当前位置:文档之家› 电化学血糖传感器原理及发展

电化学血糖传感器原理及发展

电化学血糖传感器原理及发展
电化学血糖传感器原理及发展

电化学血糖传感器原理及发展

前言

葡萄糖是一种在全世界范围内被分析测试最频繁的物质之一。电化学法血糖检测系统已经成功开发了3O余年,目前全世界每年约消耗60亿片电化学血糖测试试纸,是糖尿病人实施血糖自我检测、有效控制病情的重要手段。血糖试纸实质是在一些塑料基片上印刷了导电碳墨和银墨后再复合印刷含酶涂层的生物电化学酶传感器。我国现有糖尿病人4000万,每年还以1.5%的速度在增加,对葡萄糖分析检测的研究也曰渐增多,因此,近年来有关葡萄糖氧化酶电极的研究论文每年都有上千篇,国内也有上百家研究单位、lO多家企业在从事血糖仪和血糖试纸的研发和生产。

1 电化学葡萄糖传感器的研究基础

电化学酶法测定葡萄糖可追溯到上世纪的30年代末,当时通过测定铂金电极上过氧化氢的氧化分解而产生的电流变化测算出溶液中因氧的消耗导致的氧分压下降值,进而测得葡萄糖的浓度。其反应过程如下:

葡萄糖+FAD–葡萄糖氧化酶→葡萄糖酸内酯+FADH2–葡萄糖氧化酶①

FADH2–葡萄糖氧化酶+02→FAD–葡萄糖氧化酶+H2O2②

H202→2H++O2+2e-③

25年后,美国的Updike和Hicks成功简化了葡萄糖的电化学测定方法,他们将葡萄糖氧化酶固定在某种胶体基质中实现了酶的固定和稳定化,使葡萄糖氧化酶催化剂可以被反复使用。此后他们将固定后的葡萄糖氧化酶制成膜片同Clark极谱式氧电极结合,制成了世界上第一个酶电极。

2 导电介质葡萄糖酶传感器的发展

随着葡萄糖电化学分析系统的成功商业化,1970年Williams等试图采用分子导电介质取代氧分子进行氧化还原电子传递的尝试。他们使用铁氰化钾-亚铁氰化钾导电介质系统成功实施了血液葡萄糖的电化学测定,同时还用同一电化学系统测定了血乳酸。

尽管日后这一开创性的电化学测试原理被广泛使用在公司血糖仪的开发和生产实践中,但遗憾的是当时并未被直接应用于家用血糖仪测试系统的商业化开发。

世界上第一个便携式家用电化学血糖测试系统是1987年由美国Medisense 公司推出的ExacTech,该系统采用二茂铁及其衍生物作为氧化还原导电介质,通过丝网印刷导电碳墨在PVC塑料基片上,制成外观尺寸如同pH试纸大小的血糖试纸,可以大规模制作生产。

3 血糖测试电化学试纸的产业化开发

由于潜力巨大的全球糖尿病测试消耗品市场的增长,糖尿病人每天测试血糖的实际需要,实施商品化血糖试纸的开发设计和生产有着极大的商业价值。任何生产厂家或者技术开发商为了提高产品质量,降低生产成本必将对每一款待开发的测试系统进行全面综合考虑和评估,需要评估考虑的主要内容包括:系统的准确度和精密度要求、血糖测定的速度、所使用氧化还原酶的种类和稳定化方式、采样量、进样方式、试纸的外观尺寸,原材料的选择包括导电介质、试纸基片材料和导电油墨,在仪器的外观考虑用户友好界面的设计、使用方便性、元气件器件的价格成本、芯片的综合性能因数等。

3.1 现行血糖试纸的总体设计考虑

(1)试纸基片的材料选择

血糖试纸的基片目前都趋向于使用PET聚酯材料,这种材料本身具有一定的折弯机械强度,容易实施机械切割,有利于规模化生产。材料的耐热温度达到120℃,比较适合导电油墨印刷完之后的高温固化。为了便于用户使用和操作,基片材料的厚度可控制在0.35~0.5mm,试纸的实际长宽尺寸一般控制在

6mm×30mm左右。

(2)试纸电极的工作电极和参比电极的油墨

绝大多数血糖试纸的工作电极仍然使用碳墨材料,目前可考虑选择的碳墨有多种,较常用的有美国的艾奇森,厄康、杜邦以及英国的格温特。商业化试纸无论使用上述哪种碳墨均有良好表现。

