当前位置:文档之家› 中温相变蓄热材料研究进展_左远志

中温相变蓄热材料研究进展_左远志

中温相变蓄热材料研究进展_左远志
中温相变蓄热材料研究进展_左远志

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

相变材料

相变材料 夏红芳环境工程一班 2220083741 摘要:由于全球能源和环境问题的日益加剧,能源节约和环境的改善已成为当今迫切解决的问题,相变节能材料受到很大重视和广泛研究。本文主要介绍了相变材料的概念、特点、恒温机理及分类,然后讨论了它在各领域的主要运用,并展望了其良好前景和未来研究的方向。 关键词:相变材料节能恒温建筑采暖 1 前言 近年来,随着全球能源危机的日益加剧,节约能源、有效利用能源逐渐成为人们追求的目标。相变材料的节能应用很早就受到重视,许多发达国家对此进行了大量的研究和开发[1]。我国的科研机构亦对此课题进行大量的研究并发表了许多论文。但由于生产材料的成本过高和稳定性等原因,其应用受到限制。近年来由于材料的研究取得重大进展,相变材料的成本大大降低,稳定性也已达到上万个相变周期而不改变其特性,这使得应用相变材料节能达到了实用阶段[2]。从可持续发展战略出发,研究如何在满足当前经济飞快发展的需求,尽可能地提高对能源的有效利用率,对于当前的能源形势具有重大的意义[1]。 2 相变材料 相变材料PCMs( Phase Change Materials)是指在一定狭窄明确的温度范围,即通常所说的相变范围内可以改变物理状态,如从固态转变为液态或从液态变为固态的材料[3]。在相变过程中,体积变化很小,热焓高,因此以潜热形式从周围环境吸收或释放大量热量,热的吸收量或释放量比一般加热和冷却过程要大得多,而此时PCMs的温度保持不变或恒定。因此它是一种利用相变潜热来贮能和放能的化学材料。

我们最常见的相变材料非水莫属了,当温度低至0°C 时,水由液态变为固态(结冰)。当温度高于0°C时水由固态变为液态(溶解)。在结冰过程中吸入并储存了大量的冷能量,而在溶解过程中吸收大量的热能量。冰的数量(体积)越大,溶解过程需要的时间越长[3]。这是相变材料的一个最典型的例子。从以上的例子可看出,相变材料实际上可作为能量存储器。这种特性在节能,温度控制等领域有着极大的意义。因此,相变材料及其应用成为广泛的研究课题。 3 相变材料的分类 相变材料并不是科学家发明的一种新型材料,而是以各种形式存在于自然界中。迄今为止,已有超过500 种的天然和合成相变材料被人们掌握和了解[4]。按相变材料的科学属性划分,相变材料一般可以分为:无机水合盐相变材料、有机相变蓄能材料、复合相变蓄能材料。 3.1 无机类 无机类相变材料主要有结晶水合盐类、熔融盐类等其中最典型的是结晶水合盐类,它们有较大的熔解热和固定的熔点(实际上是脱出结晶水的温度变化: 脱出的结晶水使盐溶解而吸热,降温是其发生逆过程,吸收结晶水而放热)。通常 是中、低温相变蓄能材料。具有代表性的有:Na 2SO 4 ·10H 2 O , MgCl 2 ·6H 2 O 等 水合盐类。无机类相变材料通常具有使用范围广、导热系数大(与有机类相变材料相比)、溶解热较大、密度大(单位体积的储热密度大) 、一般成中性、价格较便宜等优点。但是,这类材料通常存在过冷现象、相分离两个问题[4]。 3.2 有机类 有机相变蓄能材料是利用晶体之间的转变来吸热或放热,典型的有石蜡、酯酸类和高分子化合物。有机类相变材料具有的优点有: 在固体状态时成型性较好,一般不容易出现过冷现象和相分离。而缺点是: 导热系数小,单位体积的储能能力较小,熔点较低,不适于高温场合中应用[4]。 3.3 复合类 复合相变材料主要指性质相似的二元或多元化合物的一般混合体系或低共熔体系,形状稳定的固液相变材料,无机有机复合相变材料等[5][14]。复合相变蓄热材料一般有分为两种,一种利用无机物作为网络状基质以维持材料的形状、力学性能,而有机物作为相变材料嵌在无机网络结构里面,这样通过有机物的相变来吸收和释放能量;另一种纤维复合蓄热材料,它是将导热纤维制成蓬松团置入金属容器或模腔中,并加入相变蓄热材料的复合材料。复合相变材料既能有效克服单一的无机物或有机物相变储热材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。但是混合相变材料也可能会带来相变潜热下降,或在长期的相变过程中容易变性等缺点。 此外,还有一些其他分类方法,按相变温度的范围,将相变材料分为三类: 高温、中温和低温相变材料。按相变材料的组成成份将相变材料分为两类: 有机类和无机类。按相变的方式,将相变材料分为四类:固——固相变、固——液相变、固——气相变、及液——气相变材料。由于后两种相变方式在相变过程中,伴随有大量气体的存在,使材料体积变化较大。因此,尽管它们相变焓较大,但在实际中很少应用[4]。常用的就是固——固相变和固——液相变材料。 4 相变材料蓄能机理 相变材料具有在一定温度范围内改变其物理状态,发生吸热和放热的反应。当环境温度高于某相变温度时,材料吸收并储存能量,以降低环境

