当前位置:文档之家› 超级资源:高中物理奥赛解题方法大全(14种另类解法)(110页)

超级资源:高中物理奥赛解题方法大全(14种另类解法)(110页)

超级资源:高中物理奥赛解题方法大全(14种另类解法)(110页)
超级资源:高中物理奥赛解题方法大全(14种另类解法)(110页)

高中奥林匹克物理竞赛解题方法十四种

一、整体法

方法简介

整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。

赛题精讲

例1:如图1—1所示,人和车的质量分别为m和M,

人用水平力F拉绳子,图中两端绳子均处于水平方向,

不计滑轮质量及摩擦,若人和车保持相对静止,且

水平地面是光滑的,则车的加速度为.

解析:要求车的加速度,似乎需将车隔离出来才

能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可.

将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F,所以有:

2F=(M+m)a,解得:

m

M F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图

1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并

对小球b 持续施加一个向右偏上30°的同样大

小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )

解析 表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球

a 和小球

b 的拉力的方向,只要拉力方向求出后,。图就确定了。

先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a +m b )g ,作用在两个小球上的恒力F a 、F b 和上端细线对系统的拉力T 1.因为系统处于平衡状态,所受合力必为零,由于F a 、F b 大小相等,方向相反,可以抵消,而(m a +m b )g 的方向竖直向下,所以悬线对系统的拉力T 1的方向必然竖直向上.再以b 球为研究对象,b 球在重力m b g 、恒力F b 和连线拉力T 2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T 2的方向必与恒力F b 和重力m b g 的合力方向相反,如图所示,故应选A.

例3 有一个直角架AOB ,OA 水平放置,表面粗糙,OB 竖直向下,表面光滑,OA 上套有小环P ,OB 上套有小环Q ,两个环的质量均为m ,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P 环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是 ( )

A .N 不变,T 变大

B .N 不变,T 变小

C .N 变大,T 变小

D .N 变大,T 变大

解析 先把P 、Q 看成一个整体,受力如图1—4—甲所示,

则绳对两环的拉力为内力,不必考虑,又因OB 杆光滑,则杆在

OA 杆对它的支持力,所以N 不变,始终等于P 、Q 的重力之和。

再以Q 为研究对象,因OB 杆光滑,所以细绳拉力的竖直分量等

于Q 环的重力,当P 环向左移动一段距离后,发现细绳和竖直方向

夹角a 变小,所以在细绳拉力的竖直分量不变的情况下,拉力T 应变小.由以上分析可知应选

B.

例4 如图1—5所示,质量为M 的劈块,

其左右劈面的倾角分别为θ1=30°、θ2=45°,

质量分别为m 1=3kg 和m 2=2.0kg 的两物块,

同时分别从左右劈面的顶端从静止开始下滑,

劈块始终与水平面保持相对静止,各相互接触 面之间的动摩擦因数均为μ=0.20,求两物块下

滑过程中(m 1和m 2均未达到底端)劈块受到地面的摩擦力。(g=10m/s 2)

解析 选M 、m 1和m 2构成的整体为研究对象,把在相同时间内,M 保持静止、m 1和m 2分别以不同的加速度下滑三个过程视为一个整体过程来研究。根据各种性质的力产生的条件,在水平方向,整体除受到地面的静摩擦力外,不可能再受到其他力;如果受到静摩擦力,那么此力便是整体在水平方向受到的合外力。

根据系统牛顿第二定律,取水平向左的方向为正方向,则有 ( ) F 合x=Ma ′+m 1a 1x -m 2a 2x

其中a ′、a 1x 和a 2x 分别为M 、m 1和m 2在水平方向的加速度的大小,而a ′=0,

a 1x =g(sin30°-μcos30°)·cos30°

a 2x = g(sin45°-μcos45°)·cos45°

F 合=m 1g(sin30°-μcos30°)·cos30°-m 2g(sin45°-μcos45°)·cos45° ∴2

2)223.022(100.223)232.021

(103?-??-??-?? =-2.3N

负号表示整体在水平方向受到的合外力的方向与选定的正方向相反.所以劈块受到地面的摩擦力的大小为2.3N ,方向水平向右.