参比电极传统上使用银/氯化银材料,近年来从成本上考虑也有大量改用碳材料的趋势。金属材料近年来也开始批量使用在血糖试纸的制作中,这类材料包括金、钯、铂金等,通常采用电化学真空溅射方法均匀涂布在试纸基板表面。(3)试纸吸血槽的设计

随着对血糖试纸的精度要求不断提高,过去建立在光电比色的基础上实施的滴血加样法逐步被虹吸式自动进样方式取代。由于虹吸式自动进样方式具有控制采样量大小的优点,因此虹吸式吸血槽的设计及其空间大小必须被严格限定而由下例公式计算设定:

t=3μl2/(σcosφ)h①

式中,t——样品吸入所需时间;

μ——血液黏度;

l——吸血槽长度;

σ——溶液表面张力;

φ——吸血膜湿润角度;

h——吸血槽高度。

二、升华阶段

升华干燥是冷冻干燥的主要过程,其目的是将物料中的冰全部汽化移走,整个过程中不允许冰出现溶化,否则便告冻干失败。升华的二个基本条件:一是保证冰不溶化;二是冰周围的水蒸汽必须低于610帕(正确的说法应是低于物料冻结点的饱和蒸汽压)。升华干燥一方面要不断移走水蒸气,使水蒸汽压低于要求的饱和蒸汽压,另一方面为加快干燥速度,要连续不断地提供维持升华所需的热量,这便需要对水蒸气压和供热温度进行最优化控制,以保证升华干燥能快速、低能耗完成。

三、解析干燥

物料中所有的冰晶升华干燥后,物料内留下许多空穴,但物料的基质内还留有残余的未冻结水分(它们以结合水和玻璃态形式存在)。解析干燥就是要把残余的未冻结水分除去,最终得到干燥物料

生物芯片技术简介

一、概述:

生物芯片这一名词最早是在80年代初提出的,主要指分子电子器件。美国海军实验室研究员Carter 等试图把有机功能分子或生物活性分子进行组装,想构建微功能单元,实现信息的获取、贮存、处理和传输等功能。用以研制仿生信息处理系统和生物计算机。产生了"分子电子学"同时取得了一些重要进展:如分子开关、分子贮存器、分子导线和分子神经元等分子器件,更引起科学界关注的是建立了基于DNA或蛋白质等分子计算的实验室模型。

进入90年代,另一类"生物芯片"引起了人们的关注,通过机器人自动打印或光引导化学合成技术在硅片、玻璃、凝胶或尼龙膜上制造的生物分子微阵列。

实现对化合物、蛋白质、核酸、细胞或其它生物组分准确、快速、大信息量的筛选或检测。

二、分类

根据分子间特异性相互作用的原理,将生命科学领域中不连续的分析过程集成了芯片表面,构建微流体(Microfluidics)生物化学分析系统。按照芯片上固定的生物分子的不同,可以将生物芯片划分为:基因芯片、DAN芯片、蛋白质芯片及芯片实验室(Lab-on-chip)。从其功能不同的角度,又可分为:测序芯片、表达芯片和比较基因组杂交(CGH)芯片。

三、制备

1. 载体材料的要求:作为载体必须是固体片状或者膜、表面带有活性基因,以

便于连接并有效固定各种生物分子。

2. 载体种类:玻璃片、PVDF膜、聚丙烯酰氨凝胶、聚苯乙烯微珠、磁性微珠。

3. 芯片制备方法:

①原位合成:适用于寡核苷酸,通过光引导蚀刻技术。已有P53、P450,BRCAI/BRCA2等基因突变的基因芯片。

②预合成后点样:是将提取或合成好的多肽、蛋白、寡核苷酸、cDNA、基因组DAN等通过特定的高速点样机器人直接点在芯片上。由于该技术相对简易低廉,被国内外广泛使用,目前市场上销售的芯片大多采用这一技术制作的。

接触式点样:是指打印针从多孔板取出样品后直接打印在芯片上。打印时针头与芯片接触。优点是探针密度高,通常一平方厘米可打印2500个探针。缺点是定量准确性及重现性不太好。

非接触式点样:针头与芯片保持一定距离。定量准确重现性好,但喷印的斑点大,密度低。通常1cm2只有400点。但目前把喷印点直径大小由150~100μm 降到30~25μm已成为可能,可将哺乳动物整个基因组DNA点阵于一张芯片上成为可能。

4. 生物样品的制备:分离纯化、圹增、获取其中的蛋白质或DNA、RNA并用荧光标记,才能与芯片进行反应。用DNA芯片做表达谱研究时,通常是将样品先抽提mRNA,然后反转录成cDNA。同时掺入带荧光标记的dCTP或dUTP。四、检测设备:

以基因芯片为例:基因芯片的原型是80年代中期提出的,兴起于90年代后期。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以用图来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序列。据此可重组出靶核酸的序列。

杂交反应是荧光标记的样品与芯片上固定的探针间进行特异性选择反应的过程。芯片杂交属于固一液相杂交。芯片杂交结果的检测要依据标记的报告分子的种类来选择不同的检测设备。

早期使用的同位素标记法,需经过暴光、显影,再用特殊的扫描仪扫读。目前最常见最成功的标记法是荧光标记,杂交反应后各个反应点上的荧光位置。荧光强弱经过芯片扫描仪和相关软件进行分析,将荧光信号转换成数据。即可获得有关生物信息。

1. 质谱分析技术:应用于蛋白质芯片结果的分析,不仅能检测到和芯片上蛋白质发生相互作用的靶蛋白,并且能同时测算出靶蛋白的分子量甚至结构。

2. CCD检测:应用于基因芯片和DNA芯片。分辨率低,一般30~50μm。

3. 激光扫描共聚焦:应用于基因芯片和DNA芯片。基因芯片微阵列的点非常微小,利用激光共聚焦原理可以让光路直接聚焦到样品点表面,有效防止杂质信号产生的背景噪音干扰。包括:灰尘荧光,样本背面的污染,固相基质如玻璃的荧光信号和来自扫描仪光学组件荧光污染。

共聚焦:是指光(激发和发射)在两个位置上聚焦。激发光聚焦在样本上。发射光聚焦在针孔上。这一针孔限制仪器在样本表面的聚焦深度从而降低背景信号的强度。

血糖检测方法及原理

血糖检测方法及原理 血糖检测的方法和原理是什么?家用血糖仪是一种通过简单的检测,能够较为精确地反映糖尿病病人即时血糖值的仪器。很多糖尿病患者都会使用,但你知道血糖检测原理是什么吗?血糖仪是怎样工作的?一起来了解下吧。 把血糖仪称作”血糖监测系统可能更为贴切,它是一个完整的采血、检测、分析等过程的综合反映,仪器只是一个光信号或电信号的检测器,主要技术含量都在一张张小小的”塑料片内部,而试纸的核心就是生物酶,不同的酶和辅酶有不同的特性,检测的准确性、精确性和抗干扰能力都各不相同。 仪器从检测方法上可分为生物电和光电比色两种,生物电方法不受环境强光影响,无需经常清洁,采血样本一般在机外,避免交叉感染的可能,但通电后易受血中一些代谢性酸化还原物质和残留药物的干扰。采用光电比色法的仪器因易受血样污染,需经常进行清洁保养,但不会受到血样中内源性代谢产物和外源性药物浓度的影响。 血糖仪检测血糖的原理不尽相同,检测方法也不同,只有了解了仪器工作的原理后,在选用时,才可以最大限度避免临床药物、病人体内成分、环境等因素的干扰,使得血糖检测的数据更加精准。 现在血糖试纸常用酶主要为葡萄糖氧化酶和葡萄糖脱氢酶两种,各有特点,对氧含量、药物、其他糖类物质的反应也不尽相同。葡萄糖氧化酶对葡萄糖特异性高,但由于它反应过程需要氧的参与,因此测量结果容易受血氧含量影响而造成结果出现偏差;试纸也容易与空气中氧气发生反应,一般应在开封后3到4个月内用完。

葡萄糖脱氢酶不受血液或空气中氧分子的干扰,试纸一般可以使用至标明的有效期,但是葡萄糖脱氢酶由于反应过程需要一定的辅酶和介质的参与,有些辅基如吡咯喹啉醌(PQQ)可能与注射用麦芽糖等其他糖类、口服木糖和半乳糖发生反应,造成结果假性升高,所以除应用含有上述糖类的患者之外,葡萄糖脱氢酶技术可应用于其他合适的患者。血糖测试时所用的血糖试条,与各品牌血糖仪是专用配套的,在各品牌之间不能通用。市场上的血糖试条有两种采血方式滴血式和虹吸式。滴血式的血糖试条,测试时需要血样多,需要将血样滴加到试条上,血滴太多、太少或者位置不准确都会影响测试值。而采用虹吸自动吸血方式的血糖试条,需要血样少,加样量可以自动控制,试纸有能显示血液是否适量的确认点,操作简单,也可避免加血样误差,进而保证测试结果的准确性。

