214+. 【分析】(1)易证∠BAP =∠CAQ ,根据AB =AC ,AP =AQ ,由SAS 证得△BAP ≌△CAQ ,即可得出结论;(2)由等腰三角形的性质得出∠BAC =∠PAQ ,证得△BAC ∽△PAQ ,得出BA PAAC AQ=,易证∠BAP =∠CAQ ,则△BAP ∽△CAQ ,可得∠ABC =∠ACQ ; (3)连接AB 、AQ ,由正方形的性质得出2ABAC=,∠BAC =45°,2AP AQ =,∠PAQ =45°,易证∠BAP =∠CAQ ,则可得△ABP ∽△ACQ ,根据相似三角形的性质求出BP =4,设PC =x ,则BC =AC =4+x ,在Rt △APC 中,利用勾股定理列方程求出x ,即可得出结果. 【详解】(1)证明:如图1,ABC 与APQ 都是等边三角形,60BAC PAQ ∴∠=∠=︒,1323∴∠+∠=∠+∠,12∠∠∴=.又AB AC =,AP AQ =,ABP ACQ ∴≅,BP CQ ∴=;(2)ABC ACQ ∠=∠,理由:如图2,在ABC 中,AB BC =,1802ABC BAC ︒-∠∴∠=,在PAQ △中,PA PQ =,1802APQPAQ ︒-∠∴∠=,APQ ABC ∠=∠,BAC PAQ ∴∠=∠,BACPAQ ∴,BA PAAC AQ∴=,又13BAC ∠+∠=∠,23PAQ ∠+∠=∠,12∠∠∴=,ABP ACQ ∴,∴ABC ACQ ∠=∠;(3)如图3,连接AB ,AQ ,正方形ADBC ,2ABAC∴=,45BAC ∠=︒, 又Q 为正方形APEF 的中心,2APAQ∴=,45PAQ ∠=︒, 13BAC ∠+∠=∠,23PAQ ∠+∠=∠,12∠∠∴=,AB APAC AQ=,ABP ACQ ∴,22AC CQ AB BP ∴==,22CQ =,4BP ∴=,设PC x =,则4BC AC x ==+,在Rt APC 中,222AP AC PC =+,即2236(4)x x =++, 解得:214x =-±,0x,214x ∴=-+,∴边长4214AC x =+=+.【点睛】本题是四边形综合题,主要考查了等边三角形的性质、等腰三角形的性质、全等三角形的判定与性质、正方形的性质、相似三角形的判定与性质、勾股定理、解一元二次方程等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.24.(2022·广东·广州九年级期中)如图,抛物线23y ax bx =++与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,点D 的坐标为()4,n .(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA PD 、,求当PAD 面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,请直接写出点Q 的坐标. 【答案】(1)2134y x x =-++,112y x =+(2)151,4P ⎛⎫ ⎪⎝⎭(3)()09Q -, 【分析】(1)先利用待定系数法求二次函数解析式,然后再根据点D 的横坐标为4,代入二次函数解析式求得D 点坐标,再用待定系数法求直线l 的解析式即可;(2)过点P 作PF y ∥轴交AD 于F ,设P (n ,21,34P n n n ⎛⎫-++ ⎪⎝⎭),则1,12F n n ⎛⎫+ ⎪⎝⎭,根据()132PAD D A S x x PF PF =⋅-⋅=,得到PF 的值最大时,△P AD 的面积最大,求出PF 的最大值即可; (3)如图2,将线段AD 绕点A 顺时针旋转90︒,得到AT ,作DM x ⊥轴于M ,TN x 轴于N ,则90ANT DMA AT AD ∠=∠=︒=,,证明AAS ANT DMA ≌(),得到16T -(,),设DT 交x 轴于Q ,证得ATD 是等腰直角三角形,则45ADQ ∠=︒,利用待定系数法求得直线DT 的解析式为39y x =-,再求得与y 轴的交点Q 的坐标即可.【详解】(1)解:将点A 、B 的坐标代入23y ax bx =++,得423036630a b a b -+=⎧⎨++=⎩,解得141a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为2134y x x =-++; ∵当4x =时,2144334y =-⨯++=,∴3(4)D ,; ∵直线l 经过点A ,D ,∴设直线l 的解析式y kx m =+,将点A ,点D 坐标代入得:2043k m k m -+=⎧⎨+=⎩,得121k m ⎧=⎪⎨⎪=⎩. ∴直线l 的解析式为112y x =+. (2)解:如图1,过点P 作PF y ∥轴交AD 于F设21,34P n n n ⎛⎫-++ ⎪⎝⎭,则1,12F n n ⎛⎫+ ⎪⎝⎭ ∵()132PAD D A S x x PF PF =⋅-⋅=,∴PF 的值最大时,PAD 的面积最大,∵2113142PF n n n ⎛⎫=-++-+ ⎪⎝⎭=()219144n --+, ∴当1n =时,PF 的值最大,最大值为94, 此时PAD 的面积最大值为:2743max PF =, 当1x =时,2115344y x x =-++=∴此时151,4P ⎛⎫ ⎪⎝⎭. 综上所述:当ΔP AD 面积最大时点P 的坐标为151,4⎛⎫ ⎪⎝⎭,该面积的最大值为274. (3)解:如图2,,将线段AD 绕点A 顺时针旋转90︒,得到AT ,作DM x ⊥轴于M ,TN x 轴于N ,则90ANT DMA AT AD ∠=∠=︒=,,∵90NAT DAM MDA DAM ∠∠∠∠︒+=+=,∴NAT MDA ∠=∠,∴AAS ANT DMA ≅(),∴36AN DM NT MA ====,,∴1ON AN OA =-=,∴()16T -,,设DT 交x 轴于Q , ∵90TAD AD AT ∠︒=,= ,∴ATD 是等腰直角三角形,∴45ADQ ∠=︒,设直线DT 的解析式为=+y px t ,∵()()4316D T -,,,,∴346p t p t =+⎧⎨-=+⎩,解得39p t =⎧⎨=-⎩, ∴直线DT 的解析式为39y x =-,令0x =,得9y =-.∴()09Q -,. 【点睛】本题主要考查了二次函数与一次函数的综合、待定系数法求函数解析式、二次函数的最值问题、直线与x 轴的交点、全等三角形的判定与性质等知识点,灵活运用相关知识并正确添加辅助线是解题的关键.。
2023-2024学年四川省凉山州市九年级上册数学期末质量检测模拟(A卷)(满分150分,考试时间120分钟)一、选一选(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位......置.上)1.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.122.将方程x2+8x+9=0配方后,原方程可变形为()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=﹣9D.(x+8)2=73.二次函数y=x2-2x+3的图象的顶点坐标是()A.(1,2)B.(1,6)C.(-1,6)D.(-1,2)4.已知:在Rt△ABC中,∠C=90°,sinA=34,则co的值为()A.74B.45 C.35 D.345.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】A.相切B.相离C.相离或相切D.相切或相交6.如图,已知AB是半圆O的直径,∠BAC=32º,D是弧AC的中点,那么∠DAC的度数是()A.25ºB.29ºC.30ºD.32°7.已知二次函数y=ax2+bx+c中,自变量x与函数y之间的部分对应值如表:x…0123…y…﹣1232…在该函数的图象上有A(x1,y1)和B(x2,y2)两点,且﹣1<x1<0,3<x2<4,y1与y2的大小关系正确的是()A.y 1≥y 2B.y 1>y 2C.y 1≤y 2D.y 1<y 28.如图1,在ABC 中,AB AC =,120BAC ∠=︒.点O 是BC 的中点,点D 沿B →A →C 方向从B 运动到C .设点D 的路径长为x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的大致图象如图2所示,则这条线段可能是图1中的()A.BDB.ADC.ODD.CD二、填空题(本大题共有10小题,每小题3分,共30分.没有需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9.若cos A 22=,则锐角A 的度数为_______.10.若关于x 的一元二次方程2x 2x m 0-+=有实数解,则m 的取值范围是________.11.某果园2011年水果产量为100吨,2013年水果产量为144吨,则该果园水果产量的年平均增长率为___________.12.将二次函数22y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是________.13.已知在ABC 中,AB =AC =5,BC =6,则ta 的值为_____.14.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的度数是________°.15.如图,已知矩形纸片ABCD 中,AB =1,剪去正方形ABEF ,得到的矩形ECDF 与矩形ABCD 相似,则AD 的长为__________.16.如图,AB 是O 的直径,弦,30,3CD AB CDB CD ⊥∠=︒=,则阴影部分图形的面积为___________.17.古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,没有多没有少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为x 尺,则可列方程为_____(方程无需化简).18.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0的解是__________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(1)22sin 60cos 60︒+︒;(2)24cos 45tan 608(1)︒+︒--.20.解方程:(1)(3)4(3)0x x x ---=;(2)248960x x +-=.21.化简并求值:2(1)(1)(1)m m m +++-,其中m 是方程210x x +-=的一个根.22.如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后,剩下的部分做成一个容积为90立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多4米,求矩形铁皮的面积.23.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆时,栏杆AEF 至多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略没有计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.3米,那么适合该地下车库的车辆限高标志牌为多少米?(结果到0.1.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)24.如图⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点,(1)请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线(用虚线画出图形印可,没有需要写作法)(2)图②,简要说明你这样画的理由.25.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少量的办法增加利润,如果这种商品每件的价每提高1元其量就减少20件.(1)当售价定为12元时,每天可售出件;(2)要使每天利润达到640元,则每件售价应定为多少元?(3)当每件售价定为多少元时,每天获得利润?并求出利润.26.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC,(1)求证:PA是⊙O的切线;(2)若AB=BC=O的半径.27.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB ,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.28.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.(1)直接写出抛物线的顶点M的坐标是.(2)当点E与点O(原点)重合时,求点P的坐标.(3)点P从M运动到N的过程中,求动点E的运动的路径长.2023-2024学年四川省凉山州市九年级上册数学期末质量检测模拟(A卷)(满分150分,考试时间120分钟)一、选一选(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位......置.上)1.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.12【正确答案】B【分析】根据方程的解的定义,把x =0代入方程,即可得到关于a 的方程,再根据一元二次方程的定义即可求解.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】解:根据题意得:a 2﹣1=0且a ﹣1≠0,解得:a =﹣1.故选:B .本题主要考查一元二次方程的定义以及一元二次方程的解法,本题关键在于求出a 的值并根据一元二次方程的定义进行取舍.一元二次方程定义,只含有一个未知数,并且未知数项的次数是2的整式方程叫做一元二次方程.2.将方程x 2+8x+9=0配方后,原方程可变形为()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=﹣9D.(x+8)2=7【正确答案】A【详解】解:2890x x ++=,289x x +=-,2816916x x ++=-+,2(4)7x +=.故选A .3.二次函数y=x 2-2x+3的图象的顶点坐标是()A.(1,2)B.(1,6)C.(-1,6)D.(-1,2)【正确答案】A【详解】试题解析:∵y=x 2-2x+3=x 2-2x+1-1+3=(x-1)2+2,∴抛物线y=x 2-2x+3的顶点坐标是(1,2).故选A .4.已知:在Rt△ABC 中,∠C=90°,sinA=34,则co 的值为()A.74B.45 C.35D.34【正确答案】D【分析】根据三角函数的定义即可求得结果.【详解】3cos sin 4a B A c ===.本题主要考查了三角函数的定义,熟练掌握三角函数的定义是解题的关键.5.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】A.相切B.相离C.相离或相切D.相切或相交【正确答案】D【分析】根据直线与圆的位置关系来判定:①相交:d<r;②相切:d=r;③相离:d>r(d为直线与圆的距离,r为圆的半径).因此,分OP垂直于直线l,OP没有垂直直线l两种情况讨论.【详解】当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP没有垂直于直线l时,即圆心O到直线l的距离d=2<r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选D.6.如图,已知AB是半圆O的直径,∠BAC=32º,D是弧AC的中点,那么∠DAC的度数是()A.25ºB.29ºC.30ºD.32°【正确答案】B【分析】连接BC,根据AB是半圆O的直径可得∠ACB=90°,进而可求得∠ABC=58°,根据圆内接四边形对角互补可得∠D=122°,因为D是弧AC的中点,可得∠DAC=∠DCA,即可求解.【详解】连接BC,∵AB是半圆O的直径∴∠ACB=90°∵∠BAC=32º∴∠ABC=58°∵∠D+∠ABC=180°∴∠D=122°∵D是弧AC的中点∴ AD DC=∴∠DAC=∠DCA=29°故选:B本题主要考查圆周角定理,圆的内接四边形的性质,直角三角形的性质,等腰三角形的性质等知识点,关键在于求出∠ADC 的度数,熟练运用相关的性质定理.7.已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表:x …0123…y…﹣1232…在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是()A.y 1≥y 2B.y 1>y 2C.y 1≤y 2D.y 1<y 2【正确答案】D【详解】试题分析:抛物线的对称轴为直线x=2,∵﹣1<x 1<0,3<x 2<4,∴点A (x 1,y 1)到直线x=2的距离比点B (x 2,y 2)到直线x=2的距离要大,而抛物线的开口向下,∴y 1<y 2.故选D .考点:二次函数图象上点的坐标特征.8.如图1,在ABC 中,AB AC =,120BAC ∠=︒.点O 是BC 的中点,点D 沿B →A →C 方向从B 运动到C .设点D 的路径长为x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的大致图象如图2所示,则这条线段可能是图1中的()A.BDB.ADC.ODD.CD【正确答案】C【详解】当点D 在AB 上,则线段BD 表示为y=x ,线段AD 表示为y=AB−x 为函数,没有符合图象;同理当点D 在AC 上,也为为函数,没有符合图象;如图,作OE ⊥AB ,∵点O 是BC 中点,设AB=AC=a ,∠BAC=120∘.∴AO=2a ,BO=32a ,OE=34a ,BE=34a ,设BD=x ,OD=y ,AB=AC=a ,∴DE=34a −x ,在Rt △ODE 中,DE 2+OE 2=OD 2,∴y 2=(34a −x)2+(34a )2整理得:y 2=x 2−32a x+34a 2,当0<x ⩽a 时,y 2=x 2−32a x+34a 2,函数的图象呈抛物线并开口向上,由此得出这条线段可能是图1中的OD.故选C点睛:本题考查了动点问题的函数图象,根据图形运用数形列出函数表达式是解决问题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.没有需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9.若cos A 2=,则锐角A 的度数为_______.【正确答案】45°.【分析】根据角的三角函数值可得答案.【详解】∵cos A 22=,∴∠A =45°.故45°.本题主要考查了角的三角函数值,关键是掌握30°,45°,60°角的三角函数值.10.若关于x 的一元二次方程2x 2x m 0-+=有实数解,则m 的取值范围是________.【正确答案】m≤1【分析】由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m 的没有等式,求出没有等式的解集即可得到m 的取值范围.【详解】解:∵一元二次方程x 2-2x+m=0有实数解,∴b 2-4ac=22-4m≥0,解得:m≤1,则m 的取值范围是m≤1.故m≤1.此题考查了一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的解与b 2-4ac 有关,当b 2-4ac >0时,方程有两个没有相等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac <0时,方程无解.11.某果园2011年水果产量为100吨,2013年水果产量为144吨,则该果园水果产量的年平均增长率为___________.【正确答案】20%【分析】设该果园水果产量的年平均增长率为x ,根据“2013年的产量=2011年的产量×(1+年平均增长率)2”列出方程,解方程即可.【详解】设该果园水果产量的年平均增长率为x ,则2012年的产量为100(1+x )吨,2013年的产量为100(1+x )(1+x )=100(1+x )2吨,根据题意,得100(1+x )2=144,解得x 1=0.2,x 2=-2.2(舍去).所以年平均增长率为20%.故20%.考查了一元二次方程的应用,解题关键得到关系式:2013年的产量=2011年的产量×(1+年平均增长率)2.12.将二次函数22y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是________.【正确答案】22(1)2y x =-+【分析】根据平移的规律:左加右减,上加下减可得答案.【详解】将二次函数y=2x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=2(x-1)2+2,故y=2(x-1)2+2.13.已知在ABC中,AB=AC=5,BC=6,则ta的值为_____.【正确答案】4 3.【详解】如图,等腰△ABC中,AB=AC=5,BC=6,过A作AD⊥BC于D,则BD=3,在Rt△ABD中,AB=5,BD=3,则AD=4,故ta=AD BD=43.故答案为4 3.14.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若∠BAD=105°,则∠DCE的度数是________°.【正确答案】105【详解】∵四边形ABCD是圆内接四边形,∴∠DAB+∠DCB=180°,∵∠BAD=105°,∴∠DCB=180°﹣∠DAB=180°﹣105°=75°,∵∠DCB+∠DCE=180°,∴∠DCE=∠DAB=105°.故答案为10515.如图,已知矩形纸片ABCD 中,AB =1,剪去正方形ABEF ,得到的矩形ECDF 与矩形ABCD 相似,则AD 的长为__________.【正确答案】152+【详解】试题分析::设AD=x ,∵四边形ABEF 为正方形,∴AF=AB=EF=1,∴FD=x ﹣1,∵矩形ECDF 与矩形ABCD 相似,∴DF :AB=EF :AD ,即(x ﹣1):1=1:x ,整理得x 2﹣x ﹣1=0,解得x 1=12,x 2=152(舍去),∴AD 的长为12+.考点:相似多边形的性质;矩形的性质;正方形的性质.16.如图,AB 是O 的直径,弦,30,CD AB CDB CD ⊥∠=︒=,则阴影部分图形的面积为___________.【正确答案】23π【分析】根据垂径定理求得CE ED ==,然后由圆周角定理知60COE ∠=︒,然后通过解直角三角形求得线段OC 、OE 的长度,将相关线段的长度代入COE BED OCB S S S S ∆∆=-+阴影扇形.【详解】解:如图,假设线段CD 、AB 交于点E ,AB Q 是O 的直径,弦CD AB ⊥,CE ED ∴==又30CDB ∠=︒ ,260COE CDB ∴∠=∠=︒,30OCE ∠=︒,1OE ∴===,22OC OE ==,2,211,OB BE ∴==-=,COE DBE S S ∴= 26023603COE BED OCB OC S S S S ππ∆∆⨯∴=-+==阴影扇形.故23π.本题考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.17.古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,没有多没有少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为x 尺,则可列方程为_____(方程无需化简).【正确答案】(x−2)2+(x−4)2=x 2【分析】设竿长为x 尺,根据题意可得,屋门的宽为x−4,高为x−2,对角线长为x ,然后根据勾股定理列出方程.【详解】解:设竿长为x 尺,由题意得:(x−2)2+(x−4)2=x 2.故答案为(x−2)2+(x−4)2=x 2.本题考查了利用勾股定理解决实际问题,解答本题的关键是根据题意表示出屋门的宽,高.18.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0的解是__________.【正确答案】x=-4,x=-1【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a≠0),∴方程a (x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a (x+m+2)2+b=0的解为x 1=-4,x 2=-1.故答案为x 1=-4,x 2=-1.本题考查方程解的定义.注意由两个方程的特点进行简便计算.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(1)22sin 60cos 60︒+︒;(2)24cos 45tan 60(1)︒+︒--.【正确答案】(1)1;(2).【详解】试题分析:(1)直接利用角的三角函数值代入化简求出答案;(2)直接利用角的三角函数值代入化简求出答案.试题解析:(1)原式=223122+(=1;(2)原式=24112⨯+=.20.解方程:(1)(3)4(3)0x x x ---=;(2)248960x x +-=.【正确答案】(1)13x =,24x =-;(2)128x =,232x =-.【详解】试题分析:(1)先把方程变形得到x (x-3)+4(x-3)=0,然后利用因式分解法解方程;(2)利用配方法得到(x+2)2=900,然后根据直接开平方法求解.试题解析:(1)x(x−3)+4(x−3)=0,(x−3)(x+4)=0,x−3=0或x+4=0,所以x 1=3,x 2=−4;(2)x 2+4x=896,x 2+4x+4=900,(x+2)2=900,x+2=±30,所以x 1=28,x 2=−32.21.化简并求值:2(1)(1)(1)m m m +++-,其中m 是方程210x x +-=的一个根.【正确答案】222m m +,2.【详解】试题分析:求出m 2+m=1,算乘法,再合并同类项,代入求出即可.试题解析:∵m 是方程2x x 10+-=的一个根,∴2m m 1+=,∴222m 2m 1m 12m 2m 2=+++-=+=原式.22.如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后,剩下的部分做成一个容积为90立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多4米,求矩形铁皮的面积.【正确答案】矩形铁皮的面积是117平方米.【详解】试题分析:设矩形铁皮的长为x 米,则宽为(x ﹣4)米,无盖长方体箱子的底面长为(x ﹣4)米,底面宽为(x ﹣4﹣4)米,根据运输箱的容积为90立方米建立方程求出其解即可.试题解析:设矩形铁皮的长为x 米,则宽为(x ﹣4)米,由题意,得(x ﹣4)(x ﹣8)×2=90,解得:x 1=13,x 2=﹣12(舍去),所以矩形铁皮的宽为:13﹣4=9米,矩形铁皮的面积是:13×9=117(平方米).答:矩形铁皮的面积是117平方米.考点:一元二次方程的应用.23.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆时,栏杆AEF 至多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略没有计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.3米,那么适合该地下车库的车辆限高标志牌为多少米?(结果到0.1.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)【正确答案】适合该地下车库的车辆限高标志牌为2.1米【详解】试题分析:过点E 作EG ⊥BC 于点G ,AH ⊥EG 于点H ,则∠AHE=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH 中,利用正弦函数的定义得出EH=AE•sin ∠EAH ,则栏杆EF 段距离地面的高度为:AB+EH ,代入数值计算即可.试题解析:过点E 作EG ⊥BC 于点G ,AH ⊥EG 于点H .∵EF ∥BC ,∴∠GEF=∠BGE=90°∵∠AEF=143°,∴∠AEH=53°.∴∠EAH=37°.在△EAH 中,AE=1.2,∠AHE=90°,∴sin ∠EAH="sin"37°∴0.6EH AE≈∴EH=1.2×0.6=0.72.∵AB ⊥BC ,∴四边形ABGH 为矩形.∵GH=AB=1.2,∴EG=EH+HG=1.2+0.72=1.92≈1.9.答:适合该地下车库的车辆限高标志牌为1.9米.考点:解直角三角形的应用.24.如图⊙O 是△ABC 的外接圆,AB=AC ,P 是⊙O 上一点,(1)请你只用无刻度的直尺,分别画出图①和图②中∠P 的平分线(用虚线画出图形印可,没有需要写作法)(2)图②,简要说明你这样画的理由.