当前位置:文档之家› 以煤为原料的合成氨工艺选择

以煤为原料的合成氨工艺选择

以煤为原料的合成氨工艺选择
以煤为原料的合成氨工艺选择

大型低压合成氨工艺全面国产化

大型低压合成氨工艺全面国产化 2011年10月,完全采用国产化技术的大型低压合成氨项目——鲁西化工集团股份有限公司36万吨/年合成氨装置一次开车成功并投入生产。该项目于2010年开始建设,2011年10月进行试车。截至目前,该合成氨装置已连续稳定运行近4个月,产品质量符合相关的国家标准。 这套装置以煤为原料生产液氨产品,装置设计压力15兆帕,生产能力1200吨/天,是第一套完全采用我国自主知识产权的大型低压合成氨装置。该装置的空分、气化、净化和氨合成单元,分别采用了杭州杭氧股份有限公司、北京航天万源煤化工工程技术有限公司、大连佳纯气体净化技术开发有限公司和南京国昌化工科技有限公司自主开发的技术。在4个月的时间里,装置开车情况总体顺利。 36万吨/年低压合成氨装置的开车成功,意味着我国全面掌握了大型低压合成氨项目的全套自主技术,结束了低压氨合成关键技术长期依赖国外的局面。国产设备和技术打破了国外公司的长期垄断,与国际行业巨头形成多足鼎立的态势,将有力推动国内合成氨工业的进步与发展。 三十年磨剑氨合成技术打破垄断 合成氨工业诞生于上世纪初,上世纪60年代开始的合成氨装置大型化是其发展史上的一次重大变革。随着世界能源供应的日趋紧张,合成氨工业向大型化、低压化、节能化、安全环保方向发展成为必然趋势。国外合成氨工业以大型装置为主,一般单套装置的生产能力在1000公吨/天以上,目前最大装置的生产能力达到2200公吨/天。 我国合成氨工业始于上世纪30年代,1949年以前,中国仅在南京、大连两家合成氨厂,生产能力共计4万吨/年。直到新中国成立后,国内合成氨工业才迎来大发展。1990年,我国氨产量达到2100万吨,居世界第一位;2008年,我国氨产量达到5100万吨。在此期间,我国合成氨产业从无到有,并迅速达到世界先进水平。 不过,我国大型低压氨合成工艺技术在鲁西大化肥项目之前均采用国外技术。在此项目之前,空分、大型煤气化、耐硫变换、低温甲醇洗、液氮洗等工艺技术经过国内科研院所、企业的通力合作,均实现了国产化,唯独氨合成工艺技术还被国外公司垄断。 我国对大型设备及技术国产化十分重视。针对大型合成氨工艺技术水平较低的情况,原化工部于上世纪80年代开展了消化吸收国外大型径向塔的攻关项目。1986年,国家经贸委批准我国国产化“八条龙”,其中第七条龙为大型合成氨装置国产化,原化工部批准南化集团研究院负责大型径向氨合成塔的研究开发工作,由南京国昌公司的创始人吕仲明教授级高工担任项目组长。 该课题组在氨合成反应动力学、径向流体力学及径向氨(甲醇)合成塔创新方

合成氨条件的选择

学科:化学 教学内容:合成氨条件的选择 【基础知识精讲】 1.合成氨反应的理论应用 合成氨反应原理: N2+3H22NH3(正反应为放热反应) 反应特点是:①可逆反应;②气体总体积缩小的反应;③正反应为放热反应. 根据上述反应特点,从理论上分析: (1)使氨生成得快的措施(从反应速率考虑):①增大反应物的浓度;②升高温度;③加大压强;④使用催化剂. (2)使氨生成得多的措施(从平衡移动考虑):①增大反应物的浓度同时减小生成物的浓度;②降低温度;③增大压强. 2.合成氨条件的选择 在实际生产中,既要考虑氨的产量,又要考虑生产效率和经济效益,综合以上两方面的措施,得出合成氨的适宜条件的选择: 浓度:一般采用N2和H2的体积比1∶3,同时增大浓度,不加大某种反应物的浓度,这是因为合成氨生产的原料气要循环使用.按1∶3循环的气体体积比,仍会保持1∶3. 温度:合成氨是放热反应,降低温度虽有利于平衡向正反应方向移动,但温度过低,反应速率过慢,所以温度不宜太低,在500℃左右为宜,而且此温度也是催化剂的活性温度范围. 压强:合成氨是体积缩小的可逆反应,所以压强增大,有利于氨的合成,但压强过高时,对设备的要求也就很高,制造设备的成本就高,而且所需的动力也越大,应选择适当的压强,一般采用2×107Pa~5×107Pa. 催化剂:用铁触媒作催化剂,能加快反应速率,缩短达到平衡时间. 可将合成氨的适宜条件归纳为: ①增大氨气、氢气的浓度,及时将生成的氨分离出来;②温度为500℃左右;③压强为2×107Pa~5×107Pa;④铁触媒作催化剂. 3.合成氨的工业简述 合成氨工业的简要流程图: (1)原料气的制取. N2:将空气液化、蒸发分离出N2,或将空气中的O2与碳作用生成CO2,除去CO2后得N2. H2:用水和焦炭(或煤、石油、天然气等)在高温下制取,如

