当前位置:文档之家› 流体性质

流体性质

流体性质
流体性质

第2章流体的性质

2.1 引言

一般而言,物质可以按其存在的物理形式予以分类。称作相的这些形式,有固体、液体和气体。流体包括液相和气相的物质。我们完全熟悉这些相与固相有所区别的特征。而且,我们也知道液体与气体有着完全不同的外观,所以,我们必须找出能够把它们都归入流体这一类的共同特征。在研究流体动力学时,我们感兴趣的是处于运动中的流体形态以及这种形态对作用力和力矩的关系。当受到切应力作用时,液体、气体和蒸汽都有一种明显的反映形式,这说明了它们的“流动性”,从而为阐明流体动力学原理提供了关键的依据。流体的这种共同的以及与固体有所区别的特征叙述如下:

在剪切(切向)应力作用下,无论这个应力多么小,流体将连续不断地变形。应力的大小取决于角变形率。

另一方面,固体的变形与作用的应力成比例,经一段变形后,达到静态平衡。切应力的大小取决于角变形量。

并非所有流体都具有完全相同的应力和应变率的关系。如果从没有应力和没有变形的状态开始,切应力和角变形率成正比,这种流体就称为牛顿流体。在此情况下,比例常数定义为绝对粘性系数或动力粘性系数 。因此,牛顿流体具有这样一种性质,即它的动力粘性系数与流体所处的运动状态无关。最常见的流体,如空气河水,均匀牛顿流体。在牛顿流体和服从虎克定律的固体之间有类似指出,前者具有一个把应力和变形率联系起来的不变的粘性系数,后者又一个把应力和变形量联系起来的不变的弹性模量。

在应力与变形率之间具有变比例系数的流体称为非牛顿流体。在此情况下,比例系数可能与承受切力的时间长短以及切力的大小有关。然而,大量不常遇到却是极为重要的流体是非牛顿流体。有些物体,突出的如一些塑体,当应力低于其屈服应力时,它们状如固体,而当高于其屈服应力时,它们就具有流体般的形态。流变学就是研究塑体和非牛顿流体的学科。近年来,在工程应用中,非牛顿流体的重要性正在日益增加,因此已经越来越受到重视。在图2-1中,各种流体和塑体的特性分别适于变形率——应力和时间——应力关系图上。

图2-1 流变性态类型

可以根据对于压(正向)应力的反映把流体进一步划分为两大类,即可压缩流体和不可压缩流体。所有的气体和蒸汽都极易压缩。比较起来,液体的压缩性是很小的。我们将会看到,压缩性是在流体运动问题中需要引入热力学的内容。如能假定流体是不可压缩的,那么描述流体的状态及其运动中的性态就要容易的多。除了某些重要的例外,液体通常是不可压缩的。另一方面,只有当整个流动系统中的压力变化很小时,气体才能看作是不可压缩的。

一切流体均由不连续分布并不断运动着的分子所组成。在前面的流体的定义和特征中,忽略掉这种各不相连的分子结构,而把流体当作一种连续介质。这就意味着,在流动中所取的

一切尺寸比之分子间距要大得多,即使考虑到聚变比为零的情况也是这样。 这还意味着在全部给定的流体体积中流体的一切特性,如密度和粘性,都是逐点连续的。

应当说明,连续介质性的粘性流体的一个重要性态是,它在刚性边界上具备无滑移条件。 通过试验,我们观察到实际流体总是粘附于边界上,必须始终满足这个物理条件。

现在来定义和说明流体的特性。 这些特性至少有四类:

1). 运动学特性(线速度,角速度,涡量,加速度和应变率)。

2). 输运特性(粘度,导热系数,质量扩散系数)。

3). 热力学特性(压力,密度,温度,焓,熵,比热,Prandtl 数,体积模量,热膨胀系数)。

4). 其他特性(表面张力,蒸汽压力,涡扩散系数,表面适应系数)。

第四类中有些不是真正的特性,它们依赖于流动条件、表面条件和流体内的杂质。 采用第三类特性是要留有余地。 严格讲,经典热力学不能用于粘性流体,因为这种流体运动时不处于平衡状态。 幸而,除了流动滞留时间短,分子粒子数量少等情况外,流体对于局部热力学平衡的偏离程度通常并不显著。