【正确答案】(1)画图见解析;(2)理由见解析.【分析】(1)利用圆心角、弧、弦的关系,得出作法即可;(2)利用圆周角定理得出 ABD ACD =,再利用AB=AC ,得出»»AB AC =,进而得出答案.【详解】(1)如图①,连接AP ,即为所求角平分线;如图②,连接AO 并延长,与⊙O 交于点D ,连接PD ,即为所求角平分线.(2)∵AD 是直径,∴ ABD ACD=,又∵AB=AC ,∴»»AB AC =,∴ BDCD =,所以PD 平分∠BPC .此题主要考查了基本作图以及圆心角、弧、弦的关系等知识,熟练利用圆心角、弧、弦的关系得出是解题关键.25.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少量的办法增加利润,如果这种商品每件的价每提高1元其量就减少20件.(1)当售价定为12元时,每天可售出件;(2)要使每天利润达到640元,则每件售价应定为多少元?(3)当每件售价定为多少元时,每天获得利润?并求出利润.【正确答案】(1)160;(2)当每件售价定为14元时,每天获得利润为720元.【详解】试题分析:(1)由原来的销量﹣减少的销量就可以得出现在的销量而得出结论;(2)由利润=每件利润×数量建立方程求出其解即可;(3)设每天获得的利润为W 元,由利润=每件利润×数量建立W 与x 的关系式,由二次函数的性质就可以求出结论.试题解析:(1)由题意,得200﹣20×(12﹣10)=160.(2)设每件售价定为x 元,由题意,得(x ﹣8)[200﹣20(x ﹣10)]=640,解得x 1=16,x 2=12.答:要使每天利润达到640元,则每件售价应定为16或12元;(3)设售价为x 元,每天的利润为W 元,由题意,得W=(x ﹣8)[200﹣20(x ﹣10)]W=﹣20x 2+560x ﹣3200,W=﹣20(x ﹣14)2+720.∵a=﹣20<0,∴x=14时,W=720.答:当每件售价定为14元时,每天获得利润为720元.考点:二次函数的应用;一元二次方程的应用.26.如图,△ABC 内接于⊙O ,∠B =60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP =AC,(1)求证:PA 是⊙O 的切线;(2)若AB =BC =O 的半径.【正确答案】(1)详见解析;(2)⊙O 的半径为3.【详解】试题分析:(1)连接OA ,根据圆周角定理求出∠AOC ,再由OA=OC 得出∠ACO=∠OAC=30°,再由AP=AC 得出∠P=30°,继而由∠OAP=∠AOC ﹣∠P ,可得出OA ⊥PA ,从而得出结论;(2)过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,,于是得到BE=12CE=3,根据勾股定理得到=5,于是得到AP=AC=5.解直角三角形即可得到结论.试题解析:(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA ,∴PA 是⊙O 的切线;(2)解:过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,,∴BE=12CE=3,∵∴AE=AB ﹣BE=4,∴在Rt △ACE 中,=5,∴AP=AC=5.∴在Rt △PAO 中,OA=3,∴⊙O 的半径为3.考点:切线的判定.27.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D .设∠BAC=α,则sinα=13BC AB =,可设BC=x ,则AB=3x ,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M ,N ,P 为⊙O 上的三点,且∠P=β,sinβ=35,求sin2β的值.【正确答案】(1)sin2α=429;(2)sin2β=sin ∠MON=2425.【详解】试题分析:(1)如图1中,⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D .设∠BAC=α,则sinα=13BC AB =,可设BC=x ,则AB=3x .利用面积法求出CD ,在Rt △COD 中,根据sin2α=CD OC,计算即可.(2)如图2中,连接NO ,并延长交⊙O 于点Q ,连接MQ ,MO ,过点M 作MR ⊥NO 于点R .首先证明∠MON=2∠Q=2β,在Rt △QMN 中,由sinβ=35MN NQ =,设MN=3k ,则NQ=5k ,易得OM=12NQ=52k ,可得MQ==4k ,由12•MN•MQ=12•NQ•MR ,求出在Rt △MRO 中,根据sin2β=sin ∠MON=MR OM,计算即可.试题解析:(1)如图1中,⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D .设∠BAC=α,则sinα=13BC AB =,可设BC=x ,则AB=3x .∴AC=x,∵12•AC•BC=12•AB•CD,∴CD=223x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC =429.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35 MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴=4k,∵11··22NMQS MN MQ NQ MR ∆==,∴3k•4k=5k•MR∴MR=12k 5,在Rt△MRO中,sin2β=sin∠MON=122455252kMRkOM==.考点:圆的综合题.28.如图,抛物线y=﹣x 2+2x+3与x 轴交于A 、B 两点,与y 轴交于C 点,对称轴与抛物线相交于点M ,与x 轴相交于点N .点P 是线段MN 上的一动点,过点P 作PE ⊥CP 交x 轴于点E .(1)直接写出抛物线的顶点M 的坐标是.(2)当点E 与点O (原点)重合时,求点P 的坐标.(3)点P 从M 运动到N 的过程中,求动点E 的运动的路径长.【正确答案】(1)M (1,4);(2)点P 的坐标为:(1,2)或(1,32-);(3)E 的运动的路径长为:172.【详解】试题分析:(1)将解析式配成顶点式即可.(2)当点E 与O 重合时,设PN=m ,过点C 作CF ⊥MN 于F ,由△ENP ∽△PFC 用相似比例建立方程解之即可.(3)找到左右两个极端位置即可.P 在M 点时,E 在右边最运处,这个时候求出EN 为对称轴右边的路径长度;E 点在左侧时,设EN=y ,PN=x ,由△ENP ∽△PFC 列出比例方程,得到y 关于x 的二次函数,配方求出值,再加上右边路径长度即为总路径长度.试题解析:(1)∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴M (1,4);(2)当点E 与O 重合时,EN=1,设PN=m ,过点C 作CF ⊥MN ,垂足为F ,如图1,∵∠EPC=90°,∴∠EPN+∠NEP=∠EPN+∠CPF=90°,∴∠CPF=∠PEN ,∴△ENP ∽△PFC ∴CF PN PF EN =,即:131mm =-,解得:∴点P 的坐标为:(1,3+52)或(1,32-)(3)①当点P 与M 重合时,如图2,由△ENM ∽△MFC 可知,EN MFMN CF=,∴EN=4,即当点P 从M 运动到F 时,点E 运动的路径长EN 为4;②当点P 从F 运动到N 时,点E 从点N 向左运动到某最远点后,回到点N 结束.如图3,设EN=y ,PN=x ,由△ENP ∽△PFC 可知,CF PNPF EN=,即:13x x y =-,∴y=22393()24x x x -+=--+,当x=32时,y 有值,为94;∴E 的运动的路径长为:9174242+⨯=.考点:二次函数综合题.2023-2024学年四川省凉山州市九年级上册数学期末质量检测模拟(B 卷)一、选一选(本大题共12小题,每小题3分,共36分.)1.计算(-3)×(-5)的结果是()A.15B.-15C.8D.-82.如图,圆心角∠AOB=60°,则圆周角∠ACB 的度数是()A.120°B.60°C.30°D.20°3.随着我国经济发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是对称图形,又是轴对称图形的是()A. B. C. D.4.岛是中国的固有领土,位于中国东海,面积约平方米,数据用科学记数法表示为()A.44×105B.0.44×105C.4.4×106D.4.4×1055.一元二次方程2x 2+3x +5=0的根的情况是()A.有两个没有相等的实数B.有两个相等的实数C.没有实数根D.无法判断6.的值在()A.2到3之间B.3到4之间C.2到3之间或﹣3到﹣2之间D.3到4之间或﹣4到﹣3之间7.化简2124a a a ÷--的结果是()A.2a a+ B.2a a + C.2a a- D.2a a -8.某公司10月份的利润为320万元,要使12月份的利润达到500万元,则平均每月增长的百分率是()A.30%B.25%C.20%D.15%9.用48m 长的篱笆在空地上围成一个正六边形的绿化场地,那么这个场地的面积为()A.2B.2C.2D.210.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为()A.32B.52C.94D.311.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH 等于()A.2B.94 C.73 D.12512.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是x=1,下列结论:①abc<0;②b2>4ac;③a+b+c<0;④3a+c>0,其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.计算x8÷x2的结果等于_____.14.+⨯=_____.15.)在一个没有透明的袋子中有2个白球和6个黑球,他们除了颜色没有同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是_____.16.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是____.17.Rt△ABC中,∠C=90°,AC=3,BC=5,以AB为一边向外作正方形ABDF,O为AE、BF交点,则OC长为_____.18.如图,在正方形网格中有一个边长为4的平行四边形ABCD(Ⅰ)平行四边形ABCD的面积是____;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为6的矩形,画出裁剪线(至多两条),并简述拼接方法____________________.三、解答题:本大题共7小题,共66分.19.解没有等式组211841x x x x ->+⎧⎨+<-⎩①②请题意填空,完成本题的解答.(Ⅰ)解没有等式①,得;(Ⅱ)解没有等式②,得;(Ⅲ)把没有等式①和②的解集在数轴上表示出来;(Ⅳ)原没有等式组的解集为.20.州为了解我州八年级学生参加社会实践情况,随机抽查了某县部分八年级学生学期参加社会实践的天数,并用得到的数据检测了两幅统计图,下面给出了两幅没有完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“时间没有少于7天”的学生人数大约有多少人?21.如图,⊙O 的直径AB=4,∠ABC=30°,BC 交⊙O 于D ,D 是BC 的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.22.已知二次函数y=﹣x2+2x+3.(1)求函数图象的顶点坐标和图象与x轴交点坐标;(2)当x取何值时,函数值?(3)当y>0时,请你写出x的取值范围.23.某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车总费用为y元.甲种客车乙种客车载客量(人/辆)4530租金(元/辆)280200(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,至多可结余多少元?24.已知:在△ABC年,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D没有与B、C重合).以AD为边作正方形ADEF,连接CF.=-.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF BC CD(2)如图2,当点D在线段BC的延长线上时,其它条件没有变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件没有变:①请直接写出CF、BC、CD三条线段之间的关系,②若连接正方形对角线AE,DF,交点为0,连接OC,探究△AOC的形状,并说明理由.25.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y =x2+bx+cA,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的值;(3)试探究当ME取值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若没有存在,试说明理由.2023-2024学年四川省凉山州市九年级上册数学期末质量检测模拟(B卷)一、选一选(本大题共12小题,每小题3分,共36分.)1.计算(-3)×(-5)的结果是()A.15B.-15C.8D.-8【正确答案】A-⨯-=【详解】解:(3)(5)15故选A2.如图,圆心角∠AOB=60°,则圆周角∠ACB的度数是()A.120°B.60°C.30°D.20°【正确答案】C。
太原市第一学期九年级期末考试数学试卷考试时间上午8.00—9.30说明本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置 1.一元二次方程2+4=0的一根为=0,另一根为A.=2B.=-2C.=4D.=-4 【答案】D 【解析】()21240400,4x x x x x x +=∴+=∴==-2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12 D .-12【答案】B【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A13 B 16 C 19 D 23【答案】A 【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况 ∴在一次游戏中两人手势相同的概率是31935.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A23 B 49 C 25D 35【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y 是的反比例函数的是【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是A 与原四边形关于轴对称 B.与原四边形关于原点位似,相似比为12 C.与原四边形关于原点中心对称 D.与原四边形关于原点位似,相似比为21 【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或-.8,股市规定股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为,则满足的方程是A.(1+10%)(1-)2=1B.(1-10%)(1+)2=1C.(1-10%)(1+2)=1D.(1+10%)(1-2)=1 【答案】A【解析】(1+10%)(1-)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的【答案】A【注意】左视图左内右外10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为A.4B.6C.12D.24 【答案】C【解析】∵矩形ABCD ∽矩形A B C D ''''∴9030129023024AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上 11.反比例函数3-y x=的图象位于坐标系的第_________________象限 【答案】二、四 【解析】当>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随的增大而减小; 当<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随的增大而增大;两个分支无限接近和y 轴,但永远不会与轴和y 轴相交.12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形 ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.【答案】20 (第12题图) 【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,∵两条纸条宽度相同,∴AE=AF .∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC•AE=CD•AF.AE=AF .∴BC=CD ,∴四边形ABCD 是菱形. ∵菱形四边相等∴四边形ABCD 的周长为4AB=2013.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________【答案】3【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴12AM AD =即32DM DA -=同理可得DN DB =∵∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DMAB DA=即2MN =∴3MN =14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】14【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得60300mm n=+ 化简得4m n =∴袋中红、白两种颜色小球的数量比应为mn=1415.如图,点A,C 分别在反比例函数4-y x= (<0)与9y x = (>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】B(0,) 【解析】如图,作AD ⊥轴,垂足为D ,CE ⊥轴,垂足为E. 约定49,,,A m C n m n ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭(m<0,n>0) 由字形结论可得AD ODOE CE =即49m m nn--=化简得mn=-6 再根据平行四边形坐标特点相邻之和减相对可得00490B B x m n y m n =+-=⎧⎪⎨=-+-⎪⎩∴B m n y ==== ∴B(0,三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程 16.解下列方程(每题4分,共8分) (1)2-8+1=0; 解:移项得:2-8=-1 配方得:2-8+42=-1+42 即(-4)2=15直接开平方得4x -=∴原方程的根为1244x x ==(2)(-2)+-2=0解:提取公因式(-2)得(-2)(+1)=0 ∴原方程的根为122,1x x ==- 17.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证四边形ADEF 是正方形.DE【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形 18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上) (1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m 【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴OA OB OD OE =即2 1.51.822.4 1.5OA OB BE m OA OD OB BE BE=∴=∴=++++19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,个月还清,且y 是的反比例函数,其图象如图所示 (1)求y 与的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y 与之间的函数关系式为ky x= (≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k =解得=60 ∴y 与之间的函数关系式为60y x= (>0) (2)90;∵王叔叔每月偿还贷款本金y 万元,个月还清∴贷款金额y=60万元∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元 根据题意,得y=0.2,=300由图,y ≤2000的图像位于Ⅱ区域即≥300 ∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分Ⅱ0.2割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下由列表可知共有12种结果,每种结果出现的可能性相同小明恰好展示“唱歌”和“演奏”才艺的结果有2种(1, 4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是21=.12621.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?解设这种商品的涨价元,根据题意,得(40-30+)(600-10)=10000即(10+)(60-)=1000 ()()x x++-=+=⨯=106070(205070,20501000)解得1=10,2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元答售价应定为50元.22.(本题12分)综合与实践问题情境如图1,矩形ABCD中,BD为对角线,AD k=,且>1.将△ABD以B为旋转中AB Array心,按顺时针方向旋转,得到△FBE(点D的对应点为点E,点A的对应点为点F),直线EF 交直线AD 于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF 相似,这个三角形是_______,它与△ABF 的相似比为______(用含的式子表示); 【答案】(1)△DBE;【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴,AB BFABF DBE BD BE=∠=∠ ∴△ABF ∽△DBE ∵ADk AB=∴△DBE 与△ABF相似比为BD AB = 数学思考(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时的值为______【解析】由旋转性质可得△ABD ≌△FBE∴BD=BE ,AD=FE ∵ 矩形ABCD ∴AD=BC ∴EF=BC ∵BD FE DE BC =(等面积转换) ∴BD=DE ∴等边三角形BDE∴tan 603AD AB==实践探究(3)如图3,当点E 恰好落在BC 边的延长线上时,求证CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点O由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBCA BOD= OG, OE=OBOD+OB=OG+OE,即BD=GE ∵BD=BE ∴BE= EG∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE (4)当=43时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题 请从A,B 两题中任选一题作答,我选择 A 当AB 的对应边FB 与AB 垂直时,直接写出DGAB的值. 【答案】1733或【解析】如图B 当AB 的对应边FB 在直线BD 上时,直接写出DG AB的值 【答案】51063或【解析】如图 情况1:4m3m3mG3mE425cos 5255236AD FD m ADB GD m BD GD GD mDG AB m ∠==∴=∴=∴==情况2:48cos 105101033AD FD mADB GD m BD GD GD DG m AB m ∠==∴=∴=∴==23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(≠0)的图象上(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明过点A 作AE ⊥轴于点E∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得=5∴ AB= BO∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC. ∴四边形OBAC 是菱形 (2)直接写出反比例函数ky x=(≠0)的表达式. 4mCG【答案】12y x=【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)∵C 恰好落在反比例函数k y x =的图象上∴4123k k =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题请从A,B 两题中任选一题作答,我选择___________ A 若点B 的对应点B’恰好落在反比例函数ky x= (≠0)的图象上,求m 的值,并直接写出此时S 的值 【解析】连接BB’△OAB 沿y 轴向下平移得到△OA’B', BB’∥y 轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将=-5代入12y x=.得y=-2.4 B'(-5,-2,4),BB’=2.4,即m=2.4 B 若S=12OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA’交轴于点H,设A'B',A’O′交OB 于点M,N 则AA ′=m,由平移可知∠MAN=∠BAO,AH ⊥OB,A’M∥AB, ∴△A’MN ∽△ABO212A MN ABO S A H A H S AH AH'''⎛⎫==∴= ⎪⎝⎭∵AH=4, ∴AH '=∴AA’=AH -A’H=4- 即m=4- (4)如图3,连接BC,交AO于点D,点P 是反比例函数ky x= (≠0)的图象上的一点,请从A,B 两题中任选一题作答,我选择____________A 在轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,m m) OP 为对角线:()016127002Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪⇒⎨⎨==+-∴=+-⎩⎪⎩∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t tm t y y y y m =+-∴=+--=--⎧=⎧⎪⇒⎨⎨=-=+-∴=+-=⎩⎪⎩∴P 2(6,-2)与Q 2(-7,0); PD 为对角线:(1)06127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪⇒⎨⎨=-=+-∴=+-⎩⎪⎩∴P 3(-6,-2)与Q 3(-7,0) B 在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由 【答案】存在,点Q 的坐标如下()()()12344,24,10,5,(2,4)Q Q Q Q ---【解析】先求P 点坐标,分别过O 、A 作直线交12y x=于 P 1,P 2,P 3,P 4设P 2P 4所在直线为y=,P 2(m ,n )∴n=m 由A(-2,4)易得tan ∠1=tan ∠2=12则12n k m ==直线12y x =与12y x =联立解得x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩∴((24,P P -22202Q A P O x x x x =+-=-+=,22404Q A P O y y y y =+-==∴()24Q同理4(2,4)Q -设P 1P 3所在直线为12y x =+b 将A(-2,4)代入可得b=5 152y x =+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩∴()()132,6,12,1P P --()112024Q P O A x x x x =+-=+--= 116042Q P O A y y y y =+-=+-= ∴()14,2Q同理()310,5Q --。