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 脱硫 CO变换 脱碳 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作为产品。所 以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代传统的铜 氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到0.1ppm以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO 为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化 ②德士古水煤浆加压气化工艺 ③干煤粉加压气化工艺 ●以渣油为原料的合成氨工艺 按照热能回收方式的不同,分为德士古(Texaco)公司开发的激冷工艺与壳牌(Shell)公司开发的废热锅炉工艺。这两种工艺的基本流程相同,只是在操作压力和热能回收方式上有所不同。

煤化工合成氨的工艺

煤化工合成氨的工艺 气化工艺各有千秋 1.常压固定床间歇式无烟煤(或焦炭)气化技术 目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为?准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。 2.常压固定床无烟煤(或焦炭)富氧连续气化技术 其特点是采用富氧为气化剂、连续气化、原料可采用?准 8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。 3.鲁奇固定床煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。焦油分离、含酚污水处理复杂,不推荐用以生产合成气。 4.灰熔聚煤气化技术 中国科学院山西煤炭化学研究所技术。其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。 5.恩德粉煤气化技术 属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。属流化床气化炉,床层中部温度1000~1050℃。目前最大的气化炉产气量为4万m3/h半水煤气。缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。 6.GE水煤浆加压气化技术 属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。设计中的气化炉能力最大为1600t/d。对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。气化炉结构简单,为耐火砖衬里,制造方便、造价低。煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。国外已建成投产6套装置15台气化炉;

合成氨条件的选择_1

合成氨条件的选择 第四节 从容说 合成氨工业对化学工业和我国实现农业现代化具有重要意义。本节内容体现了化学反应速率和平衡移动原理等理论对工业生产实践的指导作用。能够培养学生理论联系实际的意识。通过本节课的学习,也可进一步加深学生对所学理论的理解。从内容上分,本节共介绍了两个知识点。其一主要是通过讨论引导学生运用化学反应速率和化学平衡原理等知识,综合考虑合成氨生产中动力、设备、材料等的实际情况,合理地选择合成氨的生产条件;其二是拓宽思路,探讨合成氨的发展前景。当然,前者是本节教学的重点和难点。 在教学中,针对合成氨反应是一个放热的、气体总体积缩小的可逆反应,首先要求学生运用已学过的知识,讨论增大合成氨的化学反应速率所应采取的措施。在此基础上,再要求学生根据提供的有关实验数据,讨论提高平衡混合物中NH3的含量所应采取的方法。然后,结合合成氨生产中动力、材料、设备、催化剂活性等实际情况,通过具体分析,得出合成氨时压强、温度、催化剂等的最佳条件。此外,应通过合成氦生产过程示意图、浓度等条件对合成氨的影响,原料的循环使用等问题,使学生理解应以提高经济效益为目的。

本节第二部分内容的教学,其目的不在于知识本身,而是更多地侧重了培养学生的创新精神和科学方法的训练,教学过程中应适度把握。 ●教学目标 使学生理解如何应用化学反应速率和化学平衡的原理,选择合成氨的适宜条件。 使学生了解应用化学原理选择化工生产条件的思路和方法。 通过运用化学反应速率和化学平衡原理选择合成氨的适宜条件,培养学生分析问题解决问题的能力以及对所学理论的应用能力。 通过对合成氨工业未来的展望,激发学生热爱祖国、刻苦学习的激情。 ●教学重点 应用化学反应速率和化学平衡的原理选择合成氨的适宜条 ●教学难点 使学生理解如何用化学反应速率和化学平衡的原理选择合成氨的适宜条 ●课时安排 一课时 ●教学方法