2.2 运动学特性

流体的运动学特性包括流体的速度、加速度、涡量、环量和应变率等。

流体力学中首先关心的通常是流体速度。 而固体力学中研究的是质点位移,因为固体中各质点以相对的刚性方式联结在一起。 通常,在固体力学中采用拉格朗日运动描述方法来描述个别质点的轨迹。

以火箭喷管外面的流体流动为例。 可以肯定,我们不可能描述几百万个个别质点的轨迹。 甚至观察地点也很重要,因为地面观察着看到的是复杂的非定常流动,而固定在火箭上的观察着看到的则是很规则的近乎定常的流谱。 因此,在流体力学通常的处理方法是

1). 选择最方便的坐标原点,使流动看起来是定常的。

2). 只研究作为位置和时间函数的速度场,而不去描述任何特定的质点轨迹。 这种将每一固定点的流动作为时间函数来描述的方式,称为欧拉运动描述方法。 欧拉速度向量场可用如下笛卡尔坐标形式定义

),,,(),,,(),,,(),,,(),(t z y x w t z y x v t z y x u t z y x V t r V k j i ++== (

根据确定作为(x ,y ,z ,t )函数的标量u ,v ,w ,通常就求出流体力学问题的解。 注意我们用符号(u ,v ,w )来表示速度分量,而不是像在固体力学中那样表示位移分量。 在流体力学中位移几乎没有用处,所以没有用符号区表示它。

欧拉系统,或者速度场系统,肯定是流体力学中的合适选择,但是也有一定矛盾。 力学的三个基本定律——质量守恒、动量守恒和能量守恒,是对确定的相同质点(系统)建立起来的,也就是说,是拉格朗日性的。 所有这三个定律都同固定质点的某特性的时间变化率有关。 设Q 表示流体的任意特性,若t z y x d ,d ,d ,d 表示这四个独立变量的任意变化,Q 的全微分变化为

t t Q z z Q y y Q x x Q Q d d d d d ??+??+??+??= (

流体的物理性质

流体的物理性质 流体流动与输送过程中,流体的状态与规律都与流体的物理性质有关。因此,首先要了解流体的常见物理和化学性质,包括密度、压力、黏度、挥发性、燃烧爆炸极限、闪点、最小引燃能量、燃烧热等。 一、密度与相对密度 密度是用夹比较相同体积不同物质的质量的一个非常重要的物理量,对化工生产的操作、控制、计算等,特别是对质量与体积的换算,具有十分重要的意义。 流体的密度是指单位体积的流体所具有的质量,用符号ρ表示,在国际单位制中,其单位是ke/m3。 式中m——流体的质量,kg; y——流体的体积,m3。 任何流体的密度都与温度和压力有关,但压力的变化对液体密度的影响很小(压力极高时除外),故称液体是不可压缩的流体。工程上,常忽略压力对液体的影响,认为液体的密度只是温度的函数。例如,纯水在277K时的密度为1000kg/m3,在293K时的密度为998.2kg /m3,在373时的密度为958.4kg/ms。因此,在检索和使用密度时,需要知道液体的温度。对大多数液体而言,温度升高,其密度下降。

液体纯净物的密度通常可以从《物理化学手册》或《化学工程手册》等查取。液体?昆合物的密度通常由实验测定,例如比重瓶法、韦氏天平法及波美度比重计法等。其中,前两者用于精确测量,多用于实验室中,后者用于快速测量,在工业上广泛使用。 在工程计算中,当混合前后的体积变化不大时,液体混合物的密度也可由下式计算,即: 式中ρ—液体混合物的密度,kg/ms; ρ1、ρ2、ρi、ρn——构成混合物的各纯组分的密度,ks/m3; w1、w2、wi、wn——混合物中各组分的质量分数。 气体具有明显的可压缩性及热膨胀性,当温度、压力发生变化时,其密度将发生较大的变化。常见气体的密度也可从《物理化学手册》或《化学工程手册》中查取。在工程计算中,如查压力不太高、温度不太低,均可把气体(或气体混合物)视作理想气体,并由理想气体状态方程计算其密度。 由理想气体状态方程式 式中ρ—气体在温度丁、压力ρ的条件下的密度,kg/m3; V——气体的体积,ITl3; 户——气体的压力,kPa; T一—气体的温度,K; m--气体的质量,kg;