人教版九年级上册数学期末考试试题一、单选题1.下列方程是关于x 的一元二次方程的是()A .2120x x +-=B .226x x =C .230x +=D .220x y -=2.点P (2,﹣1)关于原点对称的点P′的坐标是()A .(﹣2,1)B .(﹣2,﹣1)C .(﹣1,2)D .(1,﹣2)3.下列方程没有实数根的是()A .x 2﹣x ﹣1=0B .x 2﹣6x+5=0C .x 2﹣=0D .x 2+2x+2=04.不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为()A .13B .12C .23D .15.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是()A .260cm πB .265cm πC .2120cm πD .2130cm π6.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣37.如图,将△AOB 绕着点O 顺时针旋转,得△COD ,若∠AOB=45°,∠AOD=110°,则旋转角度数是()A .45°B .55°C .65°D .110°8.目前某电影票房已突破57亿元.第一天票房约4.1亿元,三天后票房累计总收入达8.22亿元,如果第二天,第三天票房收入按相同的增长率增长,增长率设为x .则可列方程为A .4.1(1+x )=8.22B .4.1(1+x )2=8.22C .4.1+4.1(1+x )2=8.22D .4.1+4.1(1+x )+4.1(1+x )2=8.229.关于抛物线22y x x =-++,下列结论:①抛物线开口向下;②当x >1时,y 随x 的增大而减小;③抛物线的对称轴是直线12x =;④函数22y x x =-++的最大值为2.其中正确的结论个数为()A .1个B .2个C .3个D .4个10.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是()A .50°B .60°C .80°D .100°二、填空题11.如果一元二次方程x 2﹣9=0的两根分别是a ,b ,且a >b ,那么a 的值是___.12.如图,在⊙O 中,点A ,B ,C 是⊙O 上的点,∠AOB=40°,则∠C 的度数为_____.13.在平面直角坐标系中,点()3,1A -绕原点逆时针旋转90︒得到的点A '的坐标是______.14.边长为2的正六边形的面积为_____________.15.在一个不透明的盒子中,装有除颜色不同外其余均相同的6个小球,进行摸球实验,实验数据如下表,则可估计盒子中红球有_________个.摸球的次数50100150摸到红球的次数20334716.在平面直角坐标系xoy 中,矩形四个顶点坐标分别为(1,1),(1,2),(3,1),(3,2),若抛物2y ax =的图象与矩形的边有公共点,则实数a 的取值范围是____________.17.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.如果∠B =60°,AC =6,那么CD 的长为______.18.如图,在平面直角坐标系中,点A和B的坐标分别为(2,0),(0,-4),若将线段AB 绕点A顺时针旋转90°得到线段AC,则点C的坐标为______.三、解答题19.解方程:(1)x2+2x﹣24=0(2)2x2﹣4x﹣3=020.已知关于x的一元二次方程2++-=,求证:不论m为什么实数,这个方x mx m2210程总有两个不相等实数根.21.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣4,1),B(﹣2,2),C(﹣3,4)(每个方格的边长均为1个单位长度).(1)将△ABC平移,使点B移动到点B1,请画出△A1B1C1;(2)作出△ABC 关于O 点成中心对称的△A 2B 2C 2,并直接写出A 2,B 2,C 2的坐标;(3)△A 1B 1C 1与△A 2B 2C 2是否成中心对称?若是,请直接写出称中心的坐标;若不是,请说明理由.22.如图,已知抛物线()21y x m x m =+-+的对称轴为1x =,请你解答下列问题:(1)求m 的值;(2)求出抛物线与x 轴的交点;(3)当y 随x 的增大而减小时x 的取值范围是____________;(4)当0y <时,x 的取值范围是____________23.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是AB 延长线上一点,∠BCD =∠A ,CA =CD.(1)求证:CD 是⊙O 的切线;(2)若BD=2,求图中阴影部分面积.24.某劳动保护商店出售冬季劳动保护套装,进货价为30元/套.经市场销售发现:售价为40元/套时,每周可以售出100套,若每套涨价2元,就会少售出4套.供货厂家规定市场售价不得低于40元/套,且商店每周销售数量不得少于70套.(1)确定商店每周销售这种套装所得的利润w (元)与售价x (元/套)之间的函数关系式;(2)当售价x (元/套)定为多少时,商店每周销售这种套装所得的利润w (元)最大?最大利润是多少?25.如图,抛物线:y =ax 2+bx+c 与x 轴交于A (1,0)、B (-3,0)两点,与y 轴交于点C (0,-2).(1)求抛物线的解析式;(2)动点P 在抛物线:y =ax 2+bx+c 上移动,点Q 在直线l :x =﹣4上移动,在运动过程中,是否存在△PAQ 是以点P 为直角顶点的等腰直角三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.26.如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与⊙O 交于点C ,点D 是AP 的中点,连结CD .(1)求证:CD 是⊙O 的切线;(2)若2AB =,030P ∠=,求阴影部分的面积.27.如图,已知D 为等边△ABC 内一点,将△DBC 绕点C 旋转成△EAC .试判断△CDE 的形状,并证明你的结论.参考答案1.B2.A3.D4.A5.B6.A7.C8.D9.C10.D11.3【分析】用直接开平方法解方程即可.【详解】解:解方程290x -=,移项得:29x =,解得:13x =,23x =-因为a >b ,所以a =3,故答案为:3.12.20°【分析】根据圆周角定理即可直接求解.【详解】解:∵∠AOB =40°,∠C 12=∠AOB ,∴∠C 12=⨯40°=20°.故答案为:20°.13.(-1,-3)【分析】根据题意画出图形解决问题即可.【详解】解:如图,A′(-1,-3).故答案为(-1,-3).14.63【分析】根据题意画出图形,由正六边形的特点求出∠AOB 的度数及OG 的长,再由△OAB 的面积即可求解.【详解】解:∵此多边形为正六边形,∴∠AOB 3606︒==60°;∵OA =OB ,∴△OAB 是等边三角形,∴OA =AB =2,∴OG =32233=∴S △OAB 12=⨯AB×OG 12=⨯233⨯=∴S 六边形=6S △OAB =63⨯=3故答案为:315.2【分析】用球的总个数乘以摸到红球的总次数占摸球的总次数即可.【详解】解:估计盒子中的红球有:2033476215010050++⨯=++(个),故答案为:2.16.12 9a≤≤【分析】根据a值对抛物线开口的作用进行判断即可.【详解】解:根据题意得:抛物线过点(1,2)时开口最小,过点(3,1)时,开口最大.当抛物线过点(1,2)时,2=a×1,解得:a=2.当抛物线过点(3,1)时,1=9a,解得:19 a=,∴实数a的取值范围是12 9a≤≤.故答案为:12 9a≤≤17.6【分析】由AB是⊙O的直径,根据由垂径定理得出AD=AC,进而利用等边三角形的判定和性质求得答案.【详解】解:连接AD,∵⊙O的直径AB垂直于弦CD,垂足为E,∴AD=AC,∵∠B=60°,∴△ACD是等边三角形,∵AC=6,∴CD=AC=6.故答案为:6.18.(−2,2)【详解】解:如图,过点C作CH⊥x轴于H.∵A(2,0),B(0,4),∴OA=2,OB=4,∵∠AHC =∠AOB =∠BCA =90°,∴∠CAH +∠BAO =90°,∠ABO +∠BAO =90°,∴∠CAH =∠ABO ,在△AOB 和△CHA 中,AHC AOBCAH ABO AC AB∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△CHA (AAS ),∴CH =OA =2,AH =OB =4,∴OH =AH−OA =2,∴C (−2,2).故答案为:(−2,2).19.(1)x 1=4,x 2=-6(2)1x ,22102x =【分析】(1)解:∵x 2+2x ﹣24=0.∴(x ﹣4)(x+6)=0,则x ﹣4=0或x+6=0,解得:x 1=4,x 2=﹣6;(2)∵2x 2﹣4x ﹣3=0,∴2x 2﹣4x =3,则2322x x -=,∴25212x x -+=,∴25(1)2x -=,则12x -=±,∴122x =,222x =.20.见解析【详解】证明:△=()()()222242421488414b ac m m m m m -=-⨯⨯-=-+=-+,∵24(1)0m -≥,∴()24140m -+>,即△>0,∴不论m 为什么实数,这个方程总有两个不相等的实数根.21.(1)见解析(2)见解析,(4,-1),(2,-2),(3,-4);(3)是,对称中心T 的坐标为(3,12).【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)利用中心对称变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可;(3)根据中心对称变换的性质判断即可.(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求,点A 2,B 2,C 2的坐标分别为(4,-1),(2,-2),(3,-4);(3)△A 1B 1C 1与△A 2B 2C 2是成中心对称图形,如图,对称中心T 的坐标为(3,12).22.(1)-1(2)抛物线与x轴交点坐标为(10),(10)(3)1x <(4)11x <<【分析】(1)利用抛物线的对称轴方程求得m 的值即可;(2)令y=0,然后解方程x 2-2x-1=0得抛物线与x 轴的交点;(3)根据二次函数的性质求解;(4)结合函数图象,写出抛物线在x 轴下方所对应的自变量的范围即可.(1)解:∵抛物线的对称轴为直线112m x -=-=,∴1m =-.(2)由1m =-得抛物线解析式为221y x x =--,令0y =,得2210x x --=,解得:11x =+,21x =-.∴抛物线与x 轴交点坐标为(1+0),(10).(3)如图所示,当y 随x 的增大而减小时x 的取值范围是x <1,故答案是:x <1.(4)如图所示,∵抛物线与x 轴交点坐标为(10),,0),抛物线开口向上,∴当y<0时,x 的取值范围是抛物线与x 轴交点坐标为(10),0).∴当0y <时,x 的取值范围是:故答案是:.23.(1)见解析(2)23S π=-阴影【分析】(1)根据切线的判断方法,利用等腰三角形的性质以及圆周角定理求出∠OCD =90°即可;(2)求出三角形OCD 的面积和扇形BOC 的面积即可.(1)证明:连接OC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵AO =OC ,∴∠A =∠ACO ,又∵∠BCD =∠A ,∴∠OCD =∠OCB+∠BCD =∠OCB+∠ACO =∠ACB =90°,∴OC ⊥CD ,∵OC 是⊙O 半径,∴CD 是⊙O 的切线;(2)连接OC ,设∠D =x ,∵CA =CD ,∴∠A =∠D =x ,∵∠BCD =∠A ,∴∠BCD =∠D =x ,∴CB =BD ,∠OCB =∠BCD+∠D =x+x =2x .∵OC =OB ,∴∠OBC =∠OCB =2x .由(1)可得CD 是⊙O 的切线,OC 是⊙O 半径,∴∠OCD =90°,∵∠OCD =∠OBC+∠BCD =2x+x =3x ,∴3x =90°,即x =30°∴∠OBC =∠OCB =2x =60°,∴∠COB =180°﹣∠OCB ﹣∠OBC =180°﹣60°﹣60°=60°,∴∠COB =∠OBC ,∴OB =BC =BD =2.∴OC =OB =2,OD =OB+BD =2+2=4.在Rt △OCD 中,CD 2=OD 2﹣OC 2,∴CD ==,∴2260223603603COB n R S πππ⨯===扇形,11222OCD S OC CD =⋅=⨯⨯= 23OCD OCB S S S π=-=- 阴影扇形.24.(1)()222405400,4055w x x x =-+-≤≤(2)当售价x (元/套)定为55元/套时,商店每周销售这种套装所得的利润w (元)最大,最大利润是1750元【分析】(1)先求出售价为x 元/套时的销售量,再根据利润=(售价-进价)⨯销售量即可得,解不等式组求出x 的取值范围,;(2)先根据供货厂家规定市场售价不得低于40元/套,且商店每周的销售数量不得少于70套建立不等式组,再利用二次函数的性质求解即可得.(1)解:由题意得:当售价为x 元/套时,销售量为4100(40)18022x x --=-套,则2(30)(1802)22405400w x x x x =--=-+-,即w 与x 之间的函数关系式为222405400w x x =-+-.由题意得:40180270x x ≥⎧⎨-≥⎩,解得4055x ≤≤,即ω与x 之间的函数关系式为()222405400,4055w x x x =-+-≤≤(2)解:因为22224054002(60)1800w x x x =-+-=--+,所以在4055x ≤≤内,w 随x 的增大而增大,所以当55x =时,w 取得最大值,最大值为22(5560)18001750-⨯-+=,答:当售价x (元/套)定为55元/套时,商店每周销售这种套装所得的利润w (元)最大,最大利润是1750元.25.(1)224233y x x =+-(2)符合条件的点P ),,(-2,-2),(32-,52-)【分析】(1)先由点C 得到c 的值,然后代入点A 和点B 求得a 和b 的值,即可得到抛物线的解析式;(2)分情况讨论,①点P 在x 轴下方抛物线上时,过点P 作MN ∥x 轴,交直线l 于点M ,过点A 作AN ⊥MN 于点N ,则由△APQ 是等腰直角三角形证明△ANP ≌△PMQ ,进而利用全等三角形的性质得到点P 的坐标;②当点P 在x 轴上方且在对称轴右侧抛物线上时,过点P 作M'N'⊥x 轴于点N',过点Q 作QM'⊥M'N'于点M',然后证明△QM'P ≌△PN'A ,进而由全等三角形的性质得到点P 的坐标;③当点P 在x 轴上方且在对称轴左侧抛物线上时,过点P 作MN ⊥l 于点M ,过点A 作AN ⊥MN 于点N ,然后证明△QMP ≌△PNA ,进而由全等三角形的性质得到点P 的坐标.(1)∵抛物线y =ax 2+bx+c 过点C (0,-2)∴当x =0,2y =-时,c =-2.又∵抛物线y =ax 2+bx+c 过点A (1,0),B (-3,0)∴209320a b a b +-=⎧⎨--=⎩,∴2343a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为:224233y x x =+-;(2)设P (m ,224233m m +-),Q (-4,n ),①当P 点在x 轴上方移动时,过P 点作PM 垂直于直线l 于点M ,过A 点作AN 垂直于MP 的延长线于点N ,如图1所示:∵A (1,0),∵△PAQ 是以点P 为直角顶点的等腰直角三角形,∴∠APQ =90°,AP =PQ ,则∠PMQ =∠ANP =90°,∠MPQ =∠NAP ,在△PQM 和△APN 中,PMQ ANP MPQ NAP PQ AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△APN ,∴PM =AN ,∵PM =AN =224233m m +-,根据A 点坐标可得PN =1-m ,且PM+PN =1-(-4)=5,∴224233m m +-+1-m =5,解得:1m (舍),2m∴P 154).当P 点在x 轴上方移动时,过P 点作PM 垂直于直线l 于点M ,过A 点作AN 垂直于MP 的延长线于点N ,如图2所示:同理可得△PQM ≌△APN ,∵PM =AN =224233m m +-,根据A 点坐标可得PN =m -1,∴224233m m +-=5+m -1,解得:1m =-14,2m =14-(舍),∴P ,154).②当P 点在x 轴下方移动时,如图3,过P 点作PM 垂直于直线l 于点M ,过A 点作AN 垂直于MP 的延长线于点N ,同理可得△PQM ≌△APN ,∴PM =AN ,∴PM =()44m m --=+,AN =-(224233m m +-),则4+m =-(224233m m +-),解得12m =-,232m =-.∴P (-2,-2)或(32-,52-).综上可得,符合条件的点P 的坐标是(-11454,151454),(11454-,151454),(-2,-2),(32-,52-).26.(1)见解析;(2)=33S π阴影.【分析】(1)连结OC ,AC ,由切线性质知Rt △ACP 中DC=DA ,即∠DAC=∠DCA ,再结合∠OAC=∠OCA 知∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=90°,据此即可得证;(2)先求出OA=1,BP=2AB=4,AD =12223BP AB -=再根据S 阴影=S 四边形OADC -S 扇形AOC即可得.【详解】(1)连结,OC AC ,如图所示:∵AB 是⊙O 的直径,AP 是切线,∴090BAP ∠=,090ACP ∠=,∵点D 是AP 的中点,∴12DC AP DA ==,∴DAC DCA ∠=∠,又∵OA OC =,∴OAC OCA ∠=∠,∴090OCD OCA DCA OAC DAC ∠=∠+∠=∠+∠=,即OC CD ⊥,∴CD 是⊙O 的切线;(2)∵在Rt ABP ∆中,030P ∠=,∴060B ∠=,∴0120AOC ∠=,∴1OA =,24BP AB ==,AD ==∴21201=13603OADC AOC S S S ππ⨯⨯-=--阴影四边形扇形.27.△CDE 为等边三角形,证明见解析【分析】根据旋转的性质可得∠ACE =∠BCD ,CD =CE ,从而得到∠ACB =∠DCE =60°,,即可求解.【详解】解:△CDE 为等边三角形,证明如下∶∵△EAC 是由△DBC 绕点C 旋转而成,∴∠ACE =∠BCD ,CD =CE ,∴∠DCE =∠BCA ,∵△ABC 为等边三角形,∴∠ACB =∠DCE =60°,∵CE =CD ,∴∠CED =∠CDE =60°,∴△CDE 为等边三角形.。
玄武区2016届九年级(上)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x 2=1的解是 ( ) A .x =1B .x =-1C .x 1=1,x 2=-1D .x =02.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系 是 ( ) A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定3.9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .中位数B .极差C .平均数D .方差4.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解的范围是 ( )A .-0.01<x <0.02B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.205.若点A (-1,a ),B (2,b ),C (3,c )在抛物线y =x 2上,则下列结 论正确的是 ( ) A .a <c <b B . b <a <cC .c <b <aD . a <b <c6.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0, 9),D (0,-1),则线段AB 的长度为( )A .3B .4C .6D .8二、填空题(本大题共10小题,每小题2分,共20分)7.若b a =3,则b +a a= .8.一组数据:2,3,-1,5的极差为 .9.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1•x 2的值是 .10.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程 .11.在平面直角坐标系中,将抛物线y =2x 2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为 .12.已知圆锥的底面半径为6cm ,母线长为8cm ,它的侧面积为 cm 2. 13.如图,根据所给信息,可知BCB ′C ′的值为 .B(第6题)14.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则当x =3时,y = .15.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .若⊙O 的半径为2,则GE +FH 的最大值为 .16.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14D C .若AB=16,BC =20,则图中阴影部分的面积是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤) 17.(10分)(1)解方程:(x +1)2=9; (2)解方程:x 2-4x +2=0.18.(6分)已知关于x 的一元二次方程(a +1)x 2-x +a 2-2a -2=0有一根是1,求a 的值.BN CQP (第16题)G(第15题)(第13题)O19.(8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩(1)完成表中填空① ;② ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为43,你认为推荐谁参加比赛更合适,请说明理由.20.(7分)一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.21.(8分)如图,在半径为2的⊙O 中,弦AB 长为2.(1)求点O 到AB 的距离.(2)若点C 为⊙O 上一点(不与点A ,B 重合),求∠BCA 的度数;A (第21题)22.(8分)已知二次函数y =x 2-2x -3.(1)该二次函数图象的对称轴为 ; (2)判断该函数与x 轴交点的个数,并说明理由;(3)下列说法正确的是 (填写所有正确说法的序号)①顶点坐标为(1,-4); ②当y >0时,-1<x <3;③在同一平面直角坐标系内,该函数图象与函数y =-x 2+2x +3的图象关于x 轴对称.23.(8分)如图,在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且AB AE =BC ED =ACAD.(1)求证:∠BAE =∠CAD ; (2)求证:△ABE ∽△AC D .ABCDF E(第23题)24.(7分)课本1.4有这样一道例题:据此,一位同学提出问题:“用这根长22 cm的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.(8分)如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.(第25题)26.(9分)已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于A (-1,b )和B ,点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC ⊥x 轴,与二次函数y =ax (x -2)的图象交于点C . (1)求a 、b 的值(2)求线段PC 长的最大值;(3)若△PAC 为直角三角形,请直接写出点P 的坐标.27.(9分)如图,折叠边长为a 的正方形ABCD ,使点C 落在边AB 上的点M 处(不与点A ,B 重合),点D 落在点 N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G . 证明:(1)△AGM ∽△BME ;(2)若M 为AB 中点,则AM 3=AG 4=MG5;(3)△AGM 的周长为2a .(第26题)ABCDMNE FG(第27题)2015-2016学年度第一学期期末学情调研 九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 48. 69. 110.100(1-x )2=8111.y =2(x -3)2+112.48π 13.12 14.13 15.4- 2 16.92三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:x +1=±3,∴x 1=2,x 2=-4.………………………………………………………5分(2)方法一:解:a =1,b =-4,c =2, b 2-4ac =8>0,x =4±2 22=2± 2 ,………………………………………… 3分∴x 1=2+ 2 ,x 2=2- 2 .…………………………………… 5分方法二:解:x 2-4x =-2, x 2-4x +4=-2+4,(x -2)2=2,…………………………………………………… 3分 x -2=± 2 ,∴x 1=2+ 2 ,x 2=2- 2 .……………………………… 5分 18.(本题6分)解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0,解得:a 1=-1,a 2=2.………………………………………………… 5分 ∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………… 6分19.(本题8分)解:(1)9;9.……………………………………………………………… 2分(2)S 甲2= 23.……………………………………………………………… 4分(3)∵X X 甲乙, S 甲2<S 乙2,∴推荐甲参加比赛合适.……………………………………………… 8分 20.(本题7分)解:(1)列表如下:…………………………………………………………………………… 4分 (2)在这种情况下,共包含9种结果,它们是等可能的.……………… 5分 所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A )的结果只有一种,所以P (A )= 19. …………………………………………………… 7分21.(本题8分)解:(1)过点O 作OD ⊥AB 于点D ,连接AO ,BO . ∵OD ⊥AB 且过圆心,AB =2,∴AD =12AB =1,∠ADO =90°.……………………………………… 2分在Rt △ADO 中,∠ADO =90°,AO =2,AD =1,∴OD =AO 2-AD 2= 3 .即点O 到AB 的距离为 3 .………… 4分 (2)∵AO =BO =2,AB =2,∴△ABO 是等边三角形,∴∠AOB =60°. ………………………… 6分若点C 在优弧⌒ACB 上,则∠BCA =30°;若点C 在劣弧 ⌒AB上,则∠BCA = 12(360°-∠AOB )=150°.…… 8分 22.(本题8分)解:(1)直线x =1.……………………………………………… 2分(2)令y =0,得:x 2-2x -3=0.∵b 2-4ac =16>0,∴方程有两个不相等的实数根,∴该函数与x 轴有两个交点.……………………………………… 6分 (3)①③.……………………………………………………………… 8分 23.(本题8分)证明:(1)在△ABC 与△AED 中,∵AB AE =BC ED =ACAD,∴△ABC ∽△AE D .…………………………………………………… 2分 ∴∠BAC =∠EAD , ∴∠BAC -∠EAF =∠EAD -∠EAF ,即∠BAE =∠CA D .