化工工艺习题

第一章合成氨原料气的制备 1.何为固体燃料气化? 2.煤气的成分由哪些因素决定?(影响煤气组成的因素有哪些?) 3.常用的工业煤气有哪些?制合成氨所用的煤气是什么/ 4.何为独立反应数?如何计算/ 5.以煤和水蒸气反应,欲制得含CO和H2较高的水煤气,应在什么 条件下进行反应?欲制得CH4含量高的高热值煤气,应在什么条件下进行反应? 6.以空气和水蒸气为汽化剂,对煤进行热加工,在自热平衡条件下 获得的煤气是什么煤气? 7.什么是半水煤气? 8.固体燃料间歇气化的原因是什么? 9.如何进行煤气化过程的连续生产? 10.间歇制半水煤气的工作循环包括哪几个阶段?用于制气的阶段有 哪些?各阶段的作用是什么? 11.间歇制水煤气的工作循环包括哪几个阶段? 12.间歇制低氮煤气的工作循环包括哪几个阶段? 13.间歇制半水煤气中,炉内温度过高会造成什么影响? 14.分析间歇制半水煤气中的能耗问题。 15.气化炉的操作温度即炉温指的是何处的温度? 16.间歇制半水煤气各阶段时间分配的原则是什么? 17.间歇制半水煤气中,调节气体组成常用的方法有哪些? 18.燃烧室的作用是什么? 19.富氧空气—水蒸气连续气化过程中,用调节什么的方法,保持燃 料层在允许温度范围内维持系统的自热平衡? 20.富氧空气—水蒸气连续气化制半水煤气时,主要操作指标有哪 些? 21.天然气蒸汽转化反应过程的主副反应主要有哪些? 22.何为烃类蒸气转化? 23.生产合成氨最经济的原料气生产方法是什么? 24.影响天然气蒸汽转化反应平衡的因素有哪些?有何影响? 25.提高温度,降低压力,提高水碳比,均有利于降低烃类蒸气转化 的转化气中的哪种组分含量。 ①H2②CO ③CH4④CO2 26.烃类蒸气转化过程为何分两段进行?二段转化的目的是什么? 27.在天然气蒸气转化系统中,将水碳比从3.5~4降至2.5,试分析一 段转化炉可能出现的问题和解决的方法。 28.试分析烃类蒸气转化过程中加压的原因和确定操作温度的依据。

探究煤化工合成氨工艺及节能改造策略

探究煤化工合成氨工艺及节能改造策略 近年来,我国化工产业取得了巨大的发展成就。化工产品日益增多。化工产品的使用为日常生活提供了巨大的便利。化工产品具有丰富的种类和生产方式。氨在农业化肥中得到了日渐广泛的使用,该化学物质主要通过各类不同材料,诸如煤、炼油气以及石油等生产合成氨。合成氨在农业、工业以及医药业等诸多领域得到了广泛应用。本文浅析了煤化工合成氨工艺,探究了煤化工合成氨工艺的节能改造策略,以期为煤化工合成氨提供借鉴。 标签:煤化工;合成氨;节能改造 前言:当前,我国的合成氨化工科技取得了迅速发展,并得到了日渐改进。煤化工合成氨工艺日渐成熟,并在合成氨工业实际生产中得到了日渐广泛的应用。煤化工合成氨工艺具有相对较低的成本,且能合成纯度较高的氨,但该工艺以煤为原材料。为降低合成氨工艺对煤的消耗,要立足于实践,采取有效措施,提升煤化工合成氨效率,有效实现对煤化工合成氨工艺的节能改造。 一、煤化工合成氨工艺 1、制取原料气 煤化工合成氨的首个工艺环节,是制取原料气。一般通过煤化气法制取原料气,借助氧气、蒸汽,并结合催化剂,对煤实施有效的高温加热,对煤进行分解,产生相关可燃气体,诸如一氧化碳和氢气等。然后,通过二段蒸汽实施转化,实现对氨气的有效合成。 2、净化原料气 对原料气进行制取的方式较为粗略。原料气制取完成后,还残留着一氧化碳、微量氧气、二氧化碳以及大量硫化物,导致原料气缺乏较高的纯度。为实现对原料气的有效提纯,要对原料气进行严格净化。净化工作能将原料气中残留的氨气及氢气之外的所有杂质有效去除。同时,对原料气进行净化,要注重有效脱硫以及脱碳。去除原料气中所含的一氧化碳具有较大的难度。为实现对一氧化碳的尽快去除,要先对一氧化碳实施有效转化,使之转化为二氧化碳以及氢气,降低去除难度,实现对杂质的有效去除,增加氢气原料的提取量,为合成氨提供更多原料[1]。对一氧化碳进行清除,实际上延续了对原料气的制取。在该过程中,一氧化碳还能实现对部分氢气的有效转化。将原料气中所含的一氧化碳有效清除后,即实施脱硫工作,有效清除硫化物质。实施脱硫工作,能有效提升合成氨的实际质量。同时,硫化物质具有毒性。只有将原料气中所含的硫化物质及时有效地清除,才能增强合成氨制取的安全性。工业脱硫常用的手段主要有两种,一种是物理化学吸收法,一种是低温甲醛洗法。对粗原料气实施一氧化碳变换后,变换气中含有一氧化碳、二氧化碳、甲烷以及氢气等成分,其中,含量最多的是二氧化碳。一般情况下,通过溶液吸收法,对原料气中所含的二氧化碳进行脱除。