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.doczj.com/doc/a918158779.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

化学蓄热材料的开发与应用研究进展

化学蓄热材料的开发与应用研究进展 摘要:作为化学能与热能相互转换的核心技术,化学反应蓄热是 21 世纪最为重要的储能技术之一。与传统的潜热储能方式相比较而言,化学反应蓄热的能量储存密度有着数量级的提升,其在工作温度范围以及材料稳定性上的优势显着。本文针对金属氢氧化物、金属氢化物、金属碳酸盐、结晶水合物、金属盐氨合物等几种当前主要的化学蓄热材料,重点阐述了各自的应用机制和工作条件,分析了各种材料的研究现状和亟需解决的科学及应用问题,指出复合以及掺杂型材料的优化制备是化学蓄热技术未来发展的主要方向。 关键词:储能技术;化学蓄热;复合材料;反应机理 能量储存是解决能量供求的时间和空间匹配矛盾的有效手段,在能源危机及环境污染日益严重的今天,发展这项提高能源利用效率和保护环境的应用技术愈发紧迫。在热能储存的领域内,国内外传统的研究方向是潜热储存,但是其材料相变时出现过冷现象、放热循环后相分离、材料的稳定性等问题始终没有得到有效解决。作为化学能与热能相互转换的核心技术,化学反应蓄热是利用化学变化中吸收、放出热量进行热能储存,是 21世纪最为重要的储能技术之一。 与传统的潜热储能方式相比较,化学反应蓄热的能量储存密度有数量级的提升,其化学反应过程没有材料物理相变存在的问题,该体系通过催化剂或产物分离方法极易用于长期能量储存。然而,目前化学蓄热系统在国内尚未实现市场化,制约其商业化的关键问题之一是安全系数低。国外基于商用的化学储能反应通常在较高的温度条件下进行,同时会有氢气这类易燃物质参与,这显然增加了化学蓄热系统整体的风险指数,技术问题的复杂化导致一次性投资过大。同时,化学蓄热材料在反应器中的传质传热效率需要进一步提高,从而优化系统的整体效率。因此,寻求安全且高效的化学蓄热技术是推动我国化学储能商业化的核心问题,其广泛的应用前景对国民经济和环保事业发展具有重大的科学意义。近年来学术界围绕着该领域进行了一系列有益的探索,目前化学蓄热体系的科研工作主要集中在欧洲以及日本等,而国内对于吸附式制冷以及建筑节能方面的应用研究重点则在相变储能领域,对该新兴学科的应用基础研究工作相对滞后。化学蓄热材料作为化学储能的核心技术之一,主要可以分为金属氢氧化物、金属氢化物、金属碳酸盐、结晶水合物、金属盐氨合物等。本文就国内外学术界和工业界对化学储能材料的研究,分以下几个方面进行介绍和讨论。 1、金属氢氧化物的高温化学蓄热 在高温化学储能领域,关于无机氢氧化物的研究主要集中在 Ca(OH)和 Mg(OH)上(其储热机理见式(1))。西安建筑科技大学的闫秋会等利用HSC 模拟软件对几种金属氢氧化物反应条件下的热力学参数进行了分析,发现 Ca(OH)非常适用于大规模的太阳能储存装置。德国宇航中心报道了关于 Ca(OH)蓄热反应动力学以及构建反应器方面的最新研究成果,该金属氢氧化物在反应稳定性以及蓄热性能方面表现比较突出。然而 Ca(OH)构建的反应体系依然存在不少缺陷,尽管可以通过优化反应器改善原本较低的水渗透率,但反应过程中的颗粒团聚问题依然困扰着该领域的科研工作者。Mg(OH)在反应稳定性上的表现远不如Ca(OH),日本东京工业大学的 Ishitobi 等尝试通过添加 LiCl改善基于 Mg(OH)的蓄热反应体系,尽管在储能密度上有所提升,但是多次循环后其反应性能依然下降明显。