流体力学-基本概念

**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 **内摩擦力:流体内部不同流速层之间的黏性力。 **牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。**非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。 **表面张力:1.表面张力作用于液体的自由表面上。2.气体不存在表面张力。3.表面张力是液体分子间吸引力的宏观表现。4.表面张力沿表面切向并与界线垂直。5.液体表面上单位长度所受的张力。6.用σ 表示,单位为N/m。 **流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线。c、流线簇的疏密反映了速度的大小。 **过流断面:与元流或总流的流向相垂直的横断面称为过流断面。(元流:在微小流管内所有流体质点所形成的流动称为元流。总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。)

**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。 **控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界面,称之为控制面。控制面总是封闭表面。占据控制体的诸流体质点随着时间而改变。 **边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。 **边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。 **边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。(2) 边界层内沿厚度方向,存在很大的速度梯度。(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。 (5) 在边界层内,黏性力与惯性力同一数量级。 (6) 边界层内的流态,也有层流和紊流两种流态。 **滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。

流体的一些性质

流体的一些性质 流体的很多性质与固体中的定义相通的,比如密度、压力、温度等。但也有其独特的属性,这里最典型的就是区分流体和固体的力学特性——粘性。此外,液体有表面张力、气体具有易压缩性,这些都是流体特有的属性。 流体的粘性 当流体收到外界的剪切力作用的时候,它会不断地变形下去,在这种连续的剪切变形作用下的流体内部会产生剪切应力,这种性质称为流体的粘性。我们通常见到的液体和气体都有粘性,只有超流体可以认为是没有粘性的。 我们都知道蜂蜜的粘性要远大于水的粘性,现在来分析一下决定流体粘性力大小的因素。仍然用固体之间的摩擦力做类比,对于沿斜面下滑的方块而言,摩擦力等于摩擦系数与它们相互挤压的力的乘积。摩擦系数体现了两个物体的分子作用力大小及它们相接触的表面的粗糙程度,这比较容易理解。但摩擦力为什么和挤压力呈正比呢?毕竟挤压力与摩擦力是垂直关系,应该没有沿摩擦力方向的分量才对。 原因是这样:挤压力越大,则两物体的接触面积就越大,这个接触面积与挤压力之间基本上是线性关系,因此摩擦力也与挤压力呈正比。如果是分子级别光滑的两个物体相接触,则摩擦力就基本上与挤压力无关了。 固体的动摩擦系数与静摩擦系数一般并不相等,因为它们的产生机理不完全相同。静摩擦完全是力的平衡,而动摩擦则还包含动能向内能的转化过程。当两个固体靠在一起并相对滑动时,在摩擦面上不但发生跟静摩擦时类似的力的作用,还会发生两物体分子之间的键不断地被打破,同时又不断形成新的键,并且还伴随着分子和分子团从原物体上脱落等过程。这些过程中会伴随着分子振动能量的变化以及分子运动方向性的混乱,所以摩擦过程一定是产生热量的。图1-4显示了接触面上发生的3种典型的现象。 图1-4 固体动摩擦力的微观解释

流体力学基本概念和基础知识..