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

(完整word版)传感器原理及应用复习题.docx

《传感器原理及应用》复习题 1.静态特性指标其中的线性度的定义是指 2.传感器的差动测量方法的优点是减小了非线性误差、提高了测量灵敏度。 3.对于等臂半桥电路为了减小或消除非线性误差的方法可以采用提高桥臂 比,采用差动电桥的方法。 4.高频反射式电涡流传感器实际是由线圈和被测体或导体两个部分组成的系统,两者之间通过电磁感应相互作用,因此,在能够构成电涡 流传感器的应用场合中必须存在金属材料。 5.霍尔元件需要进行温度补偿的原因是因为其霍尔系数和材料电阻 受温度影响大。使用霍尔传感器测量位移时,需要构造一个磁场。 6.热电阻最常用的材料是铂和铜,工业上被广泛用来测量中低温 区的温度,在测量温度要求不高且温度较低的场合,铜热电阻得 到了广泛应用。 7.现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数 系统时,应选其中的光电传感器。需要测量某设备的外壳温度,已知其 范围是300~400℃,要求实现高精度测量,应该在铂铑- 铂热电偶、铂电阻和热 敏电阻中选择铂电阻。 8.一个二进制光学码盘式传感器,为了达到1″左右的分辨力,需要采用 或位码盘。一个刻划直径为400 mm的 20 位码盘,其外圈分别间隔 为稍大于μm。 9.非功能型光纤传感器中的光纤仅仅起传输光信息的作用,功能型光纤传感器 是把光纤作为敏感元件。光纤的 NA 值大表明集光能力强。 11.光照使半导体电阻率变化的现象称为内光电效应,基于此效应的器件除光敏 电阻外还有处于反向偏置工作状态的光敏二极管。光敏器件的灵敏度可 用光照特性表征,它反映光电器件的输入光量与输出光电流(电压 )之间 的关系。选择光电传感器的光源与光敏器件时主要依据器件的光谱特性。 12. 传感器一般由敏感元件 _ 、转换元件 ___ 、测量电路及辅助电 源四个部分组成。 13.传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化 量的比值。对线性传感器来说,其灵敏度是一常数。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理与检测技术复习题(DOC)

《传感器原理及检测技术》复习题 一、选择题 1、传感器中直接感受被测量的部分是(B) A.转换元件 B.敏感元件 C.转换电路 D.调理电路 2、属于传感器静态特性指标的是(D) A.幅频特性 B.阻尼比 C.相频特性 D.灵敏度 3、属于传感器时域动态特性指标的是(A) A.阶跃响应 B.固有频率 C.临界频率 D.阻尼比 4、属于传感器动态特性指标的是(C) A.量程 B.灵敏度 C.阻尼比 D.重复性 5、传感器能感知的输入变化量越小,表示传感器的(D) A.线性度越好 B.迟滞越小 C.重复性越好 D.分辨力越高 6、衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标是(A) A.重复性 B.稳定性 C.线性度 D.灵敏度 7、一般以室温条件下经过一定的时间间隔后,传感器的输出与起始标定时输出的差异来表示传感器的(C) A.灵敏度 B.线性度 C.稳定性 D.重复性 8、传感器的线性范围愈宽,表明传感器工作在线性区域内且传感器的(A) A.工作量程愈大 B.工作量程愈小 C.精确度愈高 D.精确度愈低 9、表示传感器或传感检测系统对被测物理量变化的反应能力的量为(B) A.线性度 B.灵敏度 C.重复性 D.稳定性 10、在明确传感器输入/输出变换关系的前提下,利用某种标准器具产生已知的标准非电量输入,确定其输出电量与输入量之间关系的过程,称为(C) A.校准 B.测量 C.标定 D.审核 11、按传感器能量源分类,以下传感器不属于能量转换型的是(D) A.压电式传感器 B.热电式传感器 C.光电式传感器 D.压阻式传感器 12、某温度计测量范围是-20℃~+200℃,其量程为(B) A. 200℃ B. 220℃ C. 180℃ D. 240℃ 13、某温度测量仪的输入—输出特性为线性,被测温度为20℃时,输出电压为10mV,被测温度为25℃时,输出电压为15mV,则该传感器的灵敏度为(D) A. 5mv/℃ B. 10mv/℃ C. 2mv/℃ D. 1mv//℃ 14、热电偶的T端称为(C) A.参考端 B.自由端 C.工作端 D.冷端 15、随着温度的升高,NTC型热敏电阻的电阻率会(B) A.迅速增加 B.迅速减小 C.缓慢增加 D.缓慢减小 16、有一温度计,测量范围为0~200o C,精度为0.5级,该表可能出现的最大绝对误差为(A) A.1 o C B.0.5 o C C.10 o C D.200 o C 17、热电偶式温度传感器的工作原理是基于(B) A.压电效应 B.热电效应 C.应变效应 D.光电效应