…………………………………………………… 4分(2)∵AB AE =AC AD ,∴AB AC =AEAD. …………………………………………… 6分在△ABE 与△ACD 中,∵∠BAE =∠CAD ,AB AC =AEAD,∴ △ABE ∽△AC D . ………………………………………………… 8分24.(本题7分)解:能围成.设当矩形的一边长为x cm 时,面积为y cm 2.由题意得:y =x ·(222-x )…………………………………………………… 3分=-x 2+11x=-(x -112)2+1214…………………………………………… 5分 ∵(x -112)2≥0,∴-(x -112)2+1214≤1214.∴当x =112时,y 有最大值,y max =1214,此时222-x =112.答:当矩形的各边长均为112 cm 时,围成的面积最大,最大面积是1214cm 2.… 7分25.(本题8分)解:(1)AC 与⊙O 相切.本题答案不惟一,下列解法供参考. 证法一:∵BE 平分∠ABD ,∴∠OBE =∠DBO . ∵OE =OB ,∴∠OBE =∠OEB ,∴∠OBE =∠DBO ,∴OE ∥B D .………………………………… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥A C .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 证法二:∵BE 平分∠ABD ,∴∠ABD =2∠ABE .又∵∠ADE =2∠ABE ,∴∠ABD =∠ADE .∴OE ∥B D .……… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥A C .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 (2)设⊙O 半径为r ,则AO =10-r .由(1)知,OE ∥BD ,∴△AOE ∽△AB D .………………………… 6分∴AO AB =OE BD ,即10-r 10=r6,……………………………………………… 7分∴r =154.∴⊙O 半径是154.……………………………………… 8分26.(本题9分)解:(1)∵A (-1,b )在直线y =x +4上, ∴b =-1+4=3,∴A (-1,3).又∵A (-1,3)在抛物线y =ax (x -2)上,∴3=-a ·(-1-2),解得:a =1.…………………………… 2分 (2)设P (m ,m +4),则C (m ,m 2-2m ). ∴PC =(m +4)-(m 2-2m )=-m 2+3m +4=-(m -32)2+254………………………………………… 5分∵(m -32)2≥0,∴-(m -32)2+254≤254.∴当m =32时,PC 有最大值,最大值为254.……………………… 7分(3)P 1(2,6),P 2(3,7).……………………………………… 9分27.(本题9分)证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =90°, ∴∠AMG +∠AGM =90°.∵EF 为折痕,∴∠GME =∠C =90°, ∴∠AMG +∠BME =90°,∴∠AGM =∠BME . ………………………………………………… 2分 在△AGM 与△BME 中, ∵∠A =∠B ,∠AGM =∠BME ,∴△AGM ∽△BME . ………………………………………………… 3分 (2)∵M 为AB 中点,∴BM =AM =a2.设BE =x ,则ME =CE =a -x . 在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即(a2)2+x 2=(a -x )2,∴x =38a ,∴BE =38a ,ME =58a .由(1)知,△AGM ∽△BME , ∴AG BM =GM ME =AM BE =43.∴AG =43BM =23a ,GM =43ME =56a ,∴AM 3=AG 4=MG5.…………………………………………………… 6分 (3)设BM =x ,则AM =a -x ,ME =CE =a -BE . 在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即x 2+BE 2=(a -BE )2,解得:BE =a2-x 22a.由(1)知,△AGM ∽△BME , ∴C △AGM C △BME =AM BE =2aa +x. ∵C △BME =BM +BE +ME =BM +BE +CE =BM +BC =a +x , ∴C △AGM =C △BME ·AM BE=(a +x )·2aa +x=2a .……………………… 9分南京市江宁区2015-2016学年第一学期期末考试九年级数学(满分:120分 考试时间:120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.方程x (x+2)=0的解是( ▲ )2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是 ( ▲ )3.如图,已知AB //CD //EF ,直线AF 与直线BE 相交于点O ,下列结论错误的是 ( ▲ )4.已知A (-1,y 1 ),B (2,y 2 )是抛物线y=-(x +2)2+3上的两点,则y 1,y 2的大小关系为 ( ▲ )5.如图,小明为检验M 、N 、P 、Q 四点是否共圆,用尺规分别作了MN 、MQ 的垂直平分线交于点O ,则M 、N 、P 、Q 四点中,不一定...在以O 为圆心,OM 为半径的圆上的点是 ( ▲ )6.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,O 是△ABC 的内心,以O 为圆心,r 为半径的圆与线段AB 有交点,则r 的取值范围是 ( ▲ )二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.一组数据-2,-1,0,3,5的极差是 ▲ .8.某车间生产的零件不合格的概率为11 000.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说, ▲ 天会查出1个次品.9.抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是 ▲ .A .-2B .0,-2C .0,2D .无实数根A .2:3B .2:3C .2:5D .4:9A .AD DF =BCCEB .OA OC =OB ODC .CD EF =OC OED .OA OF =OB OEA .y 1>y 2B .y 1<y 2C .y 1≥y 2D .y 1≤y 2A .点MB .点NC .点PD .点QA .r ≥1B .1≤r ≤5C .1≤r ≤10D .1≤r ≤4(第3题)5题)(第6题)10.某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图统计表.根据表中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数为 ▲ 人.11.如图,PA 、PB 分别切⊙O 于点A 、B ,∠P =70°,则∠C 的度数为 ▲ °. 12.如图,在正八边形ABCDEFGH 中,AC 、GC 是两条对角线,则∠ACG = ▲ °.13.沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长为 ▲ cm .14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 ▲ .15.如图,四边形ABCD 内接于⊙O ,若⊙O 的半径为6,∠A =130°,则扇形OBAD 的面积为 ▲ . 16.某数学兴趣小组研究二次函数y =mx 2-2mx +1(m ≠0)的图像时发现:无论m 如何变化,该图像总经过两个定点(0,1)和( ▲ , ▲ ).三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)解方程:3x (x -2)=x -2 (2)x 2-4x -1=018.(6分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE 长1.2m ,测得AB=1.6m , BC=8.4m ,楼高CD 是多少?G FE D C B A H (第 12题)(第11题)(第15题)B19.(6分)赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦)长为37.4 m ,拱高(弧的中点到弦的距离)为7.2 m ,请求出赵州桥的主桥拱半径(结果保留小数点后一位).20.(8分)一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:(1)(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.21.(8分)一个不透明的袋子中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由转动的转盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小亮和小丽想通过游戏来决定谁代表学校参加歌咏比赛.游戏规则为:一人从袋子中摸出一个小球,另一个人转动转盘,如果从袋中所摸球上的数字与转盘上转出数字之和小于4,那么小丽去,否则小亮去.(1)请用适当的方法求小丽参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.(8分)已知关于x的一元二次方程x2-x+m=0有两个不相等的实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1、x2,且2x1·x2=m2-3,求实数m的值.23.(7分)用40cm长的铁丝围成一个扇形,求此扇形面积的最大值.24.(8分)已知二次函数y=-x2+(m-1)x+m.(1)证明:不论m取何值,该函数图像与x轴总有公共点;(2)若该函数的图像与y轴交点于(0,3),求出顶点坐标并画出该函数;(3)在(2)的条件下,观察图像,不等式-x2+(m-1)x+m>3的解集是▲ .25.(8分)如图,要设计一本画册的封面,封面长40cm ,宽30cm ,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的15,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:5≈2.236).26.(10分)如图①,A 、B 、C 、D 四点共圆,过点C 的切线CE ∥BD ,与AB 的延长线交于点E . (1)求证:∠BAC =∠CAD ;(2)如图②,若AB 为⊙O 的直径,AD =6,AB =10,求CE 的长; (3)在(2)的条件下,连接BC ,求CBAC的值.图①图②27.(11分)如图①,已知抛物线C 1:()412-+=x a y 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1. (1)求点C的坐标及 a 的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P作y轴的平行线,交CE 于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.图②九年级数学评分细则一、选择题(本大题共6二、填空题(共10小题,每小题2分,共20分)7.7; 8.100; 9.14; 10.520; 11.55;12.45; 13.6; 14.8100(1-x )2=7800; 15.10π; 16.(2,1)三、解答题(本大题共11小题,共88分)17.(8分)(1)解:3x (x -2)-(x -2)=0……………………………………2分(3x -1)(x -2)=0……………………………………3分 ∴x 1=13,x 2=2………………………………………….…4分(2)解一:(x -2)2=5…………………………………………………………2分x =±5+2 ……………………………………………………….…3分 ∴x 1=2+5,x 2=2-5………………………………………….…4分 解二:∵a =1,b =-4,c =-1∴b 2-4ac =20>0(不写不扣分)……………………………………1分 ∴x =4± 202……………………………………………………3分∴x =2± 5∴x 1=2+5,x 2=2-5…………………………………………………………4分18.(6分)解法一:相似;∵EB ⊥AB ,DC ⊥AB ,∴EB ∥DC ,∴△AEB ∽△ADC ,-------------------------------------------------------2分 ∴EB DC =AB AC ,即1.2DC = 1.61.6+8.4,----------------------------------------------4分 ∴DC =7.5m .-------------------------------------------------------------------6分解法二:三角函数;∵EB ⊥AB ,DC ⊥AB ,∴tan ∠A = EB AB = DCAC,-------------------------------------------------------3分 即1.21.6=DC 1.6+8.4,------------------------------------------------------4分 ∴DC =7.5m .---------------------------------------------6分19.(6分)设半径为r ,圆心为O ,作OC ⊥AB ,垂足为点D ,交弧AB 于点C ,--------1分∴ AD =DB =18.7,CD 是拱高.在Rt △AOD 中,由勾股定理,得OA 2=OD 2+ AD 2,即r 2=(r -7.2)2+18.72,-----------------4解得r ≈27.9 m .因此,赵州桥的主桥拱半径约为27.9 m .20.(8分)解:(1)甲组:中位数7; 乙组:平均数7;分)(2)(答案不唯一,写出两条即可)O①因为乙组学生的平均分高于甲组学生的平均分,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.----------------------------------------------------------------------------------8分(每条2分) 21.(8分)解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,―――――――――2分 ∴P (和小于4)==,∴小丽参加比赛的概率为;―――――――――――4分(2)不公平.--------------------------------------------------------------------------------------5分∵P (小颖)=,P (小亮)=.∴P (和小于4)≠P (和大于等于4),--------------------------------------------------------6分 ∴游戏不公平;可改为:若两个数字之和小于5,则小丽去参赛;否则,小亮去参赛.――――――8分 (答案不唯一)22.(8分)解:(1)∵方程有两个不相等的实数根,∴b 2-4ac =1-4m>0,………………2分 即m<14;………………3分(2)由根与系数的关系可知:x 1·x 2=m ,………………4分∴2m =m 2-1, 整理得:m 2-2m -1=0,…………5分 解得:m =1±2.…………7分 ∵m<14∴ 所求m 的值为1- 2 ……………………………….8分23.(7分)解一:设半径为r ,弧长为l ,则40=2r + l ,---------------------------------1分∴l =40-2r ,------------------------------------------------------------------2分∴S 扇形=12lr =12r (40-2r ) -----------------------------------------------4分=-r 2+20r =-(r -10)2+100 -------------------------------------6分∴当半径为10时,扇形面积最大,最大值为100cm 2.-----------7分解二:设半径为r ,圆心角为n °,则40=2r +n πr180,---------------------------2分∴n =(40r -2)180π,------------------------------------------------------------3分∴S 扇形=n πr 2360 = 12 r 2(40r-2) -----------------------------------------------4分 =-r 2+20r =-(r -10)2+100 ---------------------------------------6分∴当半径为10时,扇形面积最大,最大值为100cm 2.---------------7分 24.(8分)解:(暂略)---------------8分 25.(8分)解一:设上、下边衬宽均为4xcm ,左、右边衬宽均为3xcm , ----------1分则(40-8x )(30-6x )=45×40×30----------------------------------------------------------4分整理,得x 2﹣10x +5=0,解之得x =5±25 ----------------------------------------6分 ∴x 1≈0.53,x 2≈9.47(舍去),--------------------------------------------------------8分答:上、下边衬宽均为2.1cm ,左、右边衬宽均为1.6cm .解二:设中央矩形的长为4xcm ,宽为3xcm , ----------------------------------------1分则4x ×3x =45×40×30-----------------------------------------------------------------------4分解得x 1=45,x 2=-45(舍去)---------------------------------------------------6分∴上、下边衬宽为20-85≈2.1,左、右边衬宽均为15-65≈1.6,--------8分 答:上、下边衬宽均为2.1cm ,左、右边衬宽均为1.6cm . 25.(10分)(1)解一:连接OC ,∵CE 为⊙O 的切线,∴OC ⊥CE .……………………………………1分 ∵BD ∥CE ,∴OC ⊥B D .………………………2分 ∴OC 平分弧B D. ………………………………3分 ∴∠BAC =∠CA D. ………………………………4分 (2)连接OC ,∵AB 为直径,∴∠ADB =90°. ∴∠ADB =∠OCE =90°∵AD =6,AB =10,∴BD=8,OC=5, ∵BD ∥CE ,∴∠ABD =∠E .∴△ABD ∽△OEC ………………………………6分∴AD OC =BD CE ,即 65= 8CE完美WORD 格式专业整理 知识分享 ∴CE = 203. ……………………………………7分 (3)∵AB 为直径,∴∠ACB =90°,∵∠ACO+∠OCB =∠OCB+∠BCE =90°,∴∠CAO=∠ACO =∠BCE∵∠E =∠E °,∴△CBE ∽△ACE ,即CB AC = CE AE…………………8分 ∵△ABD ∽△OEC ,∴ AD OC =AB OE ,∴OE = 253…………………9分 ∴CB AC = 203253+5 = 12. …………………………….…10分 27.(11分)解:(1)顶点C 为(-1,-4) ………………………………………1分∵点B (1,0)在抛物线C 1上,∴()41102-+=a ,解得,a =1 ………2分 (2)①∵C 2与C 1关于x 轴对称,∴抛物线C 2的表达式为()412++-=x y ……3分 抛物线C 3由C 2平移得到,∴抛物线C 3为()564322-+-=+--=x x x y ……4分 ∴E (5,0)设直线CE 的解析式为:y =kx +b ,则⎩⎨⎧-4=-k +b 0=5 k +b ,解得⎩⎨⎧k = 23 b =﹣103,…………………………………………………5分 ∴直线BC 的解析式为y =23x ﹣103, …………………………………………………6分 设P (x ,﹣x 2+6x ﹣5),则F (x ,23x ﹣103), ∴PF =(﹣x 2+6x ﹣5∴当x =83时,PF ②若PE =EF ,∵ PF ∴﹣x 2+6x ﹣5=-23x 解得x 1=53,x 2=5(舍去) ∴P (53,209).………………………………………………………………………11分。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.我们定义一种新函数:形如2y ax bx c ++=(a ≠0,b 2﹣4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2﹣2x ﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当﹣1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =﹣1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4,A .4B .3C .2D .1 【答案】A 【分析】由(-1,0),(3,0)和(0,3)坐标都满足函数223y x x =--,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线1x = ,②也是正确的;根据函数的图象和性质,发现当11x -≤≤或3x ≥ 时,函数值y 随x 值的增大而增大,因此③也是正确的;函数图象的最低点就是与x 轴的两个交点,根据0y =,求出相应的的值为1x =-或3x =,因此④也是正确的;从图象上看,存在函数值大于当1x =时的223=4y x x =--,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数223y x x =--,∴①是正确的; ②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线1x =,因此②也是正确的;③根据函数的图象和性质,发现当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x 轴的两个交点,根据y =0,求出相应的x 的值为1x =-或3x =,因此④也是正确的;⑤从图象上看,存在函数值要大于当1x =时的223=4y x x =--,因此⑤是不正确的; 故选A【点睛】 理解“鹊桥”函数2y ax bx c ++=的意义,掌握“鹊桥”函数与2y ax bx c ++=与二次函数2y ax bx c ++=之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数2y ax bx c ++=与x 轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.2.如图,四边形ABCD 中,∠A=90°,AB=8,AD=6,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .8B .6C .4D .5【答案】D 【分析】根据三角形中位线定理可知EF=12DN ,求出DN 的最大值即可. 【详解】解:如图,连结DN ,∵DE=EM ,FN=FM ,∴EF=12DN , 当点N 与点B 重合时,DN 的值最大即EF 最大,在Rt △ABD 中,∵∠A=90°,AD=6,AB=8,∴22228610BD AD AB +=+=,∴EF 的最大值=12BD=1.故选:D.【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.3.已知二次函数y=mx2+x+m(m-2)的图像经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定【答案】C【分析】根据题意将(0,0)代入解析式,得出关于m的方程,解之得出m的值,由二次函数的定义进行分析可得答案.【详解】解:∵二次函数y=mx1+x+m(m-1)的图象经过原点,∴将(0,0)代入解析式,得:m(m-1)=0,解得:m=0或m=1,又∵二次函数的二次项系数m≠0,∴m=1.故选:C.【点睛】本题考查二次函数图象上点的坐标特征以及二次函数的定义,熟练掌握二次函数图象上的点满足函数解析式及二次函数的定义是解题的关键.4.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.【答案】C【分析】根据相似多边形的性质逐一进行判断即可得答案.【详解】由题意得,A.菱形四条边均相等,所以对应边成比例,对应边平行,所以角也相等,所以两个菱形相似,B.等边三角形对应角相等,对应边成比例,所以两个等边三角形相似;C.矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形D.正方形四条边均相等,所以对应边成比例,四个角也相等,所以两个正方形相似;故选C.【点睛】本题考查相似多边形的判定,其对应角相等,对应边成比例.两个条件缺一不可.5.下列语句中正确的是()A .长度相等的两条弧是等弧B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .经过圆心的每一条直线都是圆的对称轴【答案】D【解析】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A 、在同圆或等圆中,长度相等的两条弧是等弧;B 、平分弦(不是直径)的直径垂直于弦;C 、在同圆或等圆中,相等的圆心角所对的弧相等;D 、经过圆心的每一条直线都是圆的对称轴;故选D . 点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键. 6.二次函数2y ax bx =+的图象如图所示,若关于x 的一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A .-7B .7C .-10D .10【答案】B 【分析】把一元二次方程根的个数问题,转化为二次函数2y ax bx =+的图象与直线y=-m 的图象的交点问题,然后结合图形即可解答.【详解】解:将20ax bx m ++=变形可得:2ax bx m +=-∵关于x 的一元二次方程20ax bx m ++=有实数根,∴二次函数2y ax bx =+的图象与直线y=-m 的图象有交点如下图所示,易得当-m ≥-7,二次函数2y ax bx =+的图象与直线y=-m 的图象有交点解得:m ≤7故m 的最大值为7故选B .【点睛】此题考查的是二次函数和一元二次方程的关系,掌握将一元二次方程根的情况转化为二次函数图象与直线图象之间的交点问题和数形结合的数学思想是解决此题的关键.7.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-【答案】C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.8.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B 作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin ∠;⑤当BP=9时,B E∙EF=108. A .①②③④B .①②④⑤C .①②③⑤D .①②③④⑤【答案】C 【分析】易证BE ∥PG 可得∠FPG=∠PFB ,再由折叠的性质得∠FPB=∠FPG ,所以∠FPB=∠PFB ,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD ,用SAS 即可判定全等,从而判断②;证明△ABE ∽△DEC ,得出比例式建立方程求出DE ,从而判断③;证明△ECF ∽△GCP ,进而求出PC ,即可得到sin ∠PCB 的值,从而判断④;证明△GEF ∽△EAB ,利用对应边成比例可得出结论,从而判断⑤.