例5 如图1—6所示,质量为M 的平板小车放在倾角为θ的光滑斜面上(斜面固定),一质量为m 的人在车上沿平板向下运动时,车恰好静止,求人的加速度.

解析 以人、车整体为研究对象,根据系统牛顿运动定律求解。如图1—6—甲,由系

(M+m)gsin θ=ma

解得人的加速度为a=θsin )(g m

m M + 例6 如图1—7所示,质量M=10kg 的木块

ABC 静置 于粗糙的水平地面上,滑动摩擦因数

μ=0.02,在木块的倾角θ为30°的斜面上,有

一质量m=1.0kg 的物块静止开始沿斜面下滑,

当滑行路程s=1.4m 时,其速度v=1.4m/s ,在

这个过程中木块没有动,求地面对木块的摩擦

力的大小和方向.(重力加速度取g=10/s 2)

解析 物块m 由静止开始沿木块的斜面下滑,受重力、弹力、摩擦力,在这三个恒力的作用下做匀加速直线运动,由运动学公式可以求出下滑的加速度,物块m 是处于不平衡状态,说明木块M 一定受到地面给它的摩察力,其大小、方向可根据力的平衡条件求解。此题也可以将物块m 、木块M 视为一个整体,根据系统的牛顿第二定律求解。

由运动学公式得物块m 沿斜面下滑的加速度:

./7.02222202s m s

v s v v a t t ==-= 以m 和M 为研究对象,受力如图1—7—甲所示。由系统的牛顿第二定律可解得地面对木块M 的摩擦力为f=macos θ=0.61N ,方向水平向左.

例7 有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图1—8所示,不计一切摩擦,求BC 绳上的张力。

解析 以木板为研究对象,木板处于力矩平衡状态,若分别以圆柱体A 、B 、C 为研究对象,求A 、B 、C 对木板的压力,非常麻烦,且容易出错。若将A 、B 、C 整体作为研究对象,则会使问题简单化。

以A 、B 、C 整体为研究对象,整体受

到重力3G 、木板的支持力F 和墙对整体的

支持力F N ,其中重力的方向竖直向下,如

图1—8—甲所示。合重力经过圆柱B 的轴

心,墙的支持力F N 垂直于墙面,并经过圆

柱C 的轴心,木板给的支持力F 垂直于木

图1—9 图1—8乙 行必共点,即木板给的支持力F 必然过合

重力墙的支持力F N 的交点.

根据共点力平衡的条件:∑F=0,可得:F=3G/sin θ.

由几何关系可求出F 的力臂 L=2rsin 2θ+r/sin θ+r ·cot θ

以木板为研究对象,受力如图1—8—乙所示,选A 点

为转轴,根据力矩平衡条件∑M=0,有:

F ·L=T ·Lcos θ 即θθ

θθθcos sin )cot sin /1sin 2(32??=++L T Gr 解得绳CB 的能力:)cos sin cos 1tan 2(32θ

θθθ?++=L Gr T 例8 质量为1.0kg 的小球从高20m 处自由下落到软垫上,反弹后上升的最大高度为5.0m ,小球与软垫接触的时间为1.0s ,在接触时间内小球受合力的冲量大小为(空气阻力不计,取g=10m/s 2) ( )

A .10N ·s

B .20N ·s

C .30N ·s

D .40N ·s

解析 小球从静止释放后,经下落、接触软垫、

反弹上升三个过程后到达最高点。动量没有变化,初、

末动量均为零,如图1—9所示。这时不要分开过程

求解,而是要把小球运动的三个过程作为一个整体来

求解。

设小球与软垫接触时间内小球受到合力的冲量大

小为I ,下落高度为H 1,下落时间为t 1,接触反弹上

升的高度为H 2,上升的时间为t 2,则以竖直向上为正方向,根据动量定理得:

s

N gH gH I g H t g H t mgt I t mg ?=+====-+-3022(220

)(212

21

121故而

答案C

例9 总质量为M 的列车以匀速率v 0在平直轨道上行驶,各车厢受的阻力都是车重的k 倍,而与车速无关.某时刻列车后部质量为m 的车厢脱钩,而机车的牵引力不变,则脱钩的车厢刚停下的瞬间,前面列车的速度是多少?