血糖测量的电化学原理

血糖测量的电化学原理 血糖测量的电生物化学原理是当施加一定电压于经酶反应后的血液产生的电流会随着血液中的血糖浓度的增加而增加。通过精确测量出这些微弱电流,并根据电流值和血糖浓度的关系,反算出相应的浓度。所以,确定这个关系是问题的核心。但其关系复杂,受多方面因素影响。电压强度、所使用的试条以及检测的血液量都会对其产生影响。理论上需要在所有浓度点上大量实验才能确定最终的关系。在实际操作中,只需在选择若干重要浓度点做大量实验,然后采用曲线拟合或插值等数据处理方式来确定其与电流值之间的关系。 血糖测量通常采用电化学分析中的三电极体系。三电极体系是相对于传统的两电极体系而言,包括,工作电极(WE),参比电极(RE)和对电极(CE)。参比电极用来定点位零点,电流流经工作电极和对电极工作电极和参比电极构成一个不通或基本少通电的体系,利用参比电极电位的稳定性来测量工作电极的电极电势。工作电极和辅助电极构成一个通电的体系,用来测量工作电极通过的电流。利用三电极测量体系,来同时研究工作电极的点位和电流的关系。如图1所示: 方案描述 该血糖仪提供多种操作模式以适应不同场合的应用,另外提供了mmol/L,mg/dl,g/l三种常见测量单位的自由切换并自动转换。该三个单位之间的转换关系如下: 1mmol/L=18 mg/dL 1mmol/L=0.18 g/L 1 mg/dL=0.01 g/L 针对不同国家地区的不同要求,血糖仪可以采用以上任意一种单位来显示测量结果,转换的方式采取使用特殊的代码校正条来实现。

(1)单片机及内部硬件资源的充分利用。Silicon labs C8051F410单片机内部集成了丰富的外围模拟设备,使用户可以充分利用其丰富的硬件资源。 C8051F410单片机的逻辑功能图如图2所示。利用其中12位的A/D转换器用来做小信号测量,小信号电流经过电流采样电路最终转换为电压由该A/D采样,然后以既定的转换程序计算出浓度显示在液晶板上。利用12位的D/A转换器可以输出精确稳定的参比电压用于三电极电化学测量过程,由于D/A的输出可以由程序编程任意改变,因此可以很方便的通过改变D/A值来改变参比电压与工作电压之间的压差,而且可以12位的精度保证了压差的稳定,有效提高测量精度。 温度传感器用于采集温度信号,做温度补偿[4]。因为血糖试剂在温度过高或过低的情况下都会出现测量偏差的问题,因此在测量过程中通过该温度传感器采集环境温度,在试剂要求的温度范围之外该参数就可以用来作为温度补偿。 内部具有32/16kB的Flash存储器可用于存储测量数据。2kB的集成RAM作为测量数据的缓冲。血糖仪需要将每次测量数据及日期记录在非易失性存储介质中,通常采用Flash存储器,但Flash存储器普遍存在重写速度慢的问题,因此,利用这2kB的RAM做缓冲,在有电源的情况下用于记录数据,在每次血糖仪关机的时候再将数据写入Flash中,间接提高血糖仪测量效率。 (2)电源设计采用两节普通碱性AAA电池,利用RT9701和RT9266组成高效升压电路升压到3.3V作为整个血糖仪的供电。在整个仪器的供电电路结构上,设计电源开关电路,当关机时除了MCU和实时时钟可以直接通过电池供电以外,其他电路的电源被全部切断,然后使MCU和实时时钟进入休眠或节电状态,可以大大节省待机的耗电,延长电池的使用时间。MCU的唤醒通过中断实现,当开关按键按下时产生一个按键中断,由此唤醒MCU并为其他电路接通电源,血糖仪重