【详解】①∵四边形ABCD 为矩形,顶点B 的对应点是G ,∴∠G=90°,即PG ⊥CG ,∵BE ⊥CG∴BE ∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG ,∴∠FPB=∠PFB∴BP=BF ,故①正确;②∵四边形ABCD 为矩形,∴∠A=∠D=90°,AB=DC又∵点E 是AD 的中点,∴AE=DE在△AEB 和△DEC 中,AB=DC A=D AE=DE ⎧⎪∠∠⎨⎪⎩∴△AEB ≌△DEC (SAS ),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE ,∵∠A=∠D=90°,∴△ABE ∽△DEC , ∴AB DE =AE CD ,即1225AE =AE 12-, 解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,2222BE=AB AE=129=15++在Rt△CDE中,2222CE=CD DE=1216=20++由①可知BE∥PG,∴△ECF∽△GCP∴EF CE= PG CG设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴1520=25-aa,解得253a=,在Rt△PBC中,2222252510 PC=BP BC=25=3⎛⎫++⎪⎝⎭∴sin∠PCB=BP10=PC,故④错误.⑤如图,连接FG,∵∠GEF=∠PGC=90°,∴∠GEF+∠PGC=180°,∴BF∥PG∵BF=PG,∴四边形BPGF是菱形,∴BP∥GF,GF=BP=9∴∠GFE=∠ABE,∴△GEF∽△EAB,∴EF AB= GF BE∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【点睛】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.9.函数y=mx2+2x+1的图像与x轴只有1个公共点,则常数m的值是()A.1 B.2 C.0,1 D.1,2【答案】C【解析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.10.成语“水中捞月”所描述的事件是().A.必然事件B.随机事件C.不可能事件D.无法确定【答案】C【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】水中捞月是不可能事件.故选C.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,下列式子正确的是()A.sinA=BDBCB.cosA=ACADC.tanA=CDABD.cosB=ACAB【答案】A【分析】利用同角的余角相等可得∠A=∠BCD,再根据锐角三角函数的定义可得答案.【详解】解:∵∠ACB=90°,CD⊥AB,∴∠A+∠DCA =90°,∠DCA+∠BCD =90°,∴∠A =∠BCD ,∴sinA =sin ∠BCD =BD BC ; cosA =cos ∠BCD= AC AB; tanA =CD AD; cosB =BC AB ; 所以B 、C 、D 均错误故选:A .【点睛】本题考查的是锐角三角函数定义,理解熟记锐角三角函数定义是解题关键,需要注意的是锐角三角函数是在直角三角形的条件下定义的.12.在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )A .B .C .D .【答案】A【详解】根据二次函数的解析式可得:二次函数图像经过坐标原点,则排除B 和C ,A 选项中一次函数a>0,b<0,二次函数a>0,b<0,符合题意.故选A.【点睛】本题考查了(1)、一次函数的图像;(2)、二次函数的图像 二、填空题(本题包括8个小题)13.已知反比例函数()0k y k x=>的图象与经过原点的直线L 相交于点A B 、两点,若点A 的坐标为()1,2,则点B 的坐标为__________.【答案】(﹣1,﹣2)【分析】已知反比例函数()0k y k x=>的图像和经过原点的一次函数的图像都经过点(1,2),利用待定系数法先求出这两个函数的解析式,然后将两个函数的关系式联立求解即可.【详解】解:设过原点的直线L的解析式为y ax =,由题意得:212k a⎧=⎪⎨⎪=⎩∴22k a =⎧⎨=⎩ ∴把2,2k a ==代入函数()0k y k x =>和函数y ax =中,得:22y x y x ⎧=⎪⎨⎪=⎩ ∴求得另一解为11x y =-⎧⎨=-⎩ ∴点B的坐标为(-1,-1)故答案为(-1,-1).【点睛】本题考查的是用待定系数法求一次函数和反比例函数的解析式,解题的关键是找到函数图像上对应的点的坐标,构建方程或方程组进行解题.14.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为___.【答案】23【分析】画出树状图求解即可.【详解】如图,一共有6中不同的选法,选中甲的情况有4种,∴甲被选中的概率为:42=63. 故答案为23 【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m 除以所有等可能发生的情况数n 即可,即m P n=. 15.如图,直线AB ∥x 轴,分别交反比例函数1k y x =和212()k y k k x =<图象于A 、B 两点,若S △AOB =2,则21k k -的值为_______.【答案】1【分析】设A (a ,b ),B (c ,d ),代入双曲线得到k 1=ab ,k 2=cd ,根据三角形的面积公式求出cd-ab=1,即可得出答案.【详解】设A (a ,b ),B (c ,d ),代入得:k 1=ab ,k 2=cd ,∵S △AOB =2, ∴11222cd ab -=, ∴cd-ab=1,∴k 2-k 1=1,故答案为:1.【点睛】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd-ab=1是解此题的关键.16.如图,AB 是O 的直径,弦,30,23,CD AB CDB CD ⊥∠=︒=则阴影部分图形的面积为_________.【答案】23π 【分析】根据垂径定理求得3;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC ,求出扇形COB 面积,即可得出答案.【详解】解:∵AB 是⊙O 的直径,弦CD ⊥AB ,3∴CE=12CD=3,∠CEO=90°, ∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC=sin 60CE =2, ∴阴影部分的面积S=S 扇形COB =26022=3603ππ⨯, 故答案为:23π. 【点睛】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB 的面积是解此题的关键.17.在ABC ∆中,12,6,120AB cm AC cm BAC ︒==∠=,则ABC ∆的面积为_________2cm【答案】183【分析】过点点B 作BD ⊥AC 于D ,根据邻补角的定义求出∠BAD=60°,再根据∠BAD 的正弦求出AD ,然后根据三角形的面积公式列式计算即可得解.【详解】如图,过点B 作BD ⊥AC 交AC 延长线于点D ,∵∠BAC=120°,∴∠BAD=180°-120°=60°,∵BD sin BAD AB∠=, ∴3601232BD ABsin =︒=⨯= ∴△ABC 的面积1166318322AC BD ==⨯⨯=故答案为:183.【点睛】本题主要考查了运用勾股定理和锐角三角函数的概念解直角三角形问题,作出图形更形象直观.18.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.【答案】30°【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.【详解】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为30°.三、解答题(本题包括8个小题)19.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同. (1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?【答案】(1)20%;(2)8640万元.【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.20.一个不透明袋子中装有2个白球,3个黄球,除颜色外其它完全相同.将球摇匀后,从中摸出一个球不放回,再随机摸出一球,两次摸到的球颜色相同的概率是______.【答案】2 5【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【详解】解:画树状图得由树状图得,共有20种等可能的结果,其中两次摸到的球颜色相同的结果数为8,所以两次都摸到同种颜色的概率=82= 205.故答案为:2 5【点睛】本题考查概率的概念和求法,借助列表或树状图列出所有等可能性是解题关键.21.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写下表.时间第一个月第二个月每套销售定价(元)销售量(套)(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少;(3)求当4≤x≤6时第二个月销售利润的最大值.【答案】(1)52;52+x;180;180-10x;(2)1元;(3)2240元【分析】(1)本题先设第二个月的销售定价每套增加x元,再分别求出销售量即可;(2)本题先设第二个月的销售定价每套增加x元,根据题意找出等量关系列出方程,再把解得的x代入即可.(3)根据利润的表达式化为二次函数的顶点式,即可解答本题.【详解】解:(1)若设第二个月的销售定价每套增加x元,填写下表:时间第一个月第二个月销售定价(元)52 52+x销售量(套)180 180-10x故答案为:52;52+x ;180;180-10x(2)若设第二个月的销售定价每套增加x 元,根据题意得:(52-40)×180+(52+x-40)(180-10x )=411,解得:x 1=-2(舍去),x 2=8,当x=-2时,52+x=50(舍去),当x=8时,52+x=1.答:第二个月销售定价每套应为1元.(3)设第二个月利润为y 元.由题意得到:y=(52+x-40)(180-10x )=-10x 2+1x+211=-10(x-3)2+2250∵-10<0∴当4≤x≤6时,y 随x 的增大而减小,∴当x=4时,y 取最大值,此时y=2240,∴52+x=52+4=56,即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元.【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件. 22.已知:ABC ∆中,AB AC =.(1)求作:ABC ∆的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若ABC ∆的外接圆的圆心O 到BC 边的距离为4,12BC =,求O 的面积.【答案】 (1)详见解析;(2)52π 【分析】(1)分别作出AB 、BC 的垂直平分线,两条垂直平分线的交点即是圆的圆心,以O 为圆心,OB 为半径作圆即可,如图所示.(2)已知ABC ∆的外接圆的圆心O 到BC 边的距离为4,12BC =,利用勾股定理即可求出OB 2,再根据圆的面积公式即可求解.【详解】解:(1)如图(2)设BC 的垂直平分线交BC 于点D由题意得:4OD =,162BD CD BC === 在Rt OBD ∆中,222224652OB OD BD =+=+=∴252O S OB ππ=⋅=【点睛】本题主要考查的是圆的外接三角形尺规作图法和勾股定理的应用,掌握这两个知识点是解题的关键. 23.某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.【答案】2 0.3 108 16【分析】(1)先求出样本总数,进而可得出m 、n 的值;(2)根据(1)中n 的值可得出,“乒乓球”所在的扇形的圆心角的度数;(3)依据求简单事件的概率即可求出.【详解】解:(1)∵喜欢篮球的是60人,频率是0.25,∴样本数=60÷0.25=1.∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是72人,∴n=72÷1=0.30,m=0.20×1=2.故答案为2,0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为108;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是10÷60=16. 故答案为(1) 2 ,0.3 (2)108 (3). (3)16 【点睛】题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键. 24.某小区的居民筹集资金1600元,计划在一块上、下底分别为10m 、20m 的梯形空地上种花(如图所示).(1)他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2.当△AMD 地带种满花后(图中阴影部分)花了160元,请计算种满△BMC 地带所需的费用;(2)若△AMB 和△DMC 地带要种的有玫瑰花和茉莉花可供选择,单价分别为12元/m 2和10元/m 2,应选择哪一种花,刚好用完所筹集的资金?【答案】(1)640元;(1)茉莉花.【分析】(1)由梯形的性质得到AD 平行BC 从而得到△AMD 和△CMB 相似,通过相似的性质即可得到△BMC 的面积,即可算出所需费用;(1)通过三角形等高时,得到面积比等于底的比,即可通过△AMD 得到△AMB 的面积,同理得到△DMC 的面积,再分别算出种植两种花时所需的费用,比较大小即可求出结果.【详解】解:(1)∵四边形ABCD 是梯形,∴AD ∥BC ,∴△AMD ∽△CMB ,∴22101()()204AMD CMB S AD S BC ∆∆===.∵种满△AMD地带花费160元,∴S△AMD=1608=10(m1),∴S△CMB=4S△AMD=80(m1),∴种满△BMC地带所需的费用为80×8=640(元).(1)∵△AMD∽△CMB,∴AMMC=DMMB=ADBC=12.∵△AMD与△AMB等高,∴12AMDAMBS DMS MB∆∆==,∴S△AMB=1S△AMD=40(m1).同理可求S△DMC=40m1.当△AMB和△DMC地带种植玫瑰花时,所需总费用为160+640+80×11=1760(元),当△AMB和△DMC地带种植茉莉花时,所需总费用为160+640+80×10=1600(元),∴种植茉莉花刚好用完所筹资金.【点睛】本题考查相似三角形的性质、梯形的几何特征,熟知三角形的性质是解题的关键.25.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图(1),在ABC∆中,点O在线段BC上,30BAO∠=︒,75OAC∠=︒,3AO=:1:3BO CO=,求AB的长.经过社团成员讨论发现:过点B作//BD AC,交AO的延长线于点D,通过构造ABD∆就可以解决问题,如图(2).请回答:ADB=∠______︒.(2)求AB的长.(3)请参考以上解决思路,解决问题:如图(3),在四边形ABCD中,对角线AC与BD相交于点O,AC AD⊥,3AO=75ABC ACB∠=∠=︒,:1:3BO OD=,求DC的长.【答案】(1)75°;(243(3413.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°;(2)结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB的长;(3)过点B作BE∥AD交AC于点E,同(1)可得出AE的长.在Rt△AEB中,利用勾股定理可求出BE 的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】(1)∵BD∥AC,∴∠ADB=∠OAC=75°.(2)∵∠BOD=∠COA ,∠ADB=∠OAC ,∴△BOD ∽△COA , ∴13OD OB OA OC ==.又∵AO =∴OD 13=AO =,∴ ∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD ﹣∠ADB=75°=∠ADB ,∴ (3)过点B 作BE ∥AD 交AC 于点E ,如图所示.∵AC ⊥AD ,BE ∥AD ,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB ,∴△AOD ∽△EOB , ∴BO EO BE DO AO DA==. ∵BO :OD=1:3, ∴13EO BE AO DA ==.∵∴EO =,∴. ∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC ,∴AB=2BE .在Rt △AEB 中,BE 2+AE 2=AB 2,即)2+BE 2=(2BE)2, 解得:BE=43,∴AB=AC=83,AD=1. 在Rt △CAD 中,AC 2+AD 2=CD 2,即2228()43CD +=, 解得:CD=4133.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解答本题的关键是:(2)利用相似三角形的性质求出OD 的值;(3)利用勾股定理求出BE 、CD 的长度. 26.如图,AB 是O 的直径,O 过BC 的中点D .DE AC ⊥,垂足为E .(1)求证:直线DE 是O 的切线; (2)若6BC =,O 的直径为5,求DE 的长及cosC 的值.【答案】(1)见解析;(2)125,35【分析】(1)欲证直线DE 是O 的切线,需连接OD,证∠EDO=90°,根据题意,利用平行线的性质即可证得; (2)先构造直角三角形,需要连接AD ,利用三角形的面积法来求出DE 的长,再在Rt △ADC 中来求cosC .【详解】(1) 证明:如图,连接OD .D 为BC 的中点,O 为AB 的中点// OD AC ∴,又DE AC ⊥.DE OD ∴⊥.DE ∴是圆O 的切线(2)解:连AD . AB 是直径,90ADB ADC ∴∠=∠=︒. D 为BC 的中点,3.CD BD ∴==在Rt ABD ∆中2222534AD AB BD --=在Rt ACD ∆中2222435AC AD CD ++=由面积法可知1122ACD S AC DE AD CD ∆== 即1154322DE ⨯⨯=⨯⨯ 125DE = 在Rt ABD ∆中3cos 5CD C AC ==. 【点睛】本题考查了切线的判定定理及直角三角形直角边与斜边的关系,证明圆的切线的问题常用的思路是根据利用切线的判定定理转化成证垂直的问题;求线段长和三角函数值一般应构造相应的直角三角形.27.如图,点A 在y 轴正半轴上,点()4,2B 是反比例函数图象上的一点,且tan 1OAB ∠=.过点A 作AC y ⊥轴交反比例函数图象于点C .(1)求反比例函数的表达式;(2)求点C 的坐标.【答案】(1)8y x =;(2)4,63⎛⎫ ⎪⎝⎭【分析】(1)设反比例函数的表达式为k y x=,将点B 的坐标代入即可; (2)过点B 作BD AO ⊥于点D ,根据点B 的坐标即可得出4BD =,2DO =,然后根据tan 1OAB ∠=,即可求出AD ,从而求出AO 的长即点C 的纵坐标,代入解析式,即可求出点C 的坐标.【详解】解:(1)设反比例函数的表达式为k y x =, ∵点()4,2B 在反比例函数图象上, ∴24k =. 解得8k . ∴反比例函数的表达式为8y x =. (2)过点B 作BD AO ⊥于点D .∵点B 的坐标为()4,2,∴4BD =,2DO =.在Rt ABD △中,tan 1BD OAB AD ∠==, ∴4AD BD ==.∴6AO AD DO =+=.∵AC y ⊥轴,∴点C 的纵坐标为6.将6y =代入8y x =,得43x =.∴点C的纵坐标为4,63⎛⎫ ⎪⎝⎭.【点睛】此题考查的是反比例函数与图形的综合题,掌握用待定系数法求反比例函数的解析式和利用锐角三角函数解直角三角形是解决此题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【答案】B【解析】分析:根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.2.下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.14B.12C.34D.1【答案】C【分析】先判断出几个图形中的中心对称图形,再根据概率公式解答即可.【详解】解:由图形可得出:第1,2,3个图形都是中心对称图形,∴从中任意抽取一张,抽到的图案是中心对称图形的概率是:34.故选:C .【点睛】此题主要考查了概率计算公式,熟练掌握中心对称图形的定义和概率的计算公式是解题的关键.3.若a b +=a b -=22a b -的值为( )A .6B .CD 【答案】D【分析】先利用平方差公式得到22a b -=(a+b )(a-b ),再把a b +=a b -=【详解】解:22a b -=(a+b )(a-b ).故答案为D .【点睛】本题考查了平方差公式,把a+b 和a-b 看成一个整体是解题的关键.4.抛物线y =﹣2(x+1)2﹣3的对称轴是( )A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣3 【答案】B【分析】根据题目中抛物线的解析式,可以写出该抛物线的对称轴.【详解】解:∵抛物线y =﹣2(x+1)2﹣3,∴该抛物线的对称轴为直线x =﹣1,故选:B .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).5.一元二次方程2430x x -+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定 【答案】A【解析】先求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案.【详解】解:一元二次方程2430x x -+=中,△1641340=-⨯⨯=>,则原方程有两个不相等的实数根.故选:A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:。
人教版九年级数学上册期末复习01—易错题精选一、选择题(每小题3分,共24分)1.关于x 的方程22210m x x --+=()有实数解,那么m 的取值范围是( )A .2m ≠B .3m ≤C .3m ≥D .32m m ≤且≠2.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大3.如图①是33⨯正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A .4种B .5种C .6种D .7种4.如图,在正方体的表面展开图中,要将a -、b -、c -填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字和均为零的概率为( ) A .12 B .13C .14D .16 5.有两个一元二次方程:2:0M ax bx c ++=,2:0N cx bx a ++=,其中0a c +=,下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =6.如图,在ABC △中,AB AC =,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是( )A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点7.已知二次函数2y x bx c =++的图象过点1A m (,),3B m (,),若点12M y -(,),21N y -(,),38K y (,)也在二次函数2y x bx c =++的图象上,则下列结论正确的是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.已知抛物线20y ax bx c a =++(>)过20-(,),23(,)两点,那么抛物线的对称轴( ) A .只能是1x =- B .可能是y 轴 C .在y 轴右侧 D .在y 轴左侧二、填空题(每小题4分,共32分)1.请写出一个符合下列全部条件的函数解析式________;(1)图象不经过第三象限;(2)当1x -<时,y 随x 的增大而减小;(3)图象经过点11-(,). 2.若抛物线2y ax c =+与x 轴交于点0A m (,),0B n (,),与y 轴交于点0C c (,),则ABC △称为“抛物三角形”.特别地,当0mnc <时,称ABC △为“倒抛物三角形”,此时a ,c 应分别满足条件________.3.已知圆的两条平行弦分别长6dm 和8dm ,若这圆的半径是5dm ,则两条平行弦之间的距离为________.4.如图,AB 是O e 的弦,6AB =,点C 是O e 上的一个动点,且°45ACB ∠=.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是________.5.有四张正面分别标有数字3-,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为________.6.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转°60得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.7.如图,已知二次函数20y ax bx c a =++(≠)的图象经过点(1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中110x -<<,212x <<,下列结论:①0abc <;②2a b a -<<;③284b a ac +<;④10a -<<,其中正确结论的序号是________.8.如图,已知直线334y x =-+分别交x 轴、y 轴于点A ,B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是________.三、解答题(共64分)1.(6分)用四块如图①所示的瓷砖拼铺一个成正方形的地板,使拼铺的图案成轴对称图形或中心对称图形,请你在图②和③中各画出一种拼法.(要求两种拼法各不相同)2.(8分)张彬和王华两位同学为得到一张观看足球比赛的入场券,商量后计划通过转盘游戏来决定,并各自设计了一种方案:张彬:将一个可以自由转动并标有阴影区域面积的转盘(如图①),随意转动,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将分成4等分且分别标有数字1,2,3,4的转盘,随意转动两次,当指针所指两个数字之和为偶数,王华得到入场券;否则,张彬得到入场券.(1)使用张彬设计的方案,随机转动转盘一次,指针指向阴影区域的概率是多少?(2)请你运用所学的概率知识,帮助张彬和王华选出公平的游戏方案.3.(11分)如图①所示,AB 是O e 的直径,AC 是弦,直线EF 和O e 相切于点C ,AD EF ⊥,垂足为D .(1)求证:DAC BAC ∠=∠;(2)若把直线EF 向上平行移动,如图②所示,EF 交O e 于G ,C 两点,若题中的其他条件不变,试探究与DAC ∠相等的角是哪一个?说明理由.4.(12分)等腰ABC △的直角边10cm AB BC ==,点P ,Q 分别从A ,C 两点同时出发,均以1cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t ,PCQ △的面积为S .(1)求出S 关于t 的函数关系式;(2)当点P 运动几秒时,PCQ ABC S S =△△?(3)作PE AC ⊥于点E ,当点P ,Q 运动时,线段DE 的长度是否改变?证明你的结论.5.(13分)已知Rt ABO △中,边1AB OB ==,°90ABO ∠=.【问题探究】(1)以AB 为边,在Rt ABO △的右边作正方形ABCD ,如图①,则点O 与点D 的距离为________.(2)以AB 为边,在Rt ABO △的右边作等边三角形ABC ,如图②,求点O 与点C 的距离.【问题解决】(3)若线段1DE =,线段DE 的两个端点D ,E 分别在射线OA ,OB 上滑动,以DE 为边向外作等边三角形DEF ,如图③,则点O 与点F 的距离有没有最大值?如果有,求出最大值;如果没有,说明理由.6.