相变式蓄热材料

相变蓄热球 基本原理: 相变蓄热是依靠物质相变过程(固-液态转化)中必须吸收或放出大量相变潜热的物理现象进行能量的存储和释放。由于单位体积的相变蓄热材料能够蓄存的能量远远大于单位体积的显热蓄能材料能够承受的范围,因此相变蓄热材料具有极大的应用范围。但合适的相变材料研发一直是全世界的热点和难点。 经过长期研究,开发出具有完全自主知识产权的中温相变蓄热材料SXC-CZ。该蓄热材料依靠物质相变过程中转移大量相变潜热,可提供79摄氏度供热平台,蓄能能力达到同体积常压水的7倍。 相变蓄热球是相变蓄热产品和相变蓄热应用工程中最基础的结构产品。它以良好的热传导材料为载体,填充锦立独有的SXC-CZ相变蓄热材料,在保持良好的相变蓄热性能的情况下,大大方便了产品的安装和工程的实施,它可广泛应用于各种蓄热产品和场所,在相同的效能下,它比取代传统的水蓄热体积将缩小7倍以上。

1. 79摄氏度的相变温度满足多种蓄热要求 2.优秀的蓄热性能,在相同体积下,蓄热能力是石蜡的3倍 3.良好的热传导性,热传导速度是石蜡10倍 4.物理性能非常稳定,可长期使用无衰减 5.标准化设计,易于蓄热产品的开发和蓄热工程中的应用基本参数: 二、 蓄热球产品说明 蓄热球又称球状蓄热体,蓄热小球具有热震稳定性好、蓄热量大、强度高、易清洗、可重复利用等优点。适用于气体及非气体燃料工业炉的蓄热球燃烧系统选用。

联盛高效蓄热球,比表面积可达到240m2/m3。众多蓄热小球将气流分割成很小流股,气流在蓄热体中流过时,形成强烈的紊流,有效的冲破了蓄热体表面的附面层,又由于球径很小,传导半径小、热阻小、密度高、导热性好,故可实现蓄热式烧嘴频繁且快速换向的要求。 蓄热球可利用20~30次/h的换向,高温烟气流经蓄热体床层后内便可将烟气降至130℃左右排放。 高温煤气和空气流经蓄热体在相同路径内即可分别预热到 仅比烟气温度低100℃左右,温度效率高达90%以上。 因蓄热小球体积十分小巧,加之小球床的流通能力强,即使积灰后阻力增加也不影响热换指标。 蓄热球具有抗氧化、抗渣性强的特点。 蓄热球主要用于冶金行业热风炉蓄能蓄热用的耐火球。蓄热球具有纯度、高强度大、热震稳定性好,使用寿命长等优点,蓄热球是一种以AL2O3、高岭土、合成骨料,莫来石晶体等材质制成。按照滚制和机压成型法两种。该产品具有强度高、抗热震性优良、更换清洗方便、使用寿命长等优点。蓄热瓷球主要有陶瓷小球、多孔圆柱瓷球、多孔圆瓷球三种,该产品具有耐高温、抗腐蚀、热震稳定性好、密度高、热阻小、强度高、蓄放热量大、导热性能好等显著优点,特别适应于空气分离设备蓄热器和钢铁厂高炉煤气加热炉作蓄热填料,该技术是通过对煤气和空气进行双预热,即使低热值的劣质