煤为原料生产合成氨项目建议书说课讲解

四川(泸州)地区以煤为原料生产合成氨 项目建议书 项目承建:四川XXX股份有限公司 项目书编制:XXX 二O一四年九月十日

目录 一、项目建设目的和意义 (1) 二、产品生产方案和生产规模 (4) 三、工艺技术初步方案 (6) 四、原材料、能源和动力的来源及供应 (8) 五、建厂条件和厂址初步方案 (9) 六、劳动卫生、安全保障及环境保护 (10) 七、工人组织和人员配备 (11) 八、投资估算和资金筹措方案 (12) 九、经济效益和社会效益的初步评价 (13) 十、结论与建议 (16)

一、项目建设目的和意义 1.项目提出的背景和依据 目前,XXX公司仍以天然气为原料合成氨,进而生产其主要产品尿素。但众所周知,我国是一个富煤、少气、贫油的国家。特别是近年来,我国天然气开采供应日渐枯竭,已难以维持工业生产的需要,甚至需要从国外巨资购买维持民用。 地处长江边的泸州,是中国天然气化工的发源地。化学工业一直是泸州规模最大、资产存量最厚、发展潜力最好的产业。化学工业总量已占到了全省的25%左右。XXX公司作为泸州地区化工行业领头企业,拥有雄厚的技术力量基础。 2.市场调研及预测分析 我们可以通过下面一系列数据得以验证: 2013年,我国天然气表观消费量达到1676亿立方米,同比增长13.9%,已成为世界第三大天然气消费国。从2006年我国天然气开始进口,进口量逐年上升,天然气进口通道不断完善,对外依存度不断提高。2013年,随着中缅管道建成投运,广东珠海、河北唐山和天津浮式LNG项目陆续建成投产,西北、西南、海上三条天然气进口通道初步建成。天然气进口量继续快速增长,全年进口量530亿立方米,同比增长25%,对外依存度突破了30%升至31.6%,比上年同期增加2.8个百分点。2013年,国家发改委出台了天然气价格改革方案,天然气定价机制市场化改革取得了重大突破。预计2014年,消费量将