(14分)如图,抛物线2:L y x bx c =++经过A (0,3),B (1,0)4两点,点M 为顶点.(1)求b ,c 的值;(2)将OAB △绕点B 顺时针旋转:①当旋转°90时,点A 落在点C 的位置,将抛物线L 通过向上或向下平移后经过点C .求平移后所得抛物线1L 的表达式;②记OAB △绕点B 顺时针旋转过程中点A 的对应点为A ',点O 的对应点为O ',在抛物线1L 上是否存在A ',使得以点O ,A ,O ',A '为顶点的四边形是平行四边形?若存在,求出点A '的坐标;若不存在,请说明理由.期末复习—易错题精选参考答案一、1.【答案】B2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】D .二、1.【答案】211y x =--()(答案不唯一) 2.【答案】0a <,0c >3.【答案】1dm 7dm 或4.【答案】5.【答案】146.【答案】1.57.【答案】①②8.【答案】4144-+-或或三、1.【答案】答案不唯一.2.【答案】解:(1)根据转盘中阴影部分扇形的圆心角度数和°°°10070170+=则P (指针指向阴影区域)°°1701736036==.(2)由(1)得张彬设计的方案中,张彬得到入场券的概率为1736P =,王华得到入场券的概率为171913636P =-=,则张彬的方案不公平. 利用王华的方案画树状图如下:由树状图得,共有16种等可能的结果,两次数字之和为偶数的有8种,则王华得到入场券的概率为81162P ==,张彬得到入场券的概率为12P =,∴王华的设计方案公平. 3.【答案】(1)证明:如图①,连接OC .EF Q 与O e 相切于点C ,OC EF ∴⊥...AD EF AD OC OCA DAC ∴∴∠=∠Q ⊥,∥.OA OC OCA BAC DAC BAC =∴∠=∠∴∠=∠Q ,,(2)解:BAG ∠与DAC ∠相等.理由如下:如图②,连接BC ,则B AGD ∠=∠.AB Q 是直径,AD EF ⊥,°90BCA GDA ∴∠=∠=,°90B BAC ∴∠+∠=,°90AGD DAG ∠+∠=.BAC DAG ∴∠=∠,BAC CAG DAG CAG ∴∠-∠=∠-∠.即BAG DAC ∠=∠.4.【答案】解:(1)当10t <秒时,P 在线段AB 上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). 当10t >秒时,P 在线段AB 的延长线上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). (2)1502ABC S AB BC ==Q g △, 211010502PCQ t S t t ∴=-=△当<秒时,(). 整理,得2101000t t -+=,无解.当10t >秒时,2110502PCQ S t t =-=△().整理,得2101000t t --=,解得5t =±.∴当点P 运动5±(秒时,PCQ ABC S S =△△.(3)当点P ,Q 运动时,线段DE 的长度不会改变.证明:过Q 作QM AC ⊥,交直线AC 于点M .易证APE QCM △≌△,2AE PE CM QM ∴====. ∴四边形PEQM 是平行四边形,且DE 是对角线EM 的一半.又EM AC ==Q ,DE ∴=.∴当点P ,Q 运动时,线段DE 的长度不会改变.同理,当点P 在点B 右侧时,DE =综上所述,当点P ,Q 运动时,线段DE 的长度不会改变.5.【答案】(1(2)过点C 作CD OB ⊥,垂足为点D .连接OC ,则°30CBD ∠=.1AB BC ==Q ,∴在Rt CBD △中,12CD =,BD =,1OD ∴=+.∴在Rt CDO △中,OC ==.(3)点O 与点F 的距离有最大值. 作ODE △的外接圆M e ,连接MD ,ME ,MF ,MO ,OF ,则OF MO MF +≤. 设MF 与DE 交于点N .°°4590AOB DME ∠=∴∠=Q ,.1DE =Q ,∴可得M e 的半径为2MD ME MO ===. MD ME =Q ,DF EF =,MF ∴垂直平分DE .1122MN DE ∴==,22NF EF ==.12OF OM MF ∴+=+≤OF ∴最大值. 6.【答案】解:(1)已知抛物线L 经过点A (0,3),B (1,0),将其代入2y x bx c =++,得310c b c =⎧⎨++=⎩,,解得43.b c =-⎧⎨=⎩, 即b ,c 的值分别为4-和3.(2)①根据点A ,B 坐标,可知3OA =,1OB =,如图,将OAB △绕点B 顺时针旋转°90后,可得点C 坐标为(4,1).当4x =时,由243y x x =-+得3y =,可知抛物线L 经过点(4,3),∴将原抛物线沿y 轴向下平移2个单位后过点C .∴平移后的抛物线1L 的表达式为241y x x =-+.②存在.如图,OAB △绕点B 旋转过程中,当点A ',B ,A 三点在同一直线上时满足以点O ,A ,O ',A '为顶点的四边形是平行四边形.AB A B '=Q ,OB O B '=,∴四边形OAO A ''为平行四边形.根据图形的旋转性质,可知3O A OA ''==,1OB O B '==,且°90AOB A O B ''∠=∠=, ∴点A '的坐标为23-(,). 又Q 抛物线1L 的表达式为241y x x =-+,∴抛物线1L 的顶点坐标为23-(,). ∴点A '坐标与抛物线1L 的顶点坐标重合.∴抛物线1L 上存在一点23A '-(,),使得以点O ,A ,O ',A '为顶点的四边形是平行四边形.人教版九年级数学上册期末专项复习02—一元二次方程考点1 巧用一元二次方程的定义及相关概念求值题型1 利用一元二次方程的定义确定字母的取值1.已知231m x -=()是关于x 的一元二次方程,则m 的取值范围是( ) A .3m ≠B .3m ≥C .2m -≥D .23m m -≥且≠2.已知关于x 的方程211210m xm m x +++--=()().(1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程2243680a x a x a -+++-=()()没有常数项,则a 的值为________.2.已知关于x 的一元二次方程221510m x x m -++-=()的常数项为0,求m 的值.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x 的方程20x bx a ++=的一个根是0a a -(≠),则a b -的值为() A .1- B .0 C .1 D .22.已知关于x 的一元二次方程2243160k x x k +++-=()的一个根为0,求k 的值.3.已知实数a 是一元二次方程2201610x x -+=的根,求代数式22120152016a a a +--的值.题型4 利用一元二次方程根的概念解决探究性问题1.已知m ,n 是方程2210x x --=的两个根,是否存在实数a 使22714367m m a n n -+--()()的值等于8?若存在,求出a 的值;若不存在,请说明理由.考点2 一元二次方程的解法归类类型1 限定方法解一元二次方程方法1 形如20x m n n +=()(≥)的一元二次方程用直接开平方法求解1.方程24250x -=的解为()A .25x = B .52x = C .52x =± D .25x =±2.用直接开平方法解下列一元二次方程,其中无解的方程为()A .255x -=B .230x -=C .240x +=D .210x +=()方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解1.用配方法解方程234x x +=,配方后的方程变为()A .227x -=()B .221x +=()C .221x -=()D .222x +=()2.解方程:2420x x +-=.3.已知221016890x x y y -+-+=,求x y的值.方法3 能化成形如0x a x b ++=()()的一元二次方程用因式分解法求解1.一元二次方程22x x x -=-()的根是()A .1-B .0C .1和2D .1-和22.解下列一元二次方程:(1)220x x -=;(2)21690x -=;(3)2441x x =-.方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解1.用公式法解一元二次方程2124x x =-,方程的解应是()A .x =B .xC .xD .x2.用公式法解下列方程.(1)23170x x +-=();(2)24352x x x --=-.类型2 选择合适的方法解一元二次方程1.方程24490x -=的解为() A .27x = B .72x =C .172x =,272x =-D .127x =,227x =- 2.一元二次方程293x x -=-的根是()A .3B .4-C .3和4-D .3和43.方程135x x +-=()()的解是()A .11x =,23x =-B .14x =,22x =-C .11x =-,23x =D .14x =-,22x = 4.解下列方程.(1)23360y y --=;(2)22310x x -+=.类型3 用特殊方法解一元二次方程方法1 构造法1.解方程:2619100x x ++=.2.若m ,n ,p 满足8m n -=,2160mn p ++=,求m n p ++的值.方法2 换元法a .整体换元1.若280a b a b +++-=()(),则a b +的值为()A .4-或2B .3或32- C .2-或4 D .3或2- 2.已知22260x xy y x y -++--=,则x y -的值是()A .2-或3B .2或3-C .1-或6D .1或6-3.解方程:223220x x ---+=()().4.解方程:123448x x x x ----=()()()().b .降次换元1.解方程:432635623560x x x x -+-+=.c .倒数换元1.解方程:2322x x x x --=-.方法3 特殊值法1.解方程:2013201420152016x x --=⨯()().考点3 根的判别式的四种常见应用题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x 的方程2110kx k x +--=(),下列说法正确的是()A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解2.已知方程220x x m --=没有实数根,其中m 是实数,试判断方程2210x mx m m +++=()有无实数根.题型2 利用根的判别式求字母的值或取值范围1.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.2.已知关于x 的一元二次方程2220mx m x -++=(),(1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.题型3 利用根的判别式求代数式的值1.已知关于x 的方程22140x m x +-+=()有两个相等的实数根,求21212m m m--+()的值.2.已知关于x 的一元二次方程2200mx nx m +-=(≠)有两个相等的实数根,求222416mn m n ++-()的值.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根,试判断此三角形的形状.2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程204a c a c x bx -+++=()有两个相等的实数根,试判断此三角形的形状.考点4 一元二次方程与三角形的综合题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程27120x x -+=的解,则第三边的长为()A .3B .4C .3或4D .无法确定 2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3cm 和7cm ,第三边长为cm a ,且整数a 满足210210a a -+=,求三角形的周长.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程217600x x -+=的两个根,则这个直角三角形的斜边长为________.2.已知a ,b ,c 分别是ABC △的三边,当0m >时,关于x 的一元二次方程220c x m b x m ++--=()()有两个相等的实数根,试判断ABC △的形状,并说明理由.3.已知ABC △的三边a ,b ,c 中,1a b =-,1c b =+,又已知关于x 的方程2420120x x b -++=的根恰为b 的值,求ABC △的面积.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是()A .27B .36C .27或36D .182.已知关于x 的一元二次方程220a c x bx a c +++-=()(),其中a ,b ,c 分别为ABC △的三边的长.(1)如果1x =-是方程的根,试判断ABC △的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC △的形状,并说明理由;(3)如果ABC △是等边三角形,试求这个一元二次方程的根.考点5 根与系数的关系的四种应用类型 题型1 利用根与系数的关系求代数式的值1.设方程24730x x --=的两根为1x ,2x ,不解方程求下列各式的值. (1)1233x x --()(); (2)211211x xx x +++; (3)12x x -.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程22210x mx m --+=的两根的平方和是294,求m 的值.2.已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)若该方程的一个根为1,求a 的值及该方程的另一根.题型4 巧用根与系数的关系确定字母系数的存在性4.已知1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根,是否存在实数k ,使12123222x x x x --=-()()成立?若存在,求出k 的值;若不存在,请说明理由.考点6:可化为一元二次方程的分式方程的应用 题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?考点7 几种常见的热门考点 题型1 一元二次方程的根1.若一元二次方程220150ax bx --=有一根为1x =-,则a b +=________.2.若关于x 的一元二次方程20ax bx c ++=有一根为1-,且2a =,求20162015a b c+()的值.题型2 一元二次方程的解法1.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()2.一元二次方程2230x x --=的解是() A .11x =-,23x =B .11x =,23x =-C .11x =-,23x =-D .11x =,23x =3.选择适当的方法解下列方程:(1)21210x x x -+-=()();(2)221327x x x -=+-()().题型3 一元二次方程根的判别式1.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是() A .1a <B .1a >C .1a ≤D .1a ≥2.已知关于x 的一元二次方程210x m +-=()有两个实数根,则m 的取值范围是()A .34m -≥ B .0m ≥ C .1m ≥ D .2m ≥3.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中5a =,若关于x 的方程2260x b x b +++-=()() 有两个相等的实数根,求ABC △的周长.题型4 一元二次方程根与系数的关系1.已知α,β是关于x 的一元二次方程22230x m x m +++=()的两个不相等的实数根,且满足111αβ+=-,则m 的值是() A .3B .1C .3或1-D .3-或12.关于x 的方程231210ax a x a -+++=()()有两个不相等的实数根1x ,2x ,且有12121x x x x a +-=-,求a 的值.3.设1x ,2x 是关于x 的一元二次方程222420x ax a a +++-=的两个实数根,当a 为何值时,2212x x +有最小值?最小值是多少?题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?2.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程1cm ()与时间t s ()满足关系:2131022t t t =+(≥),乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?题型6 新定义问题1.若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=都是“偶系二次方程”.判断方程2120x x +-=是否是“偶系二次方程”,并说明理由.期末专项复习—一元二次方程答案解析考点1 题型1 1.【答案】D【解析】由题意,得3020m m -⎧⎨+⎩≠,≥,解得2m -≥且3m ≠.2.【答案】解:(1)当21210m m ⎧+=⎨+⎩,≠时,它是一元二次方程,解得1m =.当1m =时,原方程可化为2210x x --=.(2)当22010m m ⎧-⎨+=⎩≠,或者当120m m ++-()≠且211m +=时,它是一无一次方程.解得1m =-或0m =.故当1m =-或0m =时,它是一元一次方程. 题型2 1.【答案】8【解析】由题意得80240.a a -=⎧⎨-⎩,≠解得8a =.2.【答案】由题意,得21010m m ⎧-=⎨-⎩,≠,解得1m =-.题型3 1.【答案】A【解析】∵关于x 的方程20x bx a ++=的一个根是0a a -(≠),20a ab a ∴-+=.10a a b ∴-+=().0a Q ≠,1.a b ∴-=-2.【答案】解:把0x =代入2243160k x x k +++-=(),得2160k -=,解得14k =,24k =-.40k +Q ≠,4k ∴-≠,4k ∴=.3.【答案】解:∵实数a 是一元二次方程2201610x x -+=的根,2201610a a ∴-+=.221201620161a a a a ∴+=-=-,.22222120162015201520152016120162016a aa a a a a a a a a +∴--=--=--=-=-题型41.【答案】解:由题意可知22210210m m n n --=--=,,22227143677232773747m m a n n m m a n n a a ⎡⎤⎡⎤∴-+--=-+--=+-=-+⎣⎦⎣⎦()()()()()()(),由 478a -+=()得9a =-,故存在满足要求的实数a ,且a 的值等于9-.考点2 类型1 方法1 1.【答案】C 2.【答案】C 方法2 1.【答案】C2.【答案】解:22242042262x x x x x x +-=+=+=+=,,(),1222x x =-=-3.【答案】解:2222221016890102516640580x x y y x x y y x y -+-+=-++-+=-+-=,()(),()(),558.8x x y y ∴==∴=,,方法3 1.【答案】D2.【答案】解:(1)21220200 2.x x x x x x -=-===,(),, (2)21233169043430.44x x x x x -=+-==-=,()(),, (3)2221214414410210.2x x x x x x x =--+=-===,,(),方法4 1.【答案】B2.【答案】解:(1)2231703730x x x x +-=-+=(),,224743313b ac ∴-=--⨯⨯=(),12x x x ∴=∴= (2)2243524430x x x x x --=---=,,224444364b ac x ∴-=--⨯⨯-=∴=()(),1231.22x x ∴==-,类型2 1.【答案】C 2.【答案】C 3.【答案】B4.【答案】解:(1)22221919133360200442422y y y y y y y y --=--=-+-=-=-=±,,,(),,122 1.y y ∴==-,(2)2223231043421122x x b ac x ±-+=-=--⨯⨯=∴=⨯,(),,即1211.2x x ∴==, 类型3 方法11.【答案】解:将原方程两边同乘6,得26196600x x +⨯+=()().解得615x =-或64x =-.1252.23x x ∴=-=-,2.【答案】解:因为8m n -=,所以8m n =+.将8m n =+代入2160mn p ++=中,得28160n n p +++=(),所以228160n n p +++=,即 2240n p ++=().又因为240n +()≥,20p ≥,所以400n p +=⎧⎨=⎩,,解得40.n p =-⎧⎨=⎩,所以84m n =+=,所以4400m n p ++=+-+=() 方法2 a1.【答案】A2.【答案】B3.【答案】223220.x x ---+=()()设2x y -=,原方程化为2320y y -+=, 解得121 2.y y ==,当1y =时,213x x -==,, 当2y =时,22 4.x x -==, 原方程的解为1234x x ==,.4.【答案】解:原方程即[][]142348x x x x ----=()()()(),即22545648x x x x -+-+=()().设255y x x =-+,则原方程变为1148y y -+=()(). 解得1277y y ==-,.当2557x x -+=时,解得12x x ==当2557x x -+=-时,254112230∆=--⨯⨯=-()<,方程无实数根.∴原方程的根为12x x = b1.【答案】解:经验证0x =不是方程的根,原方程两边同除以2x ,得22356635620x x x x -+-+=, 即2211635620x x x x +-++=()(). 设1y x x =+,则22212x y x+=-,原方程可变为26235620y y --+=(). 解得152y =,2103y =. 当152x x +=时,解得12x =,212x =;当1103x x +=时,解得33x =,413x =.经检验,均符合题意.∴原方程的解为12x =,212x =,33x =,413x =. c1.【答案】解:设2x y x-=,则原方程化为32y y -=,整理得2230y y --=,∴13y =,21y =-.当3y =时,23x x -=,∴1x =-. 当1y =-时,21x x-=-,∴1x =.经检验,1x =±都是原方程的根, ∴原方程的根为11x =,21x =-. 方法31.【答案】解:方程组2013201620142015x x -=⎧⎨-=⎩,的解一定是原方程的解,解得4029x =.方程组2013201520142016x x -=-⎧⎨-=-⎩,的解也一定是原方程的解,解得2x =-.∵原方程最多有两个实数解, ∴原方程的解为14029x =,22x =-.【解析】解本题也可采用换元法.设2014x t -=,则20131x t -=+,原方程可化为120152016t t +=⨯(),先求出t ,进而求出x . 考点3 题型1 1.【答案】C【解析】当0k =时,方程为一元一次方程,解为1x =;当0k ≠时,因为222141211k k k k k ∆=--⋅-=++=+()()()≥0,所以当1k =时,4∆=,方程有两个不相等的实数解;当1k =-时,0∆=,方程有两个相等的实数解; 当0k ≠时,0∆≥,方程总有两个实数解.故选C . 2.【答案】解:220x x m --=Q 没有实数根,2124440m m ∴∆=--⋅-=+()()<,即1m -<.对于方程2210x mx m m +++=(),2224144m m m m ∆=-⋅+=-()()>,∴方程2210x mx m m +++=()有两个不相等的实数根. 题型21.【答案】解:(1)根据题意得2444242080b ac k k -=--=-()>, 解得25k <.(2)由k 为正整数,可得1k =或2k =.利用求根公式可求出方程的根为1x =- ∵方程的根为整数,∴52k -为完全平方数, ∴k 的值为2.2.【答案】(1)证明:[]22228442m m m m m ∆=-+-=-+=-()(). ∵不论m 为何值,220m -()≥,即0△≥.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程2220mx m x -++=(),得222m m x m +±-=().∴12x m=,21x =. ∵方程的两个根都是正整数,∴2m 是正整数,∴1m =或2m =.又∵方程的两个根不相等,∴2m ≠,∴1m =. 题型31.【答案】解:∵关于x 的方程22140x m x +-+=()两个相等的实数根,∴2214140m ∆=--⨯⨯=(),即214m -=±.∴52m =或32m =-. 当52m =时,25111221216514m m m --==-++(); 当32m =-时,231152********m m m ---==--+-(). 2.【答案】解:由题意可知,22480b ac n m -=+=, ∴28m n =-,∴222222222222222416816168mn mn mn mn mn m n m m n m m n m n n m ====++-+++-++-+(). ∵0m ≠,2228mn n m m∴==-.题型41.【答案】解:∵一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根, ∴[]2240a b b c b a ---⋅-=()()(), ∴40a b a c --=()(), ∴a b =或a c =, ∴此三角形是等腰三角形.2.【答案】解:∵方程204a ca c x bx -+++=()有两个相等的实数根, ∴2222404a cb ac b a c -∆=-+⋅=--=()(), 即222b c a +=,∴此三角形是直角三角形. 考点4 题型1 1.【答案】C2.【答案】解:由已知可得410a <<,则a 可取5,6,7,8,9.(第一步) 当5a =时,代入2210215105210a a -+=-⨯+≠,故5a =不是方程的根. 同理可知6a =,8a =,9a =都不是方程的根,7a =是方程的根.(第二步) ∴ABC △的周长是37717cm ++=(). 题型2 1.【答案】132.【答案】解:ABC △是直角三角形.理由如下:原方程可化为20b c x cm bm +-+-=(), 2222444ma m c b c b m a b c ∆--++-=()()=(). ∵0m >,且原方程有两个相等的实数根,∴2220a b c +-=,即222a b c +=∴ABC △是直角三角形.3.【答案】解:将x b =代入原方程,整理得2419120b b -+=,解得14b =,234b =.当14b =时,3a =,5c =,∵222345+=,即222a b c +=,∴ABC △为直角三角形,且°90C ∠=.∴1134622ABC S ab ==⨯⨯=△; 当234b =时,3104a =-<,不合题意,舍去.因此,ABC △的面积为6. 题型3 1.【答案】B2.【答案】解:(1)ABC △是等腰三角形.理由如下:把1x =-入原方程,得20a c b a c +-+-=,所以a b =,故ABC △是等腰三角形.(2)ABC △是直角三角形.理由如下:方程有两个相等的实数根,则2240b a c a c ∆=-+-=()()(),所以2220b a c -+=,所以222a b c =+,故ABC △是直角三角形.(3)如果ABC △是等边三角形,则a b c ==,所以方程可化为2220ax ax +=,所以210ax x +=(),所以方程的解为10x =,21x =-. 考点5 题型11.【答案】解:根据一元二次方程根与系数的关系,有1274x x +=,1234x x =-. (1)12121237333939344x x x x x x --=-++=--⨯+=()()(). (2)2222122111212121212122112121212112====111111x x x x x x x x x x x x x x x x x x x x x x x x x x x x +++++++-+++++++++++++()()()()()()()27372101444=3732144-⨯-+-++()().