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

流体的物理性质

编号:SY-AQ-08047 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 流体的物理性质 Physical properties of fluids

流体的物理性质 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 流体流动与输送过程中,流体的状态与规律都与流体的物理性质有关。因此,首先要了解流体的常见物理和化学性质,包括密度、压力、黏度、挥发性、燃烧爆炸极限、闪点、最小引燃能量、燃烧热等。 一、密度与相对密度 密度是用夹比较相同体积不同物质的质量的一个非常重要的物理量,对化工生产的操作、控制、计算等,特别是对质量与体积的换算,具有十分重要的意义。 流体的密度是指单位体积的流体所具有的质量,用符号ρ表示,在国际单位制中,其单位是ke/m3。 式中m——流体的质量,kg; y——流体的体积,m3。 任何流体的密度都与温度和压力有关,但压力的变化对液体密

度的影响很小(压力极高时除外),故称液体是不可压缩的流体。工程上,常忽略压力对液体的影响,认为液体的密度只是温度的函数。例如,纯水在277K时的密度为1000kg/m3,在293K时的密度为998.2kg/m3,在373时的密度为958.4kg/ms。因此,在检索和使用密度时,需要知道液体的温度。对大多数液体而言,温度升高,其密度下降。 液体纯净物的密度通常可以从《物理化学手册》或《化学工程手册》等查取。液体?昆合物的密度通常由实验测定,例如比重瓶法、韦氏天平法及波美度比重计法等。其中,前两者用于精确测量,多用于实验室中,后者用于快速测量,在工业上广泛使用。 在工程计算中,当混合前后的体积变化不大时,液体混合物的密度也可由下式计算,即: 式中ρ—液体混合物的密度,kg/ms; ρ1、ρ2、ρi、ρn——构成混合物的各纯组分的密度,ks/m3; w1、w2、wi、wn——混合物中各组分的质量分数。 气体具有明显的可压缩性及热膨胀性,当温度、压力发生变化

流体的主要力学性质

一、 班名: 二、 授课内容:引言 三、 时间:60分钟 四、 重点 流体的密度与重度、流体的压缩性与膨胀性、流体的粘滞性。 五、 难点 流体的粘滞性及牛顿内摩擦定律。 六、 课程性质:综合课 七、 教学目的 通过讲解流体的主要物理性质,使学院对流体有更为具体和量化的认识,也为后续学习的展开奠定基础。 八、 教学目标 理解流体密度、压缩性和膨胀性、粘滞性;应用粘滞性来分析实际问题。 九、 所需教具 黑板、粉笔、板擦、计算机和投影仪。 十、 教学过程 首先组织教学,把学员的精神都集中到课堂上来。 (一)回顾上一讲内容(启发式教学,用时5分钟) 1、什么是流体? 流体是易于流动的物质;它包括气体、液体及分散状的固体微粒的集合体。如我们日常生活中的水、空气、燃气等都是流体。 2、什么是流体力学? 流体力学研究流体平衡和运动规律以及流体与固体壁面间作用力的一门科学。 3、流体力学的任务 (1)流体力学主要研究大量流体分子的宏观运动特性。 (2)流体力学学科的分类 流体力学根据研究的重点与方法不同分为:理论流体力学和工程流体力学; 流体力学根据流体性质不同分为:水力学、空气动力学以及两相流体力学。

(3)本课程的主要研究内容和对象 本课程主要以流体在容器和管道内的特性为研究内容。 (二)本节内容 首先向大家说明一个基本问题。流体不同于固体的基本特征是流体的流动性。 一般而言,流体的流动性与其分子间距d 成正比。 1、密度、比容及重度(直观式教学,用时10分钟) (1)密度 密度是一般物质的基本属性,对于均匀流体而言,单位体积的质量称为密度。 /m V ρ= ρ——流体的密度,kg/m 3; m ——流体的质量,kg ; V ——该质量流体的体积,m 3。 (2)比容 也叫做比体积;表示单位质量的流体所占的体积;简单来说就是密度的倒数。 在燃气行业中,比容是应用较多的定义之一。因为燃气在输送过程中其体积和密度是随着压力级制的不同而发生变化的,但其总质量是不会改变的,因为质量是守恒的。 (3)重度 流体和固体一样也受到地球的引力而产生重力。对于均匀质流体,作用于单位体积流体上的重力称为重度。 需要向大家强调一点:流体的密度与重度是随着外界压力与温度的变化而变化的。但有时由于温度和压力变化所引起的流体密度变化不大时,可以认为流体的密度和重度是恒定的。例如,在平时的生活中,我们一般都认为水的密度为1000kg/m 3。但是实际上水的密度是随着温度升高而降低的。不知各位有没有观察过用“热得快”在暖瓶中烧水。即使你在灌水时灌得不满,在加热过程中也会