高温相变材料的研究进展和应用

高温相变材料的研究进展和应用 摘要:随着全球性能源与环境的不断恶化,能源充分利用和新能源开发成为业界关注的重点。相变储热是利用相变材料在其物相变化过程中从环境吸收热(冷)量或向环境释放热(冷)量,从而达到能量的储存或释放的目的,并能与新能源结合应用。分析了高温相变材料的种类和各自特点,介绍了其在各行各业的应用情况,并对高温相变材料的未来发展进行了展望。 关键词:相变材料;储热材料;相变 1引言 物质相变过程是一个等温或近似等温过程,在这个过程中伴随有能量的吸收或释放。相变储热是利用相变材料在其相变过程中,从环境吸收或释放热量,达到储能或放能的目的。高温相变材料具有相变温度高,储热容量大,储热密度高等特点,它的使用能提高能源利用效率,有效保护环境,目前已在太阳能热利用、电力的“移峰填谷”、余热或废热的回收利用以及工业与民用建筑和空调的节能等领域得到了广泛的应用。现阶段 ,人们关心比较多的新能源是太阳能 ,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。相变储能材料可以从环境中吸收能量和向环境释放能量 ,较好地解决了能量供求在时间和空间上不匹配的矛盾 ,有效地提高了能量的利用率。同时相变储能材料在相变过程中温度基本上保持恒定 ,能够用于调控周围环境的温度 ,并且能重复使用。相变储能材料的这些特性使得其在电力“移峰填谷”、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。 2相变储热技术

储热方法通常有3种:显热储热、化学反应储热和潜热储热(相变储热)。相变储热可以实现能量供应与人们需求在时间和空间达到一致的目的,又具有节能降耗的作用。相变储热材料按相变方式一般分为4类:固—固相变、固—液相变、固—气相变及液—气相变材料圈;按相变温度范围可分为高温、中温和低温储热材料;按材料的组成成分可分为无机类和有机类(包括高分子类)储热材料。由于固一气相变材料相变时体积变化太大,使用时需要很多的复杂装置,在实际应用中很少采用。相变储热材料在储热、放热过程中,温度波动范围很小,材料近似恒温,故可控制温度。其储热容量大,储热密度高,单位质量、单位体积的储热量要远远超过显热储热材料;且较之于化学反应储热,相变储热具有设备简单、体积小、设计灵活、使用方便等优势。 3高温相变储热材料 3.1高温固—液相变材料 固—液相变材料是指在温度高于相变点时物相由固相变为液相,吸收热量当温度下降时物相又由液相变为固相,放出热量的一类相变材料。目前固—液相变材料主要包括结晶无机物类和有机物类2种。无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度,从几百摄氏度至几千摄氏度,因而相变潜热较大。例如LiH相对分子质量小而熔化热大(2 840 J/g)。碱的比热容高,熔化热大,稳定性好,在高温下蒸气压力很低,且价格便宜,也是一种较好的中高温储能物质。例如NaOH在287℃和318℃均有相变,比潜热达330 J/g,在美国和日本已试用于采暖和制冷工程领域。混合盐熔化热大,熔化时体积变化小,传热较好,其最大优点是熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.doczj.com/doc/a918158779.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

相变蓄热材料综述

相变蓄热材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

相变虚热材料综述蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

相变材料

相变材料的种类 摘要:相变储能材料对于能源的开发与应用具有重要意义。综述了相变储能材料的分类、相变特性、并展望其今后的发展方向。 关键字:无机相变材料;有机相变材料;储能;进展; 前言 相变材料是指随温度变化而改变形态并能提供潜热的物质。相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。相变材料可分为有机和无机相变材料。亦可分为水合相变材料和蜡质相变材料。相变材料具有在一定温度范围内改变其物理状态的能力。相变材料的分类相变材料主要包括无机PCM 、有机PCM 和复合PCM 三类。根据相变的方式不同,又可分为固—固相变,固液相变, 固气相变,液气相变.由于后两种相变方式在相变过程中伴随有大量气体存在,使材料体积变化较大,因此尽管它们有很大的相变热,但实际应用较少。根据使用的温度不同又可分为低温,中温,高温三种。 无机相变材料 固 -液相变材料是指在温度高于相变点时 ,物固相变为液相吸收热量 ,当温度下降时物相又由液相变为固相放出热量的一类相变材料。目前 , 固 -液无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度 ,从几百摄氏度至几千摄氏度 ,因而相变潜热较大。固 -固相变储能材料是利用材料的状态改变来储、放热的材料。目前 ,此类无机盐高温相变储能材料已研究过的有SCN NH 4,2KHF 等物质。2KHF 的熔化温度为 196 ℃,熔化热为 142 kJ/kg;SCN NH 4从室温加热到 150 ℃发生相变时 ,没有液相生成 ,相转变焓较高 ,相转变温度范围宽 ,过冷程度轻 ,稳定性好 ,不腐蚀 ,是一种很有发展前途的储能材料。 无机盐高温相变复合储能材料近年来 ,高温复合相变储能材料应运而生 ,其既能有效克服单一的无机物或有机物相变储能材料存在的缺点 ,又可以改善相变材料的应用效果以及拓展其应用范围。因此 ,研制高温复合相变储能材料已成为储能材料领域的热点研究课题之一。目前,已研究的无机盐高温复合相变材料