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

电化学传感器工作指南设计及电路图

电化学传感器工作指南及电路图 引言 本公司有毒气体检测传感器的开发始于1981年,以一氧化碳传感器的研制为开端。之后对各式各样新传感器都进行了开发。直至最进开发的臭氧和氧化乙烯传感器,形成了系列的传感器产品,并以其可靠、 稳定和耐用等特点斐声海外。 此类传感器系一微型燃料电池,设计成为免维护型并且能长时间稳定工作的产品。所采用的技术立足于己于人本公司早期氧传感器的工作基础,系直接响应气体的体积浓度变化,而不是响应其压力的变化。 该类传感器设计的最大特点是采用了气体的扩散势垒,该势垒能限制气体流向敏感电极的流星。敏感电极能与到达电极的电化学活性仍有余裕。这一高的电化学活性保证了传感器的长寿命和很好的温度稳定性。两电极系统 基于电化学原理工作的传感器其最简单的一种型式就是两电极系统。其工作电极和对电极由一薄层电解液隔开并经由一个很小的电阻联通外电路。当气体扩散进入传感器后,在敏感电极表面进行氧化或还原反应,产生电流并通过外电路流经两个电极。该电流的大小比例于气体的浓度,可通过外电路的负荷电阻予以测量。 为了让反应能够发生,敏感电极的电位必须保持在一个特定的围。但气体的浓度增加时,反应电流也增加,于是导致对电极电位改变(极化)。由于两电极是通过一个简单的负荷电阻连接起来的,虽然敏感电极的电位也会随着对电极的电位一起变化。如果气体的浓度不断地升高,敏感电极的电位最终有可能移出其允许围。至此传感器将不成线性,因此两电极气体传感器检测的上限浓度受到一定限制。 三电极系统 对电极的极化所受的限制可以用引进第三电极,参考电极,和利用一外部的恒电位工作电路来予以避免。在这样一种装置中,敏感电极曲线相对于参考电极保持一固定值。在参考电极中无电流流过,因此这两个电极均维持在一恒定的电位。对电极则仍然可以进行极化,但对传感器而言已不产生任何限制作用。因此 三电极传感器所能检测浓度围要比两电极大得多。 大部分有毒气体传感器(3/4/7系列)均属三电极系统。由于控制了敏感电极的电位,恒电位电路还能提高传感器的选择性和改进其响应性能。这一电路同时也用来测量流过敏感电极和对电极之间的电流。电路可以作成体积很小的低功耗装置。本章后部将提供一些与此有关的电路。 四电极系统 图1 三电极系统进一步发展导致了四电极系统传感器的产生(A3/A7系列)。这一类型的传感器增加了另一个工作电极,称之为辅助电极。辅助电极的讯号可以用来抵消温度变化的影响或者用来提高传感器的选择性。用了第四电极可以使传感器的讯号更稳定,对被测量气体有着特性的响应。 温度影响 即使不存在反应气体,传感器的敏感电极也会显示一个很小的讯号电流称之为“基线电流”。虽然在

血糖仪原理设计及仿制开发方案详解

血糖儀原理設計及仿製開發方案詳解 本文主要探討基於C8051F系列單片機的血糖儀電路原理設計與應用分析,並同時提供仿製開發、調詴生產的完整解決方案。 血糖測量通常採用電化學分析中的三電極體系。三電極體系是相對于傳統的兩電極體系而言,包括,工作電極(WE),參比電極(RE)和對電極 (CE)。參比電極用來定點位元零點,電流流經工作電極和對電極工作電極和參比電極構成一個不通或基本少通電的體系,利用參比電極電位的穩定性來測量工作電極的電極電勢。工作電極和輔助電極構成一個通電的體系,用來測量工作電極通過的電流。利用三電極測量體系,來同時研究工作電極的點位和電流的關係。如圖1 所示。 圖1 三電極工作原理 方案描述 該血糖儀提供多種操作模式以適應不同場合的應用,另外提供了mmol/L,mg/dl,g/l三種常見測量單位的自由切換並自動轉換。該三個單位之間的轉換關係如下: 1mmol/L=18 mg/dL 1mmol/L=0.18 g/L 1 mg/dL=0.01 g/L mmol/L = 毫(千分之一)莫爾/ 升 mg/L = 毫(千分之一)克/ 升 針對不同國家地區的不同要求,血糖儀可以採用以上任意一種單位來顯示測量結果,轉換的方式採取使用特殊的代碼校正條來實現。 (1)單片機及內部硬體資源的充分利用。Silicon labs C8051F410單片機內部集成了豐富的週邊類比設備,使使用者可以充分利用其豐富的硬體資源。C8051F410單片機的邏輯功能圖如圖2所示。利用其中12位的A/D轉換器用來做小信號測量,小信號電流經過電流採樣電路最終轉換為電壓由該A/D採樣,然後以既定的轉換程式計算出濃度顯示在液晶板上。利用12位的D/A轉換器可以輸出精確穩定的參比電壓用於三電極電化學測量過程,由於D/A的輸出可以由程式程式設計任意改變,因此可以很方便的通過改變D/A值來改變參比電壓與工作電壓之間的壓差,而且可以12位的精度保證了壓差的穩定,有效提高測量精度。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