解析 此题求脱钩的车厢刚停下的瞬间,前面列车的速度,就机车来说,在车厢脱钩后,开始做匀加速直线运动,而脱钩后的车厢做匀减速运动,由此可见,求机车的速度可用匀变速直线运动公式和牛顿第二定律求解.

现在若把整个列车当作一个整体,整个列车在脱钩前后所受合外力都为零,所以整个列车动量守恒,因而可用动量守恒定律求解.

根据动量守恒定律,得:

Mv 0=(M -m)V V=Mv 0/(M -m)

【说明】显然此题用整体法以列车整体为研究对象,应用动量守恒定律求解比用运动学公式和牛顿第二定律求简单、快速.

例10 总质量为M 的列车沿水平直轨道匀速前进,其末节车厢质量为m ,中途脱钩,司机发觉时,机车已走了距离L ,于是立即关闭油门,撤去牵引力,设运动中阻力与质量成正比,机车的牵引力是恒定的,求,当列车两部分 都静止时,它们的距离是多少?

解析 本题若分别以机车和末节车厢为研究对象用运动学、牛顿第二定律求解,比较复杂,若以整体为研究对象,研究整个过程,则比较简单。

假设末节车厢刚脱钩时,机车就撤去牵引力,则机车与末节车厢同时减速,因为阻力与质量成正比,减速过程中它们的加速度相同,所以同时停止,它们之间无位移差。事实是机车多走了距离L 才关闭油门,相应的牵引力对机车多做了FL 的功,这就要求机车相对于末节车厢多走一段距离△S ,依靠摩擦力做功,将因牵引力多做功而增加的动能消耗掉,使机车与末节车厢最后达到相同的静止状态。所以有:

FL=f ·△S

其中F=μMg, f=μ(M -m)g

代入上式得两部分都静止时,它们之间的距离:△S=ML/(M -m)

例11 如图1—10所示,细绳绕过两个定滑轮A 和B ,在两端各挂 个重为P 的物体,现在A 、B 的中点C 处挂一个重为Q 的小球,Q<2P ,求小球可能下降的最大距离h.已知AB 的长为2L ,不讲滑轮和绳之间的摩擦力及绳的质量.

解析 选小球Q 和两重物P 构成的整体为研究对象,该整体的速率从零开始逐渐增为最大,紧接着从最大又逐渐减小为零(此时小球下降的距离最大为h ),如图1—10—甲。在整过程中,只有重力做功,机械能守恒。

因重为Q 的小球可能下降的最大距离为h ,所以重为P 的两物体分别上升的最大距离均为.22L L h -+

考虑到整体初、末位置的速率均为零,故根据机械能守恒定律知,重为Q 的小球重力势能的减少量等于重为P 的两个物体重力势能的增加量,即

)(222L L h P Qh --= 从而解得22224)

8(2P Q Q Q P PL h ---=

例12 如图1—11所示,三个带电小

只释放A 球,它有加速度a A =1m/s 2,方向向

右;若只释放B 球,它有加速度a B =3m/s 2,方

向向左;若只释放C 球,求C 的加速度a C .

解析 只释放一个球与同时释放三个球时,每球所受的库仑力相同.而若同时释放三个球,则三球组成的系统所受合外力为0,由此根据系统牛顿运动定律求解.