流体及其主要物理性质

第1章流体及其主要物理性质 一、概念 1、什么是流体?什么是连续介质模型?连续介质模型的适用条件; 2、流体粘性的定义;动力粘性系数、运动粘性系数的定义、公式;理想流体的 定义及数学表达;牛顿内摩擦定律(两个表达式及其物理意义);粘性产生的机理,粘性、粘性系数同温度的关系;牛顿流体的定义; 3、可压缩性的定义;体积弹性模量的定义、物理意义及公式;气体等温过程、 等熵过程的体积弹性模量;不可压缩流体的定义及体积弹性模量; 4、作用在流体上的两种力。 二、计算 1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。 第2章流体静力学 一、概念 1、流体静压强的特点;理想流体压强的特点(无论运动还是静止); 2、静止流体平衡微分方程,物理意义及重力场下的简化; 3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理; 4、绝对压强、计示压强、真空压强的定义及相互之间的关系; 5、各种U型管测压计的优缺点; 6、作用在平面上的静压力(公式、物理意义)。

二、计算 1、U型管测压计的计算; 2、绝对压强、计示压强及真空压强的换算; 3、平壁面上静压力大小的计算。 第3章流体运动概述 一、概念 1、描述流体运动的两种方法(着眼点、数学描述、拉格朗日及欧拉变数); 2、流场的概念,定常场、非定常场、均匀场、非均匀场的概念及数学描述; 3、一元、二元、三元流动的概念; 4、物质导数的概念及公式:物质导数(质点导数)、局部导数(当地导数)、对 流导数(迁移导数、位变导数)的物理意义、数学描述;流体质点加速度、不可压缩流体、均质不可压缩流体的数学描述; 5、流线、迹线、染色线的定义、特点和区别,流线方程、迹线方程,什么时候 三线重合;流管的概念; 6、线变形的概念:相对伸长率、相对体积膨胀率公式,不可压缩流体的相对体 积膨胀率应为什么?旋转的概念:旋转角速度公式,什么样的流动是无旋的? 角变形率公式。 7、微分形式连续方程的适用条件、物理意义、公式及各种简化形式。 二、计算 1、物质导数的计算,如流体质点加速度或流体质点某物理量对时间的变化率;

第2章 流体的性质

第2章流体的性质 2.1 引言 一般而言,物质可以按其存在的物理形式予以分类。称作相的这些形式,有固体、液体和气体。流体包括液相和气相的物质。我们完全熟悉这些相与固相有所区别的特征。而且,我们也知道液体与气体有着完全不同的外观,所以,我们必须找出能够把它们都归入流体这一类的共同特征。在研究流体动力学时,我们感兴趣的是处于运动中的流体形态以及这种形态对作用力和力矩的关系。当受到切应力作用时,液体、气体和蒸汽都有一种明显的反映形式,这说明了它们的“流动性”,从而为阐明流体动力学原理提供了关键的依据。流体的这种共同的以及与固体有所区别的特征叙述如下: 在剪切(切向)应力作用下,无论这个应力多么小,流体将连续不断地变形。应力的大小取决于角变形率。 另一方面,固体的变形与作用的应力成比例,经一段变形后,达到静态平衡。切应力的大小取决于角变形量。 并非所有流体都具有完全相同的应力和应变率的关系。如果从没有应力和没有变形的状态开始,切应力和角变形率成正比,这种流体就称为牛顿流体。在此情况下,比例常数定义为绝对粘性系数或动力粘性系数 。因此,牛顿流体具有这样一种性质,即它的动力粘性系数与流体所处的运动状态无关。最常见的流体,如空气河水,均匀牛顿流体。在牛顿流体和服从虎克定律的固体之间有类似指出,前者具有一个把应力和变形率联系起来的不变的粘性系数,后者又一个把应力和变形量联系起来的不变的弹性模量。 在应力与变形率之间具有变比例系数的流体称为非牛顿流体。在此情况下,比例系数可能与承受切力的时间长短以及切力的大小有关。然而,大量不常遇到却是极为重要的流体是非牛顿流体。有些物体,突出的如一些塑体,当应力低于其屈服应力时,它们状如固体,而当高于其屈服应力时,它们就具有流体般的形态。流变学就是研究塑体和非牛顿流体的学科。近年来,在工程应用中,非牛顿流体的重要性正在日益增加,因此已经越来越受到重视。在图2-1中,各种流体和塑体的特性分别适于变形率——应力和时间——应力关系图上。