传感器原理与检测技术

河南工程学院 2017年秋《传感器原理与检测技术》试卷 批次专业:2016年春季-电气工程及其自动化(专升本)课程:传感器原理与检测技术(专升本)总时长:180分钟 1. ( 单选题 ) 仪表的精度等级是用仪表的( )来表示的。(本题分) A、相对误差 B、绝对误差 C、引用误差 D、使用误差 学生答案: 标准答案:C 解析: 得分:0 2. ( 单选题 ) 下列不是电感式传感器的是( )。(本题分) A、变磁阻式自感传感器 B、电涡流式传感器 C、差动变压器式互感传感器 D、霍尔元件式传感器 学生答案: 标准答案:D 解析: 得分:0 3. ( 单选题 ) 常用于制作超声波探头的材料是( )(本题分)

A、应变片 B、热电偶 C、压电晶体 D、霍尔元件 学生答案: 标准答案:C 解析: 得分:0 4. ( 单选题 ) 下列不可以直接测量温度的传感器是( )。(本题分) A、金属应变片式传感器 B、红外线传感器 C、光纤传感器 D、热电偶传感器 学生答案: 标准答案:A 解析: 得分:0 5. ( 单选题 ) 压电式传感器目前多用于测量( )。(本题分) A、静态的力或压力 B、动态的力或压力 C、速度 D、加速度 学生答案: 标准答案:D 解析: 得分:0

6. ( 单选题 ) 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量( )。(本题分) A、增加 B、减小 C、不变 D、不能判断 学生答案: 标准答案:A 解析: 得分:0 7. ( 单选题 ) 在车间用带微机的数字式测温仪表测量炉膛的温度时,应采用( ) 较为妥当。(本题分) A、计算修正法 B、仪表机械零点调整法 C、冰浴法 D、冷端补偿器法(电桥补偿法) 学生答案: 标准答案:D 解析: 得分:0 8. ( 单选题 ) 下列几种误差中,属于随机误差的有( )。(本题分) A、仪表未校零所引起的误差 B、测频时的量化误差 C、测频时的标准频率误差 D、读数错误

血糖仪原理设计及开发方案详解

血糖仪原理设计及仿制开发方案详解 本文主要探讨基于C8051F系列单片机的血糖仪电路原理设计与应用分析,并同时提供开发、调试生产的完整解决方案。 血糖测量通常采用电化学分析中的三电极体系。三电极体系是相对于传统的两电极体系而言,包括,工作电极(WE),参比电极(RE)和对电极 (CE)。参比电极用来定点位零点,电流流经工作电极和对电极工作电极和参比电极构成一个不通或基本少通电的体系,利用参比电极电位的稳定性来测量工作电极的电极电势。工作电极和辅助电极构成一个通电的体系,用来测量工作电极通过的电流。利用三电极测量体系,来同时研究工作电极的点位和电流的关系。如图1 所示。 图1 三电极工作原理 方案描述 该血糖仪提供多种操作模式以适应不同场合的应用,另外提供了mmol/L,mg/dl,g/l 三种常见测量单位的自由切换并自动转换。该三个单位之间的转换关系如下:1mmol/L=18 mg/dL 1mmol/L=0.18 g/L 1 mg/dL=0.01 g/L 针对不同国家地区的不同要求,血糖仪可以采用以上任意一种单位来显示测量结果,转换的方式采取使用特殊的代码校正条来实现。 (1)单片机及内部硬件资源的充分利用。Silicon labs C8051F410单片机内部集成了丰富的外围模拟设备,使用户可以充分利用其丰富的硬件资源。C8051F410单片机的逻辑功能图如图2所示。利用其中12位的A/D转换器用来做小信号测量,小信号电流经过电流

采样电路最终转换为电压由该A/D采样,然后以既定的转换程序计算出浓度显示在液晶板上。利用12位的D/A转换器可以输出精确稳定的参比电压用于三电极电化学测量过程,由于D/A 的输出可以由程序编程任意改变,因此可以很方便的通过改变D/A值来改变参比电压与工作电压之间的压差,而且可以12位的精度保证了压差的稳定,有效提高测量精度。 图2 C8051F410逻辑功能图 温度传感器用于采集温度信号,做温度补偿[4]。因为血糖试剂在温度过高或过低的情况下都会出现测量偏差的问题,因此在测量过程中通过该温度传感器采集环境温度,在试剂要求的温度范围之外该参数就可以用来作为温度补偿。 内部具有32/16kB的Flash存储器可用于存储测量数据。2kB的集成RAM作为测量数据的缓冲。血糖仪需要将每次测量数据及日期记录在非易失性存储介质中,通常采用Flash 存储器,但Flash存储器普遍存在重写速度慢的问题,因此,利用这2kB的RAM做缓冲,在有电源的情况下用于记录数据,在每次血糖仪关机的时候再将数据写入Flash中,间接提高血糖仪测量效率。 (2)电源设计采用两节普通碱性AAA电池,利用RT9701和RT9266组成高效升压电路升压到3.3V作为整个血糖仪的供电。在整个仪器的供电电路结构上,设计电源开关电路,