把A 、B 、C 三个小球看成一个整体,根据系统牛顿运动定律知,系统沿水平方向所受合外力等于系统内各物体沿水平方向产生加速度所需力的代数和,由此可得:

ma A +ma B +ma C =0

规定向右为正方向,可解得C 球的加速度:

a C =-(a A +a B )=-(1-3)=2m/s

方向水平向右:

例13 如图1—12所示,内有a 、b 两个

光滑活塞的圆柱形金属容器,其底面固定在水

平地板上,活塞将容器分为A 、B 两部分,两

部分中均盛有温度相同的同种理想气体,平

衡时,A 、B 气体柱的高度分别为h A =10cm,

h B =20cm , 两活塞的重力均忽略不计,活塞

的横截面积S=1.0×10-3m 2. 现用竖直向上的

力F 拉活塞a, 使其缓慢地向上移动△h=3.0cm ,时,活塞

a 、

b 均恰好处于静止状态,环境温度保护不变,求:

(1)活塞a 、b 均处于静止平衡时拉力F 多大?

(2)活塞a 向上移动 3.0cm 的过程中,活塞b 移动了多少?(外界大气压强为)p 0=1.0×105Pa)

解析 针对题设特点,A 、B 为同温度、同种理想气体,可选A 、B 两部分气体构成的整体为研究对象,并把两部分气体在一同时间内分别做等温变化的过程视为同一整体过程来研究。

(1)根据波意耳定律,p 1V 1=p 2V 2得:p 0(10+20)S=p ′(10+20+3.0)S ′

从而解得整体末态的压强为p ′=11

10p 0 再以活塞a 为研究对象,其受力分析如图1—12甲所示,因活塞a 处于平衡状态,故有F+p ′S=p 0S

从而解得拉力

F=(p 0-p ′)S=(p 0-1110p 0)S=111p 0S=11

1×1.0×105×1.0×10-3=9.1N (2)因初态A 、B 两气体的压强相同,温度相同,

分子密度相同,末态两气体的压强相同,温度相同,分

子密度相同,故部分气体体积变化跟整体气体体积变

化之比,必然跟原来它们的体积成正比,即 B B h h =?

所以活塞b 移动的距离cm h h h h h B A B B 0.20.320

1020=?+=??+=? 例14 一个质量可不计的活塞将一定量

的理想气体封闭在上端开口的直立圆筒形气缸

内,活塞上堆放着铁砂,如图1—13所示,

最初活塞搁置在气缸内壁的固定卡环上,气

体柱的高度为H 0,压强等于大气压强p 0。现

对气体缓慢加热,当气体温度升高了△T=60K 时, 活塞(及铁砂)开始离开卡环而上升。继续加热直到气柱高度为H 1=1.5H 0.此后,在维持温度不变的条件下逐渐取走铁砂,直到铁砂全部取走时,气柱高度变为H 2=1.8H 0,求此时气体的温度。(不计活塞与气缸之间的摩擦)

解析 气缸内气体的状态变化可分为三个过程:等容变化→等压变化→等温变化;因为气体的初态压强等于大气压p 0,最后铁砂全部取走后气体的压强也等于大气压p 0,所以从整状态变化来看可相当于一个等压变化,故将这三个过程当作一个研究过程。 根据盖·吕萨克定律:2

210T S H T S H = ① 再隔离气体的状态变化过程,从活塞开始离开卡环到把温度升到H 1时,气体做等压变化,有:2

110T S H T T S H =?+ ② 解①、②两式代入为数据可得:T 2=540K

例15 一根对称的“∧”形玻璃管置于

竖直平面内,管所有空间有竖直向上的匀强电

场,带正电的小球在管内从A 点由静止开始运

动,且与管壁的动摩擦因数为μ,小球在B 端 与管作用时无能量损失,管与水平面间夹角为θ,AB 长L ,如图1—14所示,求从A 开始,小球运动的总路程是多少?(设小球受的电场力大于重力)

解析 小球小球从A 端开始运动后共受四个力作用,电场力为qE 、重力mg 、管壁 支持力N 、摩擦力f ,由于在起始点A 小球处于不平衡状态,因此在斜管上任何位置都是不平衡的,小球将做在“∧”管内做往复运动,最后停在B 处。若以整个运动过程为研究对象,将使问题简化。