合成氨条件的选择

合成氨条件的选择 姓 名 _________ 一. 重点、难点 1. 使学生理解合成氨的化学原理,并能应用化学反应速率和化学平衡理论,选择合成氨的适宜条件,从而培养学生分析问题和解决问题的能力。 2. 了解合成氨工业生产的主要流程。 3. 向学生介绍我国解放后合成氨工业的发展情况,对学生进行爱国主义教育。 二. 具体内容 自学提纲:1. 影响化学反应速率的因素有哪些?是如何影响的?2. 影响化学平衡的条件有哪些?是如何影响的?3. 应用化学平衡原理分析,要制得更多的氨,可以采用哪些措施? (一)原理 唯物辩证法告诉我们:一切从实际出发,要全面地分析问题.综合考虑化学反应速率和化学平衡移动的条件,再根据工业生产的特点和实际需要,才能正确地选择合成氨工业的适宜条件。 (二)适宜条件的选择 1. 压强。增大压强,有利于3NH 的合成,但在实际生产中,压强不可能无限制的增大,因为压强越大, 需要的动力越大,对材料的强度和设备的制造要求也越高,势必增大生产成本,降低综合经济效益。因此,受动力、材料、设备等条件的限制,目前我国合成氨厂一般采用的压强是 MPa 20~MPa 50。 2. 温度。合成氨为放热反应,低温有利于氨的生成。但是温度越低,反应速率就慢,到达平衡所需要的时间越长,因而单位时间内产量低,这在工业生产中是很不经济的。综合考虑各种因素,在实际生产上,采用500℃的温度,此时催化剂的活性最大。 3. 催化剂。由于2N 分子非常稳定, 2N 与 2H 的化合十分困难,即使采用了加热与高压的条件,合成 氨的反应还是十分缓慢。为了加快化合反应速率,降低反应所需要的能量,合成氨工业普遍使用铁触媒作催化剂。合成氨的化学反应原理可以用以下化学方程式表示: (三)生产过程简介1. 原料气的制备:N 2来自空气H 2: 原料:空气、水和燃料 据反应条件,使用合适的催化剂——防止催化剂“中毒”——原料气要净化.高压生产——氮、氢混合气要用压缩机压缩到高压。 2. 氨的合成:氮、氢混合气经过净化压缩以后进入合成塔。合成塔生产的特点和条件: ① 高压 ② 发生在催化剂存在下的放热反应 ③ 适当的温度 为了符合这些条件,合成塔的构造应该: ① 有耐高压的厚壁 ② 有能够安放厚层触媒的设备(接触室) ③ 塔壳外用绝热材料包裹,塔内有进行热交换的设备(热交换器)展示 挂图(一种合成塔的内部构造示意图)依次看氨合成塔的部构造模型。 3. 氨的分离 在实际生产中,不断补充、(增大反应物浓度),采取迅速冷却的方法(减小生成物浓度), 使气态氨变成液氨后及时从平衡混合物中分离出去,以促使化学平衡不断地向着生成 的方向移动。

煤化工工艺路线图

煤化工工艺路线图 煤制甲醇典型工艺路线图

1、合成甲醇的化学反应方程式: (1)、主反应: C O+2H2=C H3O H+m o l (2)、副反应 2C O+4H2=C H3O C H3+H2O+K J/m o l C O+3H2=C H4+H2O+K J/m o l 4C O+8H2=C4H9O H+3H2O+K J/m o l C O2+H2=C O+K J/m o l 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈~,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。 3、CO变换反应 C O+H2O(g)=C O2+H2(放热反应) 4、水煤气组分与甲醇合成气组分对比 天然气制甲醇工艺流程图

1、合成甲醇的化学反应方程式: C H4+H2O=C H3O H+H2 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈~,由于天然气甲烷含量较高,因此要对天然气进行蒸汽转化,生成以H2、CO和CO2位主要成分的转化气。由于蒸汽转化反应是强吸热反应,因此还要对天然气进行纯氧部分氧化以获取热量,使得蒸汽转化反应正常连续进行,最终达到甲醇合成气的要求。 3、蒸汽转化反应 C H4+H2O(g)=C O+H2(强吸热反应) 4、纯氧部分氧化反应 2C H4+O2=2C O+4H2+m o l C H4+O2=C O2+2H2+k J/m o l C H4+O2=C O2+H2O+k J/m o l 5、天然气组分与甲醇合成气组分对比 石油化工、煤炭化工产品方案对比(生产烯烃)

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

煤为原料的合成氨工艺流程简图

以煤为原料的合成氨工艺 煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体! C+H 2O(水蒸气)=CO+H 2 (水煤气法) CO+H 2 O=CO 2 +H 2 拥有氢气与氮气,即可制得氨。 氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH 3+CO 2 ==COONH 2 NH 4 (放热),COONH 2 NH 4 ==CO(NH 2 ) 2 +H 2 O(吸热)。 尿素加热分解可以制成三聚氰胺 6CO(NH 2) 2 ==C 3 N 3 (NH 2 ) 3 (三聚氰胺)+3CO 2 +6NH 3。 工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ①一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12% 到40%。合成氨需要的两种组分是H 2和N 2 ,因此需要除去合成气中的CO。变换 反是: CO+H 2O→H 2 +CO 2 =-41.2kJ/mol 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制 变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO 2和H 2 ;第 二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ②脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法

合成氨条件的选择(一)