(3)222121212127397=4=4=4416x x x x x x x x -+--⨯-∴-==Q()()()(),. 题型21.【答案】解:设方程25230x x +-=的两根为1x ,2x , 则1225x x +=-,1235x x =-. 设所求方程为20y py q ++=,其两根为1y ,2y , 令111y x =-,221y x =-.∴121212*********==3x x p y y x x x x x x +=-+=--=+()(),12121211153q y y x x x x ==--==-()(). ∴所求的方程为225+033y y -=,即23250y y +-=. 题型31.【答案】解:设方程两根为1x ,2x ,由已知得1212=221=.2m x x m x x ⎧+⎪⎪⎨-+⎪⎪⎩,∵222121212292=4x x x x x x +=+-(),即221292224m m -+-⨯=(), ∴28330m m +-=. 解得111m =-,23m =.当111m =-时,方程为2211230x x ++=,21142230∆=-⨯⨯<,方程无实数根,∴11m =-不合题意,舍去;当3m =时,方程为22235034250x x --=∆=--⨯⨯-,()()>,方程有两个不相等的实数根,符合题意. ∴m 的值为3.2.【答案】解:(1)∵224121240a a -⨯⨯-=-()>,解得3a <. ∴a 的取值范围是3a <.(2)设方程的另一根为1x ,由根与系数的关系得111212x x a +=-⎧⎨⋅=-⎩,,解得113.a x =-⎧⎨=-⎩,题型44.【答案】解:不存在.理由如下:∵一元二次方程24410kx kx k -++=有两个实数根,∴0k ≠,且24441160k k k k ∆=--⨯+=-()()≥,∴0k <.∵1x ,2x 是方程24410kx kx k -++=的两个实数根, ∴121x x +=,1214k x x k+=.∴212121212922294k x x x x x x x x k+--=+-=-()()(). 又∵12123222x x x x --=-()(), ∴939425k k k +-=-∴=,. 又∵0k <,∴不存在实数k ,使12123222x x x x --=-()()成立. 考点61.【答案】解:方法一:设第二次采购玩具x 件,则第一次采购玩具10x -()件,由题意得1001500.510x x+=-. 整理得211030000x x -+=, 解得150x =,260x =,经检验150x =,260x =都是原方程的解.当50x =时,第二次采购时每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去; 当60x =时,第二次采购时每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.方法二:设第一次采购玩具x 件,则第二次采购玩具10x +()件,由题意得1001500.510x x +=+, 整理得29020000x x -+=, 解得140x =,250x =,经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次采购401050+=(件),批发价为150503÷=(元),不合题意,舍去; 第一次采购50件时,第二次采购401060+=(件),批发价为15060 2.5÷=(元),符合题意.因此第二次采购玩具60件. 题型23.【答案】解:设慢车每小时行驶x 千米,则快车每小时行驶12x +()千米,依题意得150150251260x x -=+.解得172x =-(不合题意,舍去),260x =.所以1272x +=.∴快车每小时行驶72千米,慢车每小时行驶60千米. 应用34.【答案】解:(1)设乙工程队单独施工x 天完成此项工程,则甲工程队单独施工30x +()天完成此项工程,由题意得1120130x x +=+(),整理,得2106000x x --=, 解得130x =,220x =-.经检验130x =,220x =-都是分式方程的解,但220x =-不符合题意,应舍去,故30x =,3060x +=. 故甲、乙两工程队单独完成此项工程分别需要60天,30天. (2)203a -()(3)由题意得11 2.520643a a +++-()()≤,解得36a ≥.故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元. 考点7 题型11.【答案】2015【解析】把1x =-代入方程中得到20150a b +-=,即2015a b +=.2.【答案】解:∵2a =,∴40c -≥且40c -≥,即4c =,则2a =-.又∵1-是一元二次方程20ax bx c ++=的根,∴0a b c -+=,∴242b a c =+=-+=.∴原式201622020154-+==⨯().题型2 1.【答案】D 2.【答案】A3.【答案】解:(1)21210x x x -+-=()(),1120x x x --+=()(), 1310x x --=()(),12113x x ==,.(2)221327x x x -=+-()(),22441327x x x x -+=+-, 2680x x -+=,1224x x ==,.题型3 1.【答案】B 2.【答案】B3.【答案】解:∵关于x 的方程2260x b x b +++-=()()有两个相等的实数根,∴22460b b ∆=+--=()(),∴12b =,210b =-(舍去).当a 为腰时,ABC △周长为55212=++. 当b 为腰时,225+<,不能构成三角形. ∴ABC △的周长为12. 题型4 1.【答案】A2.【答案】解:由题意,得1231a x x a ++=,1221a x x a +=(),∴31211a a a a a++-=-(),∴210a -=,即1a =±.又∵方程有两个不相等的实数根,∴[]2314210a a a ∆=-+-⋅+()()>,即210a -()>,∴1a ≠,∴1a =-.3.【答案】解:∵方程有两个实数根,∴2224420a a a ∆=-+-()()≥,∴12a ≤.又∵122x x a +=-,21242x x a a =+-,∴22221212122224x x x x x x a +=+-=--()(). ∵12a ≤,且2220a -()≥,∴当12a =时,2212x x +的值最小. 此时222121122422x x +=--=(),即最小值为12.【解析】本题中考虑0△≥从而确定a 的取值范围这一过程易被忽略. 题型51.【答案】解:设每件商品降价x 元,则售价为每件60x -()元,每星期的销量为30020x +()件. 根据题意,得6040300206080x x --+=()(). 解得11x =,24x =.又要顾客得实惠,故取4x =,即销售单价为56元. 答:应将销售单价定为56元.2.【答案】解:(1)当4t =时,221313144142222t t =+=⨯+⨯=. 答:甲运动4s 后的路程是14cm . (2)设它们运动了s m ,根据题意, 得21342122m m m ++=.解得:13m =,214m =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s .(3)设它们运动了s n 后第二次相遇,根据题意,得213421322n n n ++=⨯(). 解得17n =,218n =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s . 题型61.【答案】解:不是.理由如下:解方程2120x x +-=,得14x =-,23x =.12432 3.5x x +=+=⨯.∵3.5不是整数,∴方程2120x x +-=不是“偶系二次方程”.。
2022-2023学年重庆市北碚区西南大学附中九年级(上)期末数学试卷1. 下列计算正确的是( )A. B. C. D.2. 某校为了了解七年级400名学生期末数学考试情况,从中抽取了40名学生的期末数学成绩进行了统计,下面判断中错误的是( )A. 这种调查方式是抽样调查B. 400名学生是总体C. 每名学生的期末数学成绩是个体D. 40名学生的期末数学成绩是总体的一个样本3. 解方程时,去分母正确的是( )A. B.C. D.4. 按照如图所示的运算程序,下列输入的数据中,当输入,时,输出的结果为( )A. 14B. 33C. 3D. 55. 下面是物理课上测量铁块A的体积实验,将铁块匀速向上提起,直至完全露出水面一定高度,下面能反映这一过程中,液面高度h与铁块被提起的时间t之间函数关系的大致图象是( )A.B.C.D.6. 已知点在第四象限,则实数x的取值范围在数轴上表示正确的为( )A. B.C. D.7. 把一批图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺20本.设这个班有学生x名,根据题意列方程正确的是( )A. B.C. D.8. 如图,半圆O的直径,两弦AC、BD相交于点E,弦,则等于度( )A. 15B. 30C. 45D. 609. 如图,是按照一定规律画出的“树形图”,经观察可以发现:图①中有1个“树枝”,图②中有3个“树枝”,图③中有7个“树枝”……照此规律,图⑦中有个“树枝”.( )A. 63个B. 87个C. 91个D. 127个10. 如图,在中,点D是AC边上的中点,连接BD,把沿着BD翻折,得到连接若,,,则AB为( )A. B. 2 C. 3 D.11. 若关于x的不等式组无解,且关于y的分式方程有正整数解,则满足条件的所有整数a的和为( )A. 11B. 14C. 16D. 912. 我们在初中已经学会了估算的值,现在用表示距离最近的正整数.为正整数比如:表示距离最近的正整数,;表示距离最近的正整数,;表示距离最近的正整数,……利用这些发现得到以下结论:①;②时,n的值有3个;③;④;⑤当时,n的值为五个结论中正确的结论有个( )A. 2B. 3C. 4D. 513. 计算:______.14. 育才学校积极开展志愿者服务活动,来自初三的3名同学男2女组成了“关爱老人”志愿小分队.若从该小分队中任选2名同学参加周末的志愿活动,则恰好是1男1女的概率是______.15. 如图,在扇形OAB中,,,以点A为圆心,AO长为半径画弧,交于点D,则图中阴影部分图形的面积是______.16. 为丰富学生课余文化生活,学校举行了缤纷节.今年的“财商体验”活动中,初一班摊位推出了A、B、C三种食品,每种食品的成本分别为元.元.7元.在八点至九点期间,为了吸引人流量,亏本促销,A、B、C三种食品的单价之比为3:4:2,销量之比为1:1:3;由于味道太好,供不应求、故在九点到十点期间,初一班摊位适当调整了价格,A、B、C三种食品的单价均有所上调,其中B食品的单价上调,但三种食品的销量之比不变,同时三种食品的销售额比之前有所增加,其中A、C增加的销售额之比为1:2,且A、B食品在九点到十点期间的销售额之比为2:若九点到十点三种食品的单价之和比八点到九点的单价之和多元,最后初一班的摊位不赔不赚,则九点到十点期间初一班摊位的利润率为______.17. 计算:;18. 如图.四边形ABCD是平行四边形.尺规作图不写作法,保留作图痕迹:作出的角平分线DE,交BC于点E;在线段AD上截取,连接EF;在所作图中,请证明四边形CDFE是菱形.四边形ABCD为平行四边形,______,平分,____________,,而,四边形CDFE为______,四边形CDFE为菱形.19. 为了加强孩子们自身防护的知识,某校七八年级举办了防疫知识小问答活动,从七八年级各随机抽取15名学生,对他们在小问答活动中的成绩百分制进行整理、描述和分析成绩用x表示,共分成4组:,,,,下面给出部分信息:七年级学生的成绩在C组中的数据为:80,83,85,87,八年级学生的成绩为:72,70,76,99,98,99,82,86,95,90,99,86,84,93,七八年级学生成绩对比统计表统计量七年级八年级平均数8888中位数a b众数98c根据以上信息,解答下列问题:直接写出上述图表中a,b,c的值;根据以上数据,你认为该校七八年级学生哪个年级防疫知识掌握得更好?请说明理由一条理由即可;若该校七八年级共有1200名学生,规定防疫知识小问答成绩在90分及以上为优秀,估计该校七八年级成绩为优秀的学生共有多少人?20. 如图,一次函数的图象与反比例函数的图象交于点、求一次函数的解析式,并在图中画出这个一次函数的图象.点C是x轴上一点,当的面积为3时,求C点的坐标.观察图象,直接写出的解集.21. 如图是某景区的观光扶梯建设示意图.起初工程师计划修建一段坡度为3:2的扶梯AB,扶梯总长为米.但这样坡度太陡,扶梯太长容易引发安全事故.工程师修改方案:修建AC、DE两段扶梯,并减缓各扶梯的坡度,其中扶梯AC和平台CD形成的为,从E点看D点的仰角为,AC段扶梯长20米.参考数据:,求点A到BE的距离.段扶梯长度约为多少米?结果保留1位小数22. 某学校准备采购一批化学实验器材A和经查询,如果按照标价购买两种实验器材,当购买实验器材B的数量是实验器材A数量的2倍时,购买实验器材A共需要4000元,购买实验器材B共需要6000元,且一套实验器材A单价比一套实验器材B单价贵100元.求一套实验器材A,一套实验器材B的标价分别是多少元?学校计划购买相同数量的实验器材B和实验器材商家告知,因为周年庆,实验器材B的单价在标价的基础上降价元,实验器材A单价在标价的基础降价100元,该校决定增加采购数量,实际购买实验器材B和实验器材A的数量在原计划基础上分别增加了和,结果在结算时发现,两种实验器材的总价相等,求m的值.23. 如果一个自然数M各个数位均不为0,且能分解成,其中A和B都是两位数,且A十位数字比的B十位数字大1,A和B的个位数字之和为9,则称M为“九九归一数”,把M分解成的过程称为“九九归一分解”.例如:,,,是“九九归一数”;,,,不是“九九归一数”.判断378和297是否是“九九归一数”?并说明理由;把一个“九九归一数”M进行“九九归一数分解”,即为,A的各个数位数字之和与B的各个数位数字之和的和记为;A的各个数位数字之和与B的各个数位数字之和的差记为且能被5整除,求出所有满足条件的自然数24. 如图一,在平面直角坐标系中,抛物线的顶点为,与x轴交于两点A,在B的左侧,与y轴交于点求抛物线的函数表达式;如图二,连接AD,BC,点P是线段BC上方抛物线上的一个动点,过点P作交CB于点Q,PQ的最大值及此时点P的坐标;将该抛物线关于直线对称得到新抛物线,点E是原抛物线y和新抛物线的交点,F是原抛物线对称轴上一点,G为新抛物线上一点,若以E、F、A、G为顶点的四边形是平行四边形,请直接写出点F的坐标.25.如图.已知为等腰直角三角形,,D、E分别为AC、BC上的两点,,连接DE,将DE绕点E逆时针旋转得EF,连接DF与AB交于点如图1,当时,若,求AD的长;如图2,连接CF,N为CF的中点,连接MN,求证:;如图3,连接AF,将AF绕点A顺时针旋转得AG,连接FG、BG、CG,若,当周长取得最小值时,直接写出的面积.答案和解析1.【答案】D【解析】解:不是同类项,不能合并,选项A不符合题意;B.,选项B不符合题意;C.不是同类项,不能合并,选项C不符合题意;D.,选项D符合题意;故选:根据合并同类项法则即可求解.本题主要考查了合并同类项,掌握合并同类项法则是解题的关键.2.【答案】B【解析】解:A、题中的调查方式为抽样调查,故A正确,不符合题意;B、总体为400名学生的期末数学成绩,而不是学生,故B错误,符合题意;C、每名学生的期末数学成绩是个体,故C正确,不符合题意;D、40名学生的期末数学成绩是总体的一个样本,故D正确,不符合题意.故选:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.本题考查的对象是七年级400名学生期末数学考试情况,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象.3.【答案】C【解析】解:去分母得:故选:分别对所给的四个方程利用等式性质进行变形,可以找出正确答案.本题考查的是解一元一次方程,去分母时,方程两端同时乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子如果是一个多项式作为一个整体加上括号.4.【答案】D【解析】解:,即,输出,故选:读懂题意,按照题意列算式计算.本题考查了代数式求值,有理数的混合运算,解题的关键是读懂题意,根据题意计算.5.【答案】B【解析】解:根据题意,在实验中有3个阶段,①铁块在液面以下,液面的高度不变;②铁块的一部分露出液面,但未完全露出时,液面高度降低;③铁块在液面以上,完全露出时,液面高度又维持不变;即B符合描述;故选:根据题意,在实验中有3个阶段:①铁块在液面以下,②铁块的一部分露出液面,但未完全露出时,③铁块完全露出时,分别分析液面的变化情况,结合选项,可得答案.本题考查函数的图象,注意,函数值随时间的变化问题,不一定要通过求解析式来解决.6.【答案】C【解析】解:点在第四象限,,解得,解集在数轴上的表示为:故选:根据第四象限内点的坐标特点列出关于x的不等式组,求出x的取值范围,并在数轴上表示出来即可.本题主要考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“”实心圆点向右画折线,“<”空心圆点向左画折线,“”实心圆点向左画折线.7.【答案】C【解析】解:依题意得:故选:根据这批图书的数量不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【答案】B【解析】解:连接OD,OC,BC,半圆O的直径,半圆O的半径为5,,,故选:连接OD、OC、BC,可得为等边三角形,则,根据圆周角定理即可求解.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.【答案】D【解析】解:经观察可以发现:图①中有1个“树枝”,图②中有个“树枝”,图③中有个“树枝”,……,图⑦中有…个“树枝”.故选:根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,从而可得出答案.本题考查了规律型:图形的变化类,根据各图形中“树枝”个数的变化得出规律是解题的关键.10.【答案】B【解析】【分析】本题考查了翻折变换,相似三角形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.延长AB,交于点H,连接,过点作于E,由折叠的性质可得,,,通过证明∽,可得,可求,,由勾股定理和面积法可求解.【解答】解:如图,延长AB,交于点H,连接,过点作于E,点D是AC边上的中点,,把沿着BD翻折,得到,,,,,,,,∽,,,,,,,,,,,,,,,故选11.【答案】B【解析】解:解不等式,得解不等式,得关于x的不等式组无解,,关于y的分式方程有正整数解,且或或或或或综上:或4或满足条件的整数a和为故选:先解不等式组,再解分式方程,从而确定a的取值,进而解决此题.本题主要考查解一元一次不等式组、解分式方程,熟练掌握一元一次不等式组以及分式方程的解法是解决本题的关键.12.【答案】B【解析】解:①表示距离最近的正整数,,故①正确;②时,,4,5,6,的值有4个,故②不正确;③,,,,,,,,,,,,…;故③正确;④,,,,,,,,,,,,…,个1,4个2,6个3,8个4,…,…,故④不正确;⑤…,…,故⑤正确;故选:①由题意可得;②时,,4,5,6,可知n的值有4个;③求出,,,,,,,,,,,,即可判断;④由③发现规律2个1,4个2,6个3,8个4,…,则…;⑤由题意可得++…+…,则…本题考查数字的变化规律,根据所给的定义,通过估算无理数,找到数字的变化规律是解题的关键.13.【答案】【解析】解:,故答案为:先计算二次根式、零次幂、负整数指数幂,再计算加减.此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.14.【答案】【解析】解:列表如下:男女女男女,男女,男女男,女女,女女男,女女,女由表可知,共有6种等可能结果,恰好是1男1女的有4种结果,所以恰好是1男1女的概率为,故答案为:列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.15.【答案】【解析】解:连接OD、,为等边三角形,,,,,,阴影部分的面积,故答案为:,连接OD、AD,根据题意得到为等边三角形,,分别求出扇形DOB的面积、的面积、扇形AOD的面积,计算即可.本题考查扇形的面积,等边三角形的判定等知识,解题的关键是学会利用割补法求阴影部分面积.16.【答案】【解析】解:由题意设在八点至九点期间,A,B,C三种食品的单价分别为3x元,4x元,2x 元,销量分别为m,m,3m,在九点到十点期间的三种食品的销量之比不变,设在九点到十点期间的三种食品的销量分别为n,n,3n,在九点到十点期间B食品的单价上调,在九点到十点期间B食品的单价为元,在九点到十点期间A,B食品的销售额之比为2:3,在九点到十点期间B食品的销售额为6nx,A食品的销售额为4nx,在九点到十点期间A食品的单价为元,在九点到十点期间A,C食品增加的销售额之比为1:2,食品增加的销售额为:,食品增加的销售额为:,在九点到十点期间C食品的单价为:元,在九点到十点期间三种食品的单价之和比在八点至九点期间三种食品的单价之和多元,,,在九点到十点期间的利润率为:在九点到十点期间初一班摊位的利润率为故答案为:根据题意设出在八点至九点期间,A,B,C三种食品的单价分别为3x元,4x元,2x元,销量分别为m,m,3m,在九点到十点期间的三种食品的销量分别为n,n,3n,把这两天三种食品的单价、销量均表示出来,根据3月8日三种食品的单价之和比3月7日三种食品的单价之和多96元,列出方程求出x,再用整体法求出利润率即可.本题主要考查应用类问题,掌握用代数式表示每个参数,并用整体法解题是关键.17.【答案】解:原式原式【解析】根据完全平方公式以及单项式乘多项式法则即可求出答案.根据分式的加减运算法则以及乘除运算法则即可求出答案.本题考查完全平方公式、单项式乘多项式法则、分式的加减运算以及乘除运算法则,本题属于基础题型.18.【答案】平行四边形【解析】解:如图,DE和EF为所作;证明:四边形ABCD为平行四边形,,,平分,,,,,而,四边形CDFE为平行四边形,,四边形CDFE为菱形.故答案为:;;EC;平行四边形.利用基本作图作的平分线得到DE,再截取,然后连接EF即可;先根据平行四边形的性质和平行线的性质得到,再证明得到,所以,则可判断四边形CDFE为平行四边形,然后利用可判断四边形CDFE为菱形.本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质、平行四边形的性质和菱形的判定.19.【答案】解:由直方图可知,七年级的数学成绩15个数据按从小到大的顺序排列,第8个数落在C组的第四个,中位数;八级的数学成绩15个数据按从小到大的顺序排列,第8个数为89分,中位数;八年级抽取的学生数学成绩中99分的最多,众数;根据以上数据,我认为八年级学生防疫知识掌握得更好.理由:两个年级的平均数相同、八年级的中位数、众数均高于七年级,说明八年级学生防疫知识掌握得更好;名,答:估计该校七八年级成绩为优秀的学生共大约有520人.【解析】根据中位数、众数的定义,可以得到a、b、c的值;根据题目中的数据,可以从中位数、众数来说明理由,注意本题答案不唯一,符合实际即可;利用样本估计总体,用1200乘以样本中测试成绩达到90分及以上的所占的百分比即可.本题考查频数分布直方图、中位数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:反比例函数的图象过点、,解得,,,,一次函数的图象过A点和B点,,解得,一次函数的表达式为,描点作图如下:把代入得,,解得,,的面积为3,,,,或;由图象可得的解集为:【解析】根据反比例函数解析式求出A点和B点的坐标,然后用待定系数法求出一次函数的表达式即可;由一次函数解析式求出直线与x轴的交点M的坐标,根据的面积为3求出CM,进而即可求得点C的坐标;根据图象直接得出不等式的解集即可.本题是反比例函数和一次函数交点的问题,考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,三角形面积以及函数与不等式的关系,数形结合解题的关键.21.【答案】解:过点A作,垂足为F,扶梯AB的坡度为3:2,,设米,则米,在中,米,米,,,米,点A到BE的距离为30米;延长DC交AF于点G,过点D作,垂足为H,由题意得:,,,,在中,米,米,米,米,在中,,米,段扶梯长度约为米.【解析】过点A作,垂足为F,根据已知可设米,则米,然后在中,利用勾股定理求出米,从而列出关于x的方程,进行计算即可解答;延长DC交AF于点G,过点D作,垂足为H,根据题意可得:,,再利用平角定义可得,然后在中,利用锐角三角函数的定义求出AG的长,从而求出DH,FG的长,最后在中,利用含30度角的直角三角形的性质进行计算即可解答.本题考查了解直角三角形的应用-仰角俯角问题,坡度坡角问题,含30度角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【答案】解:设一套实验器材B的标价为x元,则一套实验器材A的标价为元,由题意得:,解得:,经检验,是原方程的解,且符合题意,则,答:一套实验器材A的标价是400元,一套实验器材B的标价是300元;设学校计划购买的实验器材B和实验器材A的数量均为a,由题意得:,整理得:,解得:,舍去,答:m的值为【解析】设一套实验器材B的标价为x元,则一套实验器材A的标价为元,由题意:购买实验器材B的数量是实验器材A数量的2倍时,购买实验器材A共需要4000元,购买实验器材B共需要6000元,列出分式方程,解方程即可;设学校计划购买的实验器材B和实验器材A的数量均为a,由题意:两种实验器材的总价相等,列出一元二次方程,解方程即可.本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:找准等量关系,正确列出分式方程;找准等量关系,正确列出一元二次方程.23.【答案】解:,,,是“九九归一数”;,,,不是“九九归一数”;设,则,,的各个数位数字之和与B的各个数位数字之和的和记为,,的各个数位数字之和与B的各个数位数字之和的差记为,,,能被5整除,能被5整除.当,时,,是5的倍数,符合题意,此时,,;一个自然数M各个数位均不为0,不合题意,舍去;当,时,,是5的倍数,符合题意,此时,,;当,时,,是5的倍数,符合题意,此时,,;当,时,,是5的倍数,符合题意,此时,,综上,所有满足条件的自然数M为3534或3459或【解析】利用“九九归一数”的定义解答即可;利用代数式表示出A,B,再利用新定义表示出和,根据整除的特性解答即可得出结论.本题主要考查了整式的加减,数字变化的规律,本题是新定义型,准确理解新定义的规定并熟练应用是解题的关键.24.【答案】解:抛物线的顶点为,,,解得,,;令,则,解得或,,,令,则,,设直线AD的解析式为,,解得,,设直线BC的解析式为,,解得,,设,,直线QP的解析式为,当时,,,,,,当时,PQ有最大值,此时;点关于直线的对称点为,新抛物线,当时,,,,抛物线的对称轴为直线,设,,当EF为平行四边形的对角线时,,解得,;当EA为平行四边形的对角线时,,解得,;当EG为平行四边形的对角线时,,解得,;综上所述:F点坐标为或或【解析】根据顶点坐标公式求出b、c的值即可求函数的解析式;设,根据两直线平行时k值相等,求出直线QP的解析式为,再求出Q点坐标,则,即可求解;先求出新抛物线,再求出,设,,根据平行四边形的对角线分三种情况讨论,利用平行四边形的对角线互相平分,结合中点坐标公式列出方程组求出m的值即可.本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行四边形的性质,两直线平行时k值相等是解题的关键.25.【答案】解:过点D作,垂足为H,如图1:设,则,是等腰直角三角形,,,,,,,为等腰直角三角形,,,,,,又,,,,是等腰直角三角形,,;证明:连接BF、ME,过点D作,垂足为H,如图2:由旋转可得:且,,,,,,且,,在和中,,≌,,,且,,又,,即,、B、E、M四点共圆,即四边形FBEM为圆内接四边形,,,,又,三线合一,点M是DF的中点,又点N是CF的中点,是的中位线,,,;以AB为边向外作等边三角形,连接BF,如图3:由旋转可得:,且,为等边三角形,为等边三角形,,且,,,,在和中,,≌,,由可知,,,,是一条定线段,说明D、E运动时,F随之运动,G也随之运动,但G始终在与线段AD成角的直线上运动,或者说点G的运动轨迹是一条经过点P且与AP夹角大小为的直线,即图3中的直线PQ,当时,CG的长度最小,此时,延长QP、CB交于点K,过点P作,垂足为R,过点G作,垂直为T,如图4:是等边三角形,,且,,,,且,,,,,且,设,则,,,,在中,,即,,,,,,,,,又,,,且,,,【解析】过点D作,垂足为H,根据,构造直角三角形和,设,根据以及构造出的直角三角形,可以用含a的式子表示出BC,再根据求出a的值,从而求出结合以及问题要证的,可以知道就是要证,而N点是CF中点,所以要证点M是DF中点,即证明MN是的中位线,利用三角形全等、四点共圆、等腰三角形的性质解决即可.以AP为边向外作等边三角形,连接BF,证明,说明点G的运动轨迹是一条经过点P且与AP夹角大小为的直线,通过构造全等三角形、应用特殊角的直角三角形的性质来解决即可.本题是几何变换综合题,考查了旋转的性质,全等三角形的判定与性质,特殊角直角三角形边的关系,等边三角形的性质,等腰三角形的性质,四点共圆,三角形的中位线定理,等腰直角三角形的性质.熟练掌握等腰直角三角形的性质及旋转的性质是解题的关键.。