以小球为研究对象,受力如图1—14甲

所示,由于电场力和重力做功与路径无关,

而摩擦力做功与路径有关,设小球运动的

总路程为s ,由动能定理得:

qELsin θ-mgLsin θ-fs=0 ① 又因为f=μN ②

N=(qE -mg)cos θ

所以由以上三式联立可解得小球运动的总路程:μθ

tan L s = ③

例16 两根相距d=0.20m 的平行金属长

导轨固定在同一水平面内,并处于竖直方向的

匀强磁场中,磁场的磁感应强度B=0.2T ,导轨

上面横放着两条金属细杆,构成矩形回路,每 条金属细杆的电阻为r=0.25Ω,回路中其余部

分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s ,如图1—15所示。不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小;

(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量。

解析 本题是电磁感应问题,以两条细杆组成的回路整体为研究对象,从力的角度看,细杆匀速移动,拉力跟安培力大小相等。从能量的角度看,外力做功全部转化为电能,电又全部转化为内能。根据导线切割磁感线产生感应电动势公式得:ε总=2BLv 从而回路电流r

Blv I 22= 由于匀速运动,细杆拉力F=F 安=N r

v l B BIl 222102.3-?== 根据能量守恒有:J Fs Fvt Pt Q 210

28.12-?==== 即共产生的热量为1.28-10-2J.

例17 两金属杆ab 和cd 长均为l ,

电阻均为R ,质量分别为M 和m, M>m.

用两根质量和电阻均可忽略的不可伸长的

柔软导线将它们连成闭合回路,并悬挂在

水平、光滑、不导电的圆棒两侧.两金属杆

都处在水平位置,如图1—16所示.整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B 。若金属杆ab 正好匀速向下运动,求运动的速度.

解析 本题属电磁感应的平衡问题,确定绳上的拉力,可选两杆整体为研究对,确定感应电流可选整个回路为研究对象,确定安培力可选一根杆为研究对象。设匀强磁场垂直回路平面向外,绳对杆的拉力为T ,以两杆为研究对象,受力如1—16甲所示。因两杆匀速移动,由整体平衡条件得:

4T=(M+m)g

对整个回路由欧姆定律和法拉第电磁感应 定律得:R

BlV I 22= ② 对ab 杆,由于杆做匀速运动,受力平衡:

图1—17 图1—18

联立①②③三式解得:2

22)(l B gR m M v -=

针对训练

1.质量为m 的小猫,静止于很长的质量为M 的吊杆上,如图1—17所示。在吊杆上端悬线

断开的同时,小猫往上爬,若猫的高度不变,求吊杆的加速度。(设吊杆下端离地面足够高)

2.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中,若把在空中下落的过程称为过程I ,

进入泥潭直到停止的过程称为过程II ,则 ( )

A .过程I 中钢珠动量的改变量等于它重力的冲量

B .过程II 中阻力的冲量的大小等于全过程中重力冲量的大小

C .过程II 中钢珠克服阻力所做的功等于过程I 与过程II 中钢珠所减少的重力势能之和

D .过程II 中损失的机械能等于过程I 中钢珠所增加的动能

3.质量为m 的运动员站在质量为m/2的均匀长板AB 的中点,板位于水平面上,可绕通过

B 点的水平轴转动,板的A 端系有轻绳,轻绳的另一端绕过两个定滑轮后,握在运动员手中。当运动员用力拉绳时,滑轮两侧的绳子都保持在竖直方向,如图1—18所示。要使板的A 端离开地面,运动员作用于绳子的最小拉力是 。

4.如图1—19,一质量为M 的长木板静止在光滑水平桌面上。一质

量为m 的小滑块以水平速度0v 从长木板的一端开始在木板上滑 动,直到离开木板。滑块刚离开木板时的速度为3/0v 。若把该木 板固定在水平桌面上,其他条件相同,求滑决离开木板时的速度为v 。