第四节合成氨条件的选择(一) 教学目标: 使学生理解合成氨的化学原理,并能应用化学反应速率和化学平衡理论指导合成氨条件的选择,从而培养学生分析问题、解决问题的能力。 通过本节课的教学,让学生明确工业生产中生产条件的选择。 教学设想: 课本通过对合成氨反应特点的分析,引导学生通过P49的两个讨论问题,让学生结合反应速率和平衡移动原理对合成氨条件的选择。接下来指出工业生产中由于条件的限制,分析工业生产中合成氨的具体条件。应该说,课本中已经体现一定的探究教学思想。为此,教学过程中把教学模式定位在引导学生探究模式上(即采取“创设情景——提出问题——探讨研究——归纳总结”程序),以培养学生分析问题、解决问题的能力。 教学过程: 第一步、复习回顾 通过以下三个问题的回顾,激活学生原有认知结构中的知识。问题: 1、写出工业上合成氨的反应; 2、回顾氮气的化学性质; 3、简单回顾外界条件对化学反应速率、化学平衡的影响。 第二步、引导探究 首先,引导学生分析合成氨反应的特点(可逆、体积减小、正反应放热、反应较难进行——因为氮气很稳定)。 其次、提出问题:“假设聘你为某合成氨工厂的技术顾问,你将为提高生产效益提供那些参考意见?”(学生也许会从不同角度展开讨论,教师应有意识的把学生限定在加速合成氨反应速率和提高产率两个方面)。 第三、让学生变讨论边填写下列表格。 第五、提出问题、引导探究 问题1、从反应速率的角度,反应要求在高温下进行有利于加快反应速率;从化学平衡的角度,反应要求在低温度下进行有利于平衡右移。如何解决这一矛盾? 问题2、资料表明,合成氨工业生产中,采用的条件一般是“20~50MPa、500℃、铁触媒”。如何理解这一反应条件的选择?

合成氨条件的选择_3

合成氨条件的选择 合成氨条件的选择合成氨条件的选择 教学目标知识目标使学生理解如何应用化学反应速率和化学平衡原理,选择合成氨的适宜条件;使学生了解应用化学原理选择化工生产条件的思路和方法。能力目标培养学生对知识的理解能力,及理论联系实际的应用能力和分析问题、解决问题的能力。情感目标通过学生领悟理论知识对生产实践的指导作用,使学生树立理论和实践相结合的思想认识;并通过知识的运用培养学生的创新精神和科学方法。 教学建议教材分析本节教材体现了化学反应速率和平衡移动原理等理论对工业生产实践的指导作用,同时在运用理论的过程中,也可进一步加深学生对所学理论的理解。 教材分为两部分:第一部分主要是通过讨论引导学生运用化学反应速率和化学平衡原理等知识,并考虑合成氨生产中动力、设备、材料等的实际情况,合理地选择合成氨的生产条件。第二部分是拓宽思路方面的内容,主要是探讨合成氨的发展前景。 在第一部分内容中,教材针对合成氨的反应是一个放热的、气体总体积缩小的可逆反应,首先要求学生利用已学过的知识,讨论为使合成氨的化学反应速率增大所应采取的方法。在此基础上,又据实验数据讨论为提高平衡混合物中的含量所应采取的方法。在两个讨

论的基础上,教材又结合合成氨生产中动力、材料、设备、催化剂的活性等实际情况,较具体地分析了合成氨时压强、温度、催化剂等的选择情况。此外,还结合合成氨生产过程示意图,简单提及浓度等条件对合成氨生产的影响,以及原料的循环使用等问题,以使学生理解应以提高综合经济效益为目的。 第二部分教学在第一部分的基础上讨论合成氨的发展前景,拓宽学生的思路,主要目的不在于知识本身,而更多地应侧重于培养学生的创新精神和训练科学方法。教学建议 第一部分“”的教学:1.提出问题:针对合成氨的反应,首先需要研究如何在单位时间里提高的产量,这是一个化学反应速率问题。 2.复习提问:浓度、压强、温度、催化剂对化学反应速率影响的结果。 3.组织讨论: ①为使合成氨的反应速率增大,应采取的方法。 ②合成氨反应是可逆反应,在实际生产中,仅仅考虑单位时间里的产量问题(化学反应速率问题)还不行,还需要考虑如何最大限度地提高平衡混合物中的含量问题(化学平衡的移动问题)。 ③针对合成氨的反应是一个放热的、气体总体积缩小的可逆反应,要求学生利用已学过的知识,讨论为最大限度地提高平衡混合物中的含量所应采取的方法。 4.阅读图表实验数据印证理论:学生通过阅读表2-4的实验