复合定形蓄能相变材料研究进展 修改

复合定形蓄能相变材料的研究进展 仝仓, 李祥立 (大连理工大学建设工程学部, 辽宁啊,大连116024) 摘要:简述了复合定形蓄能相变材料的分类,着重讨论了熔融共混法、物理吸附法、压制烧结法、接枝共聚法、微胶囊化法、原位插层法、溶胶—凝胶法等七种主要制备复合定形蓄能相变材料方法,分析了各种方法的优势和存在的问题,并指出各种方法适用于制备的相变材料类型。此外提出了复合定形相变材料的发展方向,可作为研究和工程应用的参考。 关键词:定形相变材料制备方法 1.引言: 蓄能技术的发展解决了热能供需时间和空间失配的矛盾,提高了能源利用率。相变蓄能材料从上个世纪70年代在工业和新能源领域受到重视后发展到现在,新型材料和制备方法不断涌现,其中高温相变蓄能材料已经在航空航天、热机、磁流体发电、太阳能等领域得到了应用;而中低温相变蓄能材料应用于绿色建筑、余热回收、太阳能热储存、空?、保暖服装、电子设备等领域。蓄能技术按工作介质所处状态分为显热蓄能技术、潜热蓄能技术和热化学蓄能技术[1],其中以相变蓄能材料(PCMs:phase change materials)为支撑的潜热蓄能技术,具有储能密度大,温度恒定,体积小,性能稳定等优点,是当前国内外学者研究热点之一。相变材料按相变方式可分为固—固PCMs、固—液PCMs、固—气PCMs、液—气PCMs。后两者在相变过程中体积变化较大,且有气体产生,不符合实际工程要求;前两者则包括熔融盐,金属合金,结晶水合盐,多元醇,脂肪酸,石蜡等,但其中大部分材料都有一个共同的缺陷:相变过程中有液相产生,会造成原材料的泄漏,腐蚀容器,污染工作环境,从而导致储热效率,安全系数大幅降低等一系列问题。通过研发合适的复合定形储能材料,既可以解决液相泄漏的问题,又在一定程度上调节材料的相变温度,提高其热传导率,使其更好的满足工程需要。 2.复合定形蓄能材料的主要制备方法 复合定形蓄能材料是指在固—固/固—液相变材料的基础上通过各种方法把有机物与有机物/无机物结合后制备的定形材料,一般包括工作质和载体。复合定形相变材料按照相变方式分为固—固相变蓄能材料和形状稳定的固—液相变蓄能材料[2],按载体材料可分为聚合物基定形相变材料、无机多孔基定形相变材料、微胶囊定形相变材料、有机/无机纳米级定形相变材料等,其制备方法主要有以下几种:熔融共混法、物理吸附法、压制烧结法、接枝共聚

相变蓄热材料综述

相变虚热材料综述 蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。混合类又可分为:有机混合类、无机混合类及无机一有机混合类。 根据使用温度范围的不同,潜热蓄热材料(相变蓄热)又可分为分为高、中、低温三种. 1低温相变蓄热材料 低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金.结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点.但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂.例如,Dr.Telkes经过千余次试验后发现在Na2SO。·10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放臵有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍

复合相变材料及其设备制作方法与相关技术

图片简介: 本技术涉及相变材料技术领域,尤其涉及一种复合相变材料及其制备方法。本技术介绍了一种复合相变材料,该复合相变材料将相变材料作为内核,透明高分子材料具有良好的机械强度和织性模量,凝胶聚合物作为壳层将相变材料限域保护起来,可以阻止其泄露,还能增加相变材料的换热面积,使其便于储存和运输;透明高分子材料具有高的透光度,胆甾相液晶的颜色的温敏变化可以显示出来,液晶颜色的变化温度与相变材料的相转化温度范围匹配,实现相变材料的“可视化”;一维导热材料具有很好导热能力,其位于壳层与核层之间径向排列的阵列纳米结构,阵列的纳米结构能使热量沿着导热材料传输,能够很好的提升相变材料的充放热速度,减少了热量的损失。 技术要求 1.一种复合相变材料,其特征在于,所述复合相变材料呈核壳结构; 所述核壳结构中的壳层为含有胆甾相液晶的凝胶聚合物,核层为相变材料,所述壳层与所述核层之间径向负载有一维导热材料; 所述凝胶聚合物由透明高分子材料制得。 2.根据权利要求1所述的复合相变材料,其特征在于,所述核层的粒径为90-150μm,壳层的厚度为10~30μm,一维导热材料的厚度为20-30μm。

3.根据权利要求1所述的复合相变材料,其特征在于,所述相变材料为石蜡型相变材料; 所述一维导热材料选自铜纳米线、碳纤维或碳纳米管; 所述胆甾相液晶包括向列相液晶和手性掺杂剂。 4.根据权利要求3所述的复合相变材料,其特征在于,所述向列相液晶为BHR-59001,所述手性掺杂剂为S-811。 5.根据权利要求3所述的复合相变材料,其特征在于,所述石蜡型相变材料为十四烷、十八烷或二十烷。 6.根据权利要求5所述的复合相变材料,其特征在于,所述透明高分子材料为明胶和/或阿拉伯胶。 7.权利要求1至6任意一项所述的复合相变材料的制备方法,其特征在于,包括以下步骤: 步骤1:利用Stober法将相变材料、十六烷基三甲基溴化氨在水和醇的混合溶剂中,加入硅源进行反应,得到二氧化硅包覆的相变材料; 步骤2:将所述二氧化硅包覆的相变材料浸入一维导热材料分散液中,搅拌、干燥,得到一维导热材料/二氧化硅/相变材料; 步骤3:将所述一维导热材料/二氧化硅/相变材料浸泡于氢氟酸中,得到一维导热材料/相变材料; 步骤4:将透明高分子材料、所述一维导热材料/相变材料、胆甾相液晶和水进行混合,冷冻干燥,得到复合相变材料。 8.根据权利要求7所述的制备方法,其特征在于,所述相变材料与所述硅源的质量比为(30~50):1; 所述一维导热材料与所述相变材料的质量比为1~3:4。 9.根据权利要求7所述的制备方法,其特征在于,所述透明高分子材料、所述一维导热材料/相变材料、所述胆甾相液晶和所述水的用量比为8g:(25~35)g:5g:95mL。 10.根据权利要求7所述的制备方法,其特征在于,所述胆甾相液晶包括向列相液晶和手性掺杂剂; 所述向列相液晶与所述手性掺杂剂的质量比为5:(0.5~1.5)。 技术说明书 一种复合相变材料及其制备方法