第21章一元二次方程测试卷(1)一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3ﻩ B.2ﻩ C.0D.32.(3分)方程x2=2x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=3.(3分)方程x2﹣4=0的根是()A.x=2B.x=﹣2 C.x1=2,x2=﹣2ﻩD.x=44.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是( )A.﹣1ﻩB.0ﻩC.1D.25.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9ﻩD.(x﹣2)2=96.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0ﻩB.x2+65x﹣350=0C.x2﹣130x﹣1400=0ﻩD.x2﹣65x﹣350=07.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6ﻩB.8ﻩC.10D.128.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A.12ﻩB.12或15ﻩ C.15ﻩ D.不能确定9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是( )A.1B.1或﹣1C.﹣1D.210.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12 B.12或66C.15ﻩD.33二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2: .12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=,另一个根是.13.(3分)方程(2y+1)(2y﹣3)=0的根是.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= .15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是( )A.﹣3B.2C.0D.3【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.2.(3分)方程x2=2x的解是( )A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.【解答】解:x2﹣2x=0x(x﹣2)=0∴x1=0,x2=2.故选C.【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.3.(3分)方程x2﹣4=0的根是( )A.x=2B.x=﹣2 C.x1=2,x2=﹣2D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b (a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1B.0C.1D.2【考点】根的判别式;一元二次方程的定义.【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0,当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,解得k>,则满足条件的最小整数k为2.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1ﻩC.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.【解答】解:移项得:x2﹣4x=5,配方得:x2﹣4x+22=5+22,(x﹣2)2=9,故选D.【点评】本题考查了解一元二次方程,关键是能正确配方.6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【解答】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x﹣1400=0,即x2+65x﹣350=0.故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6B.8ﻩC.10ﻩD.12【考点】勾股定理.【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.【解答】解:设这三边长分别为x,x+1,x+2,根据勾股定理得:(x+2)2=(x+1)2+x2解得:x=﹣1(不合题意舍去),或x=3,∴x+1=4,x+2=5,则三边长是3,4,5,∴三角形的面积=××4=6;故选:A.【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12ﻩB.12或15 C.15ﻩD.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1ﻩB.1或﹣1 C.﹣1ﻩD.2【考点】根的判别式.【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.【解答】解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12ﻩB.12或66ﻩC.15 D.33【考点】一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=132解得:x1=﹣11(不合题意舍去),x2=12,答:全组共有12名学生.故选:A.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:﹣3x2+2x﹣3=0.【考点】一元二次方程的一般形式.【专题】开放型.【分析】根据一元二次方程的一般形式和题意写出方程即可.【解答】解:由题意得:﹣3x2+2x﹣3=0,故答案为:﹣3x2+2x﹣3=0.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+b x+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4,另一个根是 5 .【考点】一元二次方程的解.【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根,∴把x=﹣1代入得:1﹣b﹣5=0,解得b=﹣4,即方程为x2﹣4x﹣5=0,(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,即b的值是﹣4,另一个实数根式5.故答案为:﹣4,5;【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.(3分)方程(2y+1)(2y﹣3)=0的根是y1=﹣,y2=.【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.【解答】解:∵(2y+1)(2y﹣3)=0,∴2y+1=0或2y﹣3=0,解得y1=,y2=.【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=3.【考点】根与系数的关系.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两,x2,则x1+x2=﹣,代入计算即可.根为x1【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,∴x1+x2=3,故答案为:3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0.【考点】换元法解分式方程.【专题】换元法.【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体.【解答】解:原方程可化为:﹣(x2﹣2x)+3=0设y=x2﹣2x﹣y+3=0∴1﹣y2+3y=0∴y2﹣3y﹣1=0.【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)4x2﹣8x+1=0(配方法)移项得,x2﹣2x=﹣,配方得,x2﹣2x+1=﹣+1,(x﹣1)2=,∴x﹣1=±∴x=1+,x2=1﹣.1(2)7x(5x+2)=6(5x+2)(因式分解法)7x(5x+2)﹣6(5x+2)=0,(5x+2)(7x﹣6)=0,∴5x+2=0,7x﹣6=0,∴x=﹣,x2=;1(3)3x2+5(2x+1)=0(公式法)整理得,3x2+10x+5=0∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,∴x===,∴x1=,x2=;(4)x2﹣2x﹣8=0.(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.【点评】本题考查的是一元二次方程的应用,难度一般.18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0解得x1=30 x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).(1)可先求出增长率,然后再求2007年的盈利情况.(2)有了2008年的盈利和增长率,求出2009年的就容易了.【解答】解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160.=0.2,x2=﹣2.2(不合题意,舍去).解得x1∴1500(1+x)=1500(1+0.2)=1800.答:2007年该企业盈利1800万元.(2)2160(1+0.2)=2592.答:预计2009年该企业盈利2592万元.【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?【考点】一元二次方程的应用.【专题】销售问题.【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x),由题意得,(500﹣40x)×(10+4x)=8000,整理得,5000+2000x﹣400x﹣160x2=8000,解得:x1=,x2=,当x1=时,则涨价10元,销量为:400件;当x2=时,则涨价30元,销量为:200件.答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C 匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【考点】一元二次方程的应用;相似三角形的判定.【专题】几何动点问题.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ =S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有=或=,所以=,或=,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;( 3)有可能.由勾股定理得AB=10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴=,=,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.第21章一元二次方程测试卷(2)一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10B.1,7,﹣10C.1,﹣5,12D.1,3,22.(3分)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14ﻩB.(x﹣3)2=4C.(x+3)2=14ﻩD.(x+3)2=43.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0ﻩC.k<D.k≥且k≠04.(3分)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0B.y﹣﹣3=0C.y﹣+3=0ﻩD.y﹣+3=05.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10ﻩC.11或10ﻩD.不能确定6.(3分)若分式的值为零,则x的值为()A.3ﻩB.3或﹣3ﻩC.0ﻩD.﹣37.(3分)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10B.=10ﻩC.x(x+1)=10ﻩD.=109.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182ﻩB.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182ﻩD.50+50(1+x)+50(1+2x)2=18210.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣ C.4D.﹣111.(3分)定义运算:aﻩb=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则bﻩb﹣aﻩa的值为()A.0B.1 C.2ﻩD.与m有关12.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20B.x•=20C.x(13﹣x)=20D.x•=20二.填空题(每小题3分,共12分)13.(3分)方程x2﹣3=0的根是.14.(3分)当k= 时,方程x2+(k+1)x+k=0有一根是0.15.(3分)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=.16.(3分)写出以4,﹣5为根且二次项的系数为1的一元二次方程是.三.解答题(本题有7小题,共52分)17.(10分)解方程(1)x2﹣4x﹣5=0(2)3x(x﹣1)=2﹣2x.18.(5分)试证明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.19.(6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?20.(8分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?21.(6分)阅读下面的例题,范例:解方程x2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.22.(8分)龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定成本共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元? 23.(9分)如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿A边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从C点开始沿CB边向点B以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、C两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?(2)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?(3)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿A B移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点B即停止运动),是否存在一个时刻,PQ同时平分△ABC的周长与面积?若存在求出这个时刻的t值,若不存在说明理由.ﻩ参考答案与试题解析一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是() A.1,﹣3,10ﻩB.1,7,﹣10ﻩC.1,﹣5,12 D.1,3,2【考点】一元二次方程的一般形式.【专题】压轴题;推理填空题.【分析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.【解答】解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c 是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.(3分)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4ﻩC.(x+3)2=14D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.3.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>ﻩB.k>且k≠0ﻩC.k<D.k≥且k≠0【考点】根的判别式.【专题】压轴题.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.4.(3分)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0ﻩB.y﹣﹣3=0 C.y﹣+3=0ﻩD.y﹣+3=0【考点】换元法解分式方程.【分析】把y=代入原方程,移项即可得到答案.【解答】解:设=y,则原方程可化为:y﹣=3,即y﹣﹣3=0,故选:A.【点评】本题主要考查换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.5.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10C.11或10ﻩD.不能确定【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【专题】计算题;一次方程(组)及应用.【分析】利用因式分解法求出方程的解得到x的值,确定出底与腰,即可求出周长.【解答】解:方程分解得:(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,若3为底,4为腰,三角形三边为3,4,4,周长为3+4+4=11;若3为腰,4为底,三角形三边为3,3,4,周长为3+3+4=10.故选C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.(3分)若分式的值为零,则x的值为()A.3 B.3或﹣3C.0ﻩD.﹣3【考点】分式的值为零的条件;解一元二次方程-直接开平方法;解一元一次不等式.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意,可得x2﹣9=0且2x﹣6≠0,解得x=﹣3.故选D.【点评】本题主要考查分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7.(3分)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.8.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10B.=10ﻩC.x(x+1)=10D.=10【考点】由实际问题抽象出一元二次方程.【专题】其他问题;压轴题.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.9.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182ﻩB.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.。
1 九年级数学上学期期末检测试卷附参考答案3套 (全卷满分120分,考试时间120分钟) 一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,
满分24分) 1.一元二次方程042x的解是( ) A.2x B.2x C.21x,22x D.21x,22x
2.二次三项式243xx配方的结果是( ) A.2(2)7x B.2(2)1x C.2(2)7x D.2(2)1x 3.小明从上面观察下图所示的两个物体,看到的是( )
A B C D 4.人离窗子越远,向外眺望时此人的盲区是( ) A.变小 B.变大 C.不变 D.以上都有可能 5.函数xky的图象经过(1,-1),则函数2kxy的图象是( )
6.在Rt△ABC中,∠C=90°,a=4,b=3,则sinA的值是( )
正面
2 2 2 2 -2 -2 -2 -2 O O O O y y y y x x x x A B C D 2
A.54 B.35 C.43 D.45 7.下列性质中正方形具有而矩形没有的是( ) A.对角线互相平分 B.对角线相等
C.对角线互相垂直 D.四个角都是直角 8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )
A.154 B.31 C.51 D.152
二、填空题(本大题共7个小题,每小题3分,满分
21分)
9.计算tan60°= . 10.已知函数22(1)mymx是反比例函数,则m的值为 . 11.若反比例函数xky的图象经过点(3,-4),则此函数在每一个象限内 y 随x的增大而 . 12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是 . 13.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组中牌中抽取一张,数字和是6的概率是 . 14.依次连接矩形各边中点所得到的四边形是 . 15.如图,在△ABC中,BC = 8 cm,AB的垂直平分线交 AB于点D,交边AC于点E,△BCE的周长等于18 cm, 则AC的长等于 cm.
得 分 评卷人 A D B C E 3
三、解答题(本大题共9个小题,满分75分) 16.(本小题6分)解方程:3(3)xxx
17.(本小题6分)如图,楼房和旗杆在路灯下的影子如图所示。试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)
18.(本小题8分)如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪测得旗杆顶部A的仰角为40,已知测角仪器的高CD=1.5米,求旗杆AB的高.(精确到0.1米)
(供选用的数据:sin400.64,cos400.77,tan400.84)
得 分 评卷人
40
E D
C B
A 4
19.(本小题8分)小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?
转盘1 转盘2 20.(本小题10分)如图,平行四边形ABCD中,AE⊥BD,CF⊥BD, 垂足分别为E、F. (1)写出图中每一对你认为全等的三角形; (2)选择(1)中的任意一对进行证明.
1 2
1
2
3
A B C
D E F 5
21.(本小题8分)某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
22.(本小题10分)已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2. 求证:AD平分∠BAC. 证明:在△AEB和△AEC中, EB=EC1=2AE=AE
∴△AEB≌△AEC(第一步) 2
1
A
B C
D
E 6
∴∠BAE=∠CAE (第二步) ∴ AD平分∠BAC(第三步) 问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.
23.(本小题9分)正比例函数kxy和反比例函数xky的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为3. (1)写出这两个函数的表达式; (2)求B点的坐标; (3)在同一坐标系中,画出这两个函数的图象. 7
24.(本小题10分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格) (1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是yx和,由题意得方程组:327xyyx, 消去y化简得:06722xx, ∵△=49-48>0,∴x1= ,x2= .
O 1 2 3 4 5 6
6 5 4 3 2 1
-1 -2 -3 -4 -5 -6 -1
-2
-3 -4 -5 -6
x
y 8
∴满足要求的矩形B存在. (2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在? 2008-2009学年上学期期末检测 九年级数学 参考答案 一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分) 1.C 2.B 3.A 4.B 5.A 6.D 7.C 8.B 二、填空题(本大题共7个小题,每小题3分,满分21分)
9.3 10.-1 11.增大 12.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形 13.13 14.菱形 15.10 三、解答题(本大题共9个小题,满分75分) 16.(本小题6分) 解方程得x1=1,x2=3
17.(本小题6分) 略 9
18.(本小题8分) 解:在Rt△ADE中,tanADE=DEAE ∵ DE=10,ADE=40° ∴ AE=DEtanADE =10tan40°≈100.84=8.4 ∴ AB=AE+EB=AE+DC=8.41.59.9 答:旗杆AB的高为9.9米
19.(本小题8分)
解:∵P(奇数)=31 P(偶数)=32 ∵31×2=32×1 ∴这个游戏对双方是公平的 20.(本小题10分) 解:(1)△ABD≌△CDB,△AEB≌△CFD,△AED≌△CFB (2)证明略 21.(本小题8分)
解:设每千克应涨价x元,根据题意,得 (10)(50020)6000xx 即215500xx, 解得x1=5,x2=10
∵要使顾客得到实惠 ∴102x舍去 答:每千克应涨价5元。 22.(本小题10分) 解:上面的证明过程不正确,错在第一步。 证明:∵EB=EC, ∴∠3=∠4 又∵∠1=∠2 ∴∠1+∠3=∠2+∠4 即∠ABC=∠ACB ∴AB=AC
∴在△AEB和△AEC中, EB=EC1=2AB=AC
∴△AEB≌△AEC ∴∠BAE=∠CAE ∴AD平分∠BAC 23.(本小题9分)
转盘2 转盘1 1 2 3
1 1 2 3 2 2 4 6
2 1
A
B C
D
E 3 4 10
解:(1)∵正比例函数y=kx与反比例函数xky的图像都过点A(1,3),则k=3 ∴正比例函数是y=3x ,反比例函数是3yx (2)∵点A与点B关于原点对称,∴点B的坐标是(-1,-3) (3)略 24.(本小题10分)
解:(1)2和32;
(2)321xyxy,消去y化简得:2 x2-3x+2=0,Δ=9-16<0,所以不存在矩形B. (3)(m + n)2 -8 mn≥0, 设所求矩形的两边分别是yx和,由题意得方程组:
22mnxymnxy,消去y化简得:2 x2-(m + n)x + mn = 0,
Δ=(m + n)2 -8 mn≥0. 即(m + n)2-8 mn≥0时,满足要求的矩形B存在 九年级数学上学期期末检测试题卷
(全卷满分120分,考试时间120分钟) 一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)
1.下列方程中,是一元二次方程的是( )
A.32yx B.2(1)3x
C.11322xxx D.29x 2.有一实物如下左图,那么它的主视图是( )
A B C D