合成氨生产工艺介绍

1、合成氨生产工艺介绍 1)造气工段 造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。

脱硫工艺流程图 3)变换工段 变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。河南中科化工有限责任公司采用的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常 压的解吸气经阻火器排入大气。

合成氨的生产工艺

合成氨的生产工艺设计 合成氨的生产工艺设计 一生产原理概述 氨是一种重要的化工原料,特别是生产化肥的原料,它是由氢和氮合成。合成氨工业是氮肥工业

的基础。为了生产氨,一般均以各种燃料为原料。首先,制成含H2和CO等组分的煤气,然后,采用各种净化方法,除去气体中的灰尘、H2S、有机硫化物、CO、CO2等有害杂质,以获得符合氨合成要求的洁净的1:3的氮氢混合气,最后,氮氢混合气经过压缩至15Mpa以上,借助催化剂合成氨。 二半水煤气制气原理 固体燃料的气化过程实际上主要是碳与氧的反应和碳与蒸汽的反应,这两个反应称为固体燃料的气化反应。 表1 以空气为气化剂主要反应方程 序号反应方程式 1 C+O2(3.76N2)=CO2(+3.76N2) 2 C+O=2(3.76N2)=2CO(+3.76N2) 3 C+CO2(3.76N2)=2CO(+3.76N=2) 4 2C+3.76N2+O2+3.76N2=CO2+7.52N2 表2 以水蒸汽为气化剂主要反应方程式 序号反应方程式 1 C+H2O(汽)=CO+H2 2 C+2H2O(汽)=CO2+2H2 3 CO+2H2O(汽)=CO2+H2 4 2H2+O2=2H2O(汽) 5 C+H2=CH4 6 CO+3H2=CH4+H2O 7 CO2+4H2=CH4+2H2O(汽) 在气化炉燃烧层中,炭与空气几水蒸汽的混合物相互作用时的产物称为半水煤气,其化学反应按下列方程式进行:2C+O2+3.76N2=2CO2+3.76N2 C+H2O(汽)=CO+H2 这种煤气的组成由上列两反应的热平衡条件决定。由于半水煤气是生产合成氨的原料气,因此,要求入炉蒸汽与空气(习惯上称为氮空气)比例恰当以满足半水煤气中(CO+H2):N2=3要求,但是在实际生产中要求半水煤气(CO+H2):N2≧3.2。 三流程图 造气 -> 半水煤气脱硫 -> 压缩机1,2工段 -> 变换 -> 变换气脱硫 ->压缩机3段 -> 脱硫 ->压缩机4,5工段 -> 铜洗 -> 压缩机6段 -> 氨合成 -> 产品NH3

高二化学合成氨条件的选择1

第四节合成氨条件的选择 从容说课 合成氨工业对化学工业和我国实现农业现代化具有重要意义。本节内容体现了化学反应速率和平衡移动原理等理论对工业生产实践的指导作用。能够培养学生理论联系实际的意识。通过本节课的学习,也可进一步加深学生对所学理论的理解。从内容上分,本节共介绍了两个知识点。其一主要是通过讨论引导学生运用化学反应速率和化学平衡原理等知识,综合考虑合成氨生产中动力、设备、材料等的实际情况,合理地选择合成氨的生产条件;其二是拓宽思路,探讨合成氨的发展前景。当然,前者是本节教学的重点和难点。 在教学中,针对合成氨反应是一个放热的、气体总体积缩小的可逆反应,首先要求学生运用已学过的知识,讨论增大合成氨的化学反应速率所应采取的措施。在此基础上,再要求学生根据提供的有关实验数据,讨论提高平衡混合物中NH3的含量所应采取的方法。然后,结合合成氨生产中动力、材料、设备、催化剂活性等实际情况,通过具体分析,得出合成氨时压强、温度、催化剂等的最佳条件。此外,应通过合成氦生产过程示意图、浓度等条件对合成氨的影响,原料的循环使用等问题,使学生理解合成氨条件的选择应以提高经济效益为目的。 本节第二部分内容的教学,其目的不在于知识本身,而是更多地侧重了培养学生的创新精神和科学方法的训练,教学过程中应适度把握。 ●教学目标 1. 使学生理解如何应用化学反应速率和化学平衡的原理,选择合成氨的适宜条件。 2. 使学生了解应用化学原理选择化工生产条件的思路和方法。 3. 通过运用化学反应速率和化学平衡原理选择合成氨的适宜条件,培养学生分析问题解决问题的能力以及对所学理论的应用能力。 4. 通过对合成氨工业未来的展望,激发学生热爱祖国、刻苦学习的激情。 ●教学重点 应用化学反应速率和化学平衡的原理选择合成氨的适宜条件 ●教学难点 使学生理解如何用化学反应速率和化学平衡的原理选择合成氨的适宜条件 ●课时安排 一课时 ●教学方法 1. 通过复习化学反应速率和化学平衡移动的有关知识,启发学生得出应用化学原理选择化工生产条件的思路和依据,并结合生产实际,讨论得出合成氨的适宜条件。 2. 通过观看合成氨的录像,使学生了解浓度对合成氨的影响及原料气的循环使用等问题。 3. 通过阅读和讨论,使学生明确化工生产条件并非一成不变,激励学生为选择更好的合成氨条件而努力学习。 ●教具准备 合成氨录像带、合成塔模型、投影仪、胶片 ●教学过程 [复习提问] 1. 影响化学反应速率的因素有哪些? [生]浓度、温度、压强、催化剂等。 2. 要使一个化学平衡发生移动,可改变哪些条件?