相变蓄热技术在热泵中的应用

相变蓄热技术在热泵中的应用 汪南,杨硕,朱冬生 (华南理工大学化学与化工学院传热强化与过程节能教育部重点实验室,广州, 510640) 摘要:本文综述了蓄热技术的研究进展及其在热泵中的应用,并重点介绍了一种相变蓄热式热泵热水器,最后对这种技术的发展进行了展望。 关键词:蓄热相变热泵热水器 0 前言 能源是一个国家经济增长和社会发展的重要物质基础,随着人类对能源的需求量不断增大,能源问题越来越引起人们的重视。但是,大多数能源存在间断性和不稳定性的特点,导致大量热能在时间与空间匹配上的不平衡性,从而使得一方面能源短缺,另一方面又有大量余热被白白浪费。因此,合理利用能源、提高能源利用率是当务之急。 蓄能技术就是采用适当的方式,利用特定的装置,将暂时不用的或者多余的热能通过一定的储能材料储存起来,等到需要时再利用的方法,是提高能源利用效率和保护环境的重要技术。相变蓄热技术在太阳能、工业余热、废热利用以及电力调峰等方面具有很大的潜在应用优势,近年来引起了众多科研工作者的重视。 1 蓄热技术的研究进展 1983年,美国Telkes博士在蓄热技术方面做了大量工作[1]。她对水合盐,尤其是十水硫酸钠(Na2S04?10H2O)进行了长期的研究,对Na2S04?10H2O的相变寿命进行了多达1000次的实验,并预测该材料可相变2000次,并在马萨诸塞州建起了世界上第一座PCM被动太阳房。20世纪70年代早期,日本三菱电子公司和东京电力公司联合进行了用于采暖和制冷系统的相变材料的研究,他们研究了水合硝酸盐、磷酸盐、氟化物和氯化钙。在相变材料应用方面,他们特别强调制冷和空调系统中的储能。东京科技大学工业和工程化学系的Yoneda等人研究了一系列可用于建筑物取暖的硝酸共晶水合盐,从中筛选出性能较好的MgCl2?6H20和Mg(NO3)2?6H2O共晶盐(熔点59.1℃)。位于Ibaraki的电子技术实验室对相变温度范围为200~300℃的硝酸盐及它们的共晶混合物进行了研究。德国GawronK和Schroder J在对-65~0℃的温度范围内相变性能的研究后,推荐在储冷中采用NaF-H20共晶盐(-3.5℃);在低温储热或热泵应用中采用KF?4H20;在建筑物采暖系统中,采用CaCl2?6H20(29℃)或Na2HP04(35℃)。Krichel绘制了大量PCMs的物性图表。他认为石蜡、水合盐和包合盐(elath-rate)是100℃以下储能用相变材料的最佳候选材料。 我国对蓄热相变的理论和应用也进行了广泛的研究[2-9],中国科学技术大学从1978年开始进行相变储热的研究,陈则韶、葛新石、张寅平等人[10~12]在相变材料热物性测定和相变过程导热分析方面做了大量工作,申请了多项专利。1983年,华中师范大学阮德水等[13]对典型的无机水合盐Na2S04?10H2O