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

微传感器原理与技术

一、名词解释: MEMS:其英文全称为Micro-Electro-Mechanical System,是用微电子,即microelectronic 的技术手段制备的微型机械系统。第一个M也代表器件的特征尺寸为微米量级,如果是纳米量级,相应的M这个词头就有nano来替代,变为NEMS,纳机电。MEMS及NEMS是在微电子技术的基础上发展起来的,融合了硅微加工、LIGA技术等的多种精密机械微加工方法,用于制作微型的梁、隔膜、凹槽、孔、反射镜、密封洞、锥、针尖、弹簧及所构成的复杂机械结构。(点击)它继承了微电子技术中的光刻、掺杂、薄膜沉积等加工工艺,进而发展出刻蚀、牺牲层技术、键合、LIGA、纳米压印、甚至包括最新的3D打印技术SOI: SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势,因此可以说SOI将有可能成为深亚微米的低压、低功耗集成电路的主流技术。 SOC:SOC-System on Chip,高级的MEMS是集微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统,这样的系统也称为SOC,即在一个芯片上实现传感、信号处理、直至运动反馈的整个过程。 LIGA:LIGA是德文光刻、电镀和模铸三个词的缩写。它是在一个导电的基板上旋涂厚的光刻胶,然后利用x射线曝光,显影后形成光刻胶的模具,再用电镀的方法在模具的空腔中生长金属,脱模后形成金属的微结构。特点:该工艺最显著的特点是高深宽比,若用于加工一个细长杆,杆的直径只有1微米,而高度可达500微米,深宽比大于500,这是其他技术无法比拟的。其次,它还具有材料广泛的特点,可加工金属、陶瓷、聚合物和玻璃。但传统的LIGA采用的x射线曝光工艺极其昂贵,近年来采用SU-8光刻胶替代PMMA光刻胶,紫外曝光代替x射线曝光的准LIGA技术获得了更广泛的发展和应用。 DRIE:反应离子深刻蚀(Deep RIE)。干法刻蚀的典型工艺是DRIE深槽刻蚀。刻蚀分为两步,第一步,通入SF6刻蚀气体进行反应离子刻蚀,刻蚀是各向同性的,即槽底不仅要被刻蚀,槽壁也会被刻蚀。如果就一直这样刻下去,刻蚀的图形和掩模定义的图形将完全不一样,很难控制微结构的尺寸。解决此问题的方法是分步刻蚀,逐次推进。在刻蚀进行10多秒钟转入第二步,快速地将刻蚀气体切换成保护气体C4F8,C4F8在等离子的作用下进行聚合,生成类似于特氟龙这种不粘锅材料,沉积在槽底和槽壁上。10多秒钟后,又切换成SF6刻蚀气体,等离子体中的正离子在电场加速作用下只轰击槽底,而不怎么轰击槽壁,优先将槽底的聚合物保护膜打掉,暴露出硅片表面,从而使得化学刻蚀反应能够再次进行。刻蚀时,由于槽壁上仍然保留有保护膜,而不会被刻蚀。重复这样的刻蚀-保护过程,就能在硅片上刻蚀出垂直的深槽。深槽在宏观上的垂直度能达到88-92°,但微观上其侧壁是有多段小弧形连接而成。干法刻蚀不再象湿法腐蚀那样需要晶向的对准,因此可以制备出齿轮、弹簧等复杂的图形。 二、多项选择题 第一章、 1、MEMS器件的尺寸范围是:(1) (1)从1um到1mm (2)从1nm到1um (3)从1mm到1cm 3、微系统部件的“深宽比”被定义为(1)之比 (1)高度方向尺寸和表面方向尺寸(2)表面方向尺寸和高度方向尺寸(3)宽度方向尺寸和长度方向尺寸 4、目前为止,商品化最好的MEMS器件是(2)

传感器原理及应用习题及答案

习题集及答案 第1章概述 1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3传感器如何分类?按传感器检测的畴可分为哪几种? 答案 1.1答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 1.3答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试 求:① R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U0=? ②R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =1.2Ω,

相关主题
文本预览
相关文档 最新文档