以焦炉煤气制合成氨的主要工艺分析与选择

以焦炉煤气制合成氨的主要工艺分析与选择 景志林,张仲平(山西焦化股份有限公司,山西洪洞041606)2007-12-14 山西焦化股份有限公司现拥有80 kt/a合成氨,130 kt/a尿素的生产能力。公司拟建设15 Mt/a焦炉扩建项目(二期工程)。焦炉装置建成后,产生的焦炉煤气除自用外,可外供焦炉气32650 m3/h,这些焦炉气若不及时加以利用,不仅对当地大气环境造成不利的影响,还会造成能源的极大浪费。 对于富裕焦炉煤气利用问题,公司经过多方论证,考虑到多年氮肥生产的技术和管理优势,计划配套建设以焦炉煤气制180 kt/a合成氨,300 kt/a尿素的生产装置。本文介绍“18·30”项目合成氨制备中主要工艺技术路线的选择。 1 焦炉气配煤造气制合成氨的必要性 焦炉气生产合成氨类似天然气生产合成氨,焦炉煤气自身的特点是氢多碳少,C/H低,焦炉气成分如表1。单独用于合成氨生产时,原料气耗量大,弛放气排放量多,单位产品能耗高。必须补碳。 综合考虑,周边煤炭资源丰富,价格便宜,宜采用煤制气补碳,煤制气有效成分(H2+CO)高,可以把合成气调整合理,最大限度地利用原料气。 因此,要想取得好的经济效益,合理地利用原料资源,采用煤、焦、化一体化的联合流程,不仅将能源和环境保护结合起来,而且将传统的焦化工业与化学工业及化肥工业有机地结合起来,生产大宗支农产品——尿素,是新一代焦炉气综合利用的好途径。 2 工艺生产路线概述 将来自焦化厂净化后的剩余焦炉煤气,进入气柜进行混合、缓冲,然后通过罗茨鼓风机升压,湿法脱硫装置脱除焦炉气中的H2S,再加压至2.3 MPa,送干法脱硫装置,将气体中的总硫脱至7 mg/m3以下,利用深冷空分装置送来的富氧,混入蒸汽进行催化部分氧化转化,将气体中的甲烷及少量其他烃转化为CO和H2,转化后的高温气体经废锅回收热量降温后,补加蒸汽进入变换工序的中变炉,进行CO变换反应,调整CO含量至3%,然后进入ZnO 精脱硫槽,将气体中的总硫脱至(1~3)×10-6,再进入装有铜锌催化剂的低温变换炉,控制变换气中CO含量为0.3%。 灰熔聚粉煤气化炉生产的煤气,单独进行压缩、净化、中温变换,之后也进入ZnO 精脱硫槽,与转化后的中变气混合,一起进入低温变换炉,进行深度变换。变换后的低变气进入脱碳装置脱除CO2,控制脱碳气中CO2含量≤0.2%,再经甲烷化装置精制,使气体中的CO+CO2≤20×10-6,合格的氢氮气经合成气压缩机组,加压至31.4 MPa送往氨合成装置。氨合成采用31.4 MPa的高压合成工艺。流程示意如图1。 氨合成产生的放空气净氨后,作为转化装置预热炉的燃料气。

相关主题
文本预览
相关文档 最新文档