蓄热方式

按蓄热方式来分,蓄热材料可以分为四类:显热蓄热材料、相变蓄热材料、热化学蓄热材料和吸附蓄热材料。 1、显热蓄热材料 显热蓄热材料是利用物质本身温度的变化过程来进行热量的储存,由于可采用直接接触式换热,或者流体本身就是蓄热介质,,因而蓄、放热过程相对比较简单,是早期应用较多的蓄热材料。在所有的蓄热材料中显热蓄热技术最为简单也比较成熟。 显热蓄热材料大部分可从自然界直接获得,价廉易得。显热蓄热材料分为液体和固体两种类型,液体材料常见的如水,固体材料如岩石、鹅卵石、土壤等,其中有几种显热蓄热材料引人注目,如Li2O与Al2O3、TiO2等高温烧结成型的混合材料。 由于显热蓄热材料是依靠蓄热材料的温度变化来进行热量贮存的,放热过程不能恒温,蓄热密度小,造成蓄热设备的体积庞大,蓄热效率不高,而且与周围环境存在温差会造成热量损失,热量不能长期储存,不适合长时间、大容量蓄热,限制了显热蓄热材料的进一步发展。 2、相变蓄热材料 相变蓄热材料是利用物质在相变(如凝固/熔化、凝结/汽化、固化/升华等)过程发生的相变热来进行热量的储存和利用。 与显热蓄热材料相比,相变蓄热材料蓄热密度高,能够通过相变在恒温下放出大量热量。虽然气一液和气一固转变的相变潜热值要比液一固转变、固一固转变时的潜热大,但因其在相变过程中存在容积的巨大变化,使其在工程实际应用中会存在很大困难,因此目前的相变潜热蓄热研究和应用主要集中在固—液和固—固相变两种类型。根据相变温度高低,潜热蓄热可分为低温和高温两种,低温潜热蓄热主要用于废热回收、太阳能储存以及供热和空调系统。高温相变蓄热材料主要有高温熔化盐类、混合盐类、金属及合金等,主要用于航空航天等。常见的潜热蓄热材料有六水氯化钙、三水醋酸钠、有机醇等。 潜热蓄热方式具有蓄热密度较高(一般都可以达到200kJ/kg以上),蓄、放热过程近似等温,过程容易控制等优点,因此相变蓄热材料是当今蓄热材料研究和应用的主流。 3、热化学蓄热材料 热化学蓄热材料多利用金属氢化物和氨化物的叮逆化学反应进行蓄热,在有催化剂、温度高和远离平衡态时热反应速度快。国外已利用此反应进行太阳能贮热发电的实验研究,但需重点考虑储存容器和系统的严密性,以及生成气体对材料的腐蚀等问题。 热化学蓄热材料具有蓄热密度高和清洁、无污染等优点,但反应过程复杂、技术难度高,而且对设备安全性要求高,一次性投资大,与实际工程应用尚有较大距离。 4、吸附蓄热材料 吸附是指流体相(含有一种或多种组分的气体或液体)与具有多孔的固体颗粒相接触时,固体颗粒(即吸附剂)对吸附质的吸着或持留过程。因吸附剂固体表面的非均一性,伴随着吸附过程产生能量的转化效应,称为吸附热。在吸附脱附循环中,可通过热量储存、释放过程来改变热量的品位和使用时间,实现制冷、供热以及蓄热等目的。 吸附蓄热是一种新型蓄热技术”,研究起步较晚,是利用吸附工质来对吸附/解吸循环过程中伴随发生的热效应进行热量的储存和转化。吸附蓄热材料的蓄热密度可高达800 ~1000kJ/kg,具有蓄热密度高、蓄热过程无热量损失等优点。由于吸附蓄热材料无毒无污染,是除相变蓄热材料以外的另一研究热点,但由于吸附蓄热材料通常为多孔材料,传热传质性能较差,而且吸附蓄热较为复杂,是目前需要重点研究解决的问题。 蓄热材料的工作过程包括两个阶段:一是热量的储存阶段,即把高峰期多余的动力、工业余热废热或太阳能等通过蓄热材料储存起来;二是热量的释放阶段,即在使用时通过蓄热材料释放出热量,用于采暖、供热等。热量储存和释放阶段循环进行,就可以利用蓄热材料解决热能在时间和空间上的不协调性,达到能源高效利用和节能的目的。

复合材料加工研究进展

复合材料加工技术的最新研究进展 摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。 关键词:陶瓷基、树脂基、复合材料加工 复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。 1 陶瓷基复合材料的加工 由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。 1.1新型加工技术 1.1.1 放电加工 放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

复合材料研究进展讲述

铝基复合材料的制备和增强技术的研究进展 摘要本文简单介绍了铝基复合材料的一些基本的制备方法。对于纳米相和碳化硅颗粒增强的铝基复合材料,它们也有不同的制备方法。 关键词铝基复合材料纳米相碳化硅颗粒 0前言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。本文主要讲述铝基复合材料的制备方法以及增强技术的发展情况。 1 铝基复合材料的制备工艺 1.1 无压浸渗法 无压浸渗法是Aghaianian 等于1989 年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺[1],将基体合金放在可

控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。 Aghajanian 等[2]撰文指出,要使自发渗透得以进行,需具备两个必要条件:①铝合金中一定含有Mg元素;②气氛为N2环境。影响该工艺的主要因素为:浸渗温度、颗粒大小和环境气氛种类。无压渗透工艺的本质是实现自润湿作用,通过适当控制工艺条件,如合金成分、温度、保温时间和助渗剂等,可取得良好的润湿,使自发浸渗得以进行。 1.2 粉末真空包套热挤压法 采用快速凝固技术与粉末冶金技术相结合制备高硅含量铝基复合材料。由于Al 活性很高,在快速凝固制粉时不可避免地会形成一层氧化膜,导致在致密化过程中合金元素的相互扩散受到阻碍,难以形成冶金粘结。因此,采用了粉末真空包套热挤压这一特殊的致密化工艺[3]。 1.3 喷射沉积法 喷射沉积技术是一种新的金属成形工艺,由Singer 教授于1968 年提出,后经发展逐步形成了Osprey工艺、液体动态压实技术和受控喷射沉积工艺等。 喷射沉积的基本原理是:熔融金属或合金经导流管流出,被雾化

相关主题
文本预览
相关文档 最新文档