油藏流体高压物性实验报告

中国石油大学油层物理实验报告 实验日期: 2012.11.26 成绩: 班级:石工10-15班 学号: 10131504 姓名: 于秀玲 教师: 张俨彬 同组者: 秘荣冉 张振涛 宋文辉 地层油高压物性测定 一、实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解气油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二、实验原理 1.绘制地层油的体积随压力的关系,在泡点压力前后,曲线的斜率不同,拐 点对应的应力即为泡点压力。 2.使PVT 筒内的压力保持在原始压力,保持压力不变将PVT 筒内一定量的地层油放入分离瓶中,记录放出油的地下体积,记录分离瓶中分出的油、气的体积,便可计算地层油的溶解气油比、体积系数等数据。 3.在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原油的粘度: t k )(21ρρμ-= 其中 μ- 原油动力粘度,mPa ·s; t- 钢球下落时间,s ; ρ1、ρ2- 钢球和原油的密度,g/cm 3; k- 粘度计常数,与标准管的倾角、钢球的尺寸及密度有关。 三、实验流程 图一 高压物性试验装置流程图

四、实验步骤 1.泡点压力测定 ⑴粗测泡点压力 从地层压力起以恒定的速度退泵,压力以恒定速度降低,当压力下降到速度减慢或不下降甚至回升时,停止退泵。稳定后的压力即为粗测的泡点压力。 ⑵细测泡点压力 A.升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,每降低一定压力(如2.0MPa)记录压力稳定后的泵体积读数。 B.当压力降至泡点压力以下时,油气混合物体积每次增大一定值(如5cm3),记录稳定后的压力(泡点压力前后至少安排四个测点)。 2.一次脱气 ⑴将PVT筒中的地层原油加压至地层压力,搅拌原油样品使温度、压力均衡,记录泵的读数; ⑵取一个干燥洁净的分离瓶称重,将量气瓶充满饱和盐水; ⑶将分离瓶安装在橡皮塞上,慢慢打开放油阀门,保持地层压力不变排出一定体积的地层油,当量气瓶液面下降200ml左右时,关闭放油阀门,停止排油。记录计量泵的读数; ⑷提升盐水瓶,使盐水瓶液面与量气瓶液面平齐,读取分离出的气体体积,同时记录室温、大气压; ⑸取下分离瓶,称重并记录。 3.地层油粘度测量 ⑴将地层油样转到落球粘度计的标准管中,加热至地层温度; ⑵转动落球粘度计使带有阀门的一端(上部)朝下,按下“吸球”开关,使钢球吸到上部的磁铁上; ⑶转动落球粘度计使其上部朝上,固定在某一角度。按下“落球”开关,钢球开始下落,同时计时开始。当钢球落到底部时自动停止计时,记录钢球下落时间。重复3次以上,直到测得的时间基本相同。 五、数据处理与计算 1.泡点压力的确定: 根据测定的一系列压力P和相应的累积体积差ΔV,绘制P-ΔV关系图,由曲线拐点求出泡点压力值。 表一压力与体积关系测定原始记录 地层温度:40.0℃地层压力:12MPa 粗测泡点压力P b=2.6 MPa 由P和ΔV的数据得出P-ΔV关系图,如图2所示:

相关主题
文本预览
相关文档 最新文档