5.如图1—20所示为一个横截面为半圆,半径为R 的光滑圆柱,一根不可伸长的细绳两端

分别系着小球A 、B ,且B A m m 2=,由图示位置从静止开始释放A 球,当小球B 达到

6.如图1—21所示,AB 和CD 为两个斜面,其上部足够长,下部分别与一光滑圆弧面相切,EH 为整个轨道的对称轴,圆弧所对圆心角为120°,半径为2m ,某物体在离弧底H 高

h=4m 处以V 0=6m/s 沿斜面运动,物体与斜面的摩擦系数04.0=μ,求物体在AB 与CD 两斜面上(圆弧除外)运动的总路程。(取g=10m/s 2)

7.如图1—22所示,水平转盘绕竖直轴OO ′转动,两木块质量分别为M 与m ,到轴线的距

离分别是L 1和L 2,它们与转盘间的最大静摩擦力为其重力的μ倍,当两木块用水平细绳连接在一起随圆盘一起转动并不发生滑动时,转盘最大角速度可能是多少?

8.如图2—23所示,一质量为M ,长为l 的长方形木板B ,放在光滑的水平地面上,在其右

端放一质量为m 的小木块,且m

9.如图1—24所示,A 、B 是体积相同的气缸,B 内有一导热的、

可在气缸内无摩擦滑动的、体积不计的活塞C 、D 为不导热的

阀门。起初,阀门关闭,A 内装有压强P 1=2.0×105Pa ,温度

T 1=300K 的氮气。B 内装有压强P 2=1.0×105Pa ,温度T 2=600K

的氧气。阀门打开后,活塞C 向右移动,最后达到平衡。以V 1 和V 2分别表示平衡后氮气和氧气的体积,则V 1 : V 2= 。(假定氧气和氮气均为理想气体,并与外界无热交换,连接气体的管道体积可忽略)

10.用销钉固定的活塞把水平放置的容器分隔成A 、B 两部分,其体

积之比V A : V B =2 : 1,如图1—25所示。起初A 中有温度为127℃,

压强为1.8×105Pa 的空气,B 中有温度27℃,压强为1.2×105Pa 的

空气。拔出销钉,使活塞可以无摩擦地移动(不漏气)。由于容器

缓慢导热,最后气体都变成室温27℃,活塞也停住,求最后A 中气体的压强。

11.如图1—26所示,A 、B 、C 三个容器内装有同种气体,

已知V A =V B =2L ,V C =1L ,T A =T B =T C =300K ,阀门D 关

闭时p A =3atm ,p B =p C =1atm 。若将D 打开,A 中气体向

B 、

C 迁移(迁移过程中温度不变),当容器A 中气体压

使B 中气体温度维持K T b 400=',C 中气体温度维持K T c 600=',求此时B 、C 两容器内气体的压强(连通三容器的细管容积不计)。

12.如图1—27所示,两个截面相同的圆柱形容器,右边容器高为H ,上端封闭,左边容器

上端是一个可以在容器内无摩擦滑动的活塞。两容

器由装有阀门的极细管道相连,容器、活塞和细

管都是绝热的。开始时,阀门关闭,左边容器中

装有热力学温度为T 0的单原子理想气体,平衡时

活塞到容器底的距离为H ,右边容器内为真空。现 将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡,求此时左边容器中活塞的高度和缸内气体的温度。[提示:一摩尔单原子理想气体的内能为(3/2)RT ,其中R 为摩尔气体常量,T 为气体的热力学温度]

13.如图1—28所示,静止在光滑水平面上已经充电的平行板电容器

的极板距离为d ,在板上开个小孔,电容器固定在一绝缘底座上,

总质量为M ,有一个质量为m 的带正电的小铅丸对准小孔水平向

左运动(重力不计),铅丸进入电容器后,距左极板的最小距离为

d/2,求此时电容器已移动的距离。

14.一个质量为m ,带有电量-q 的小物体,

可在水平轨道OX 上运动, O 端有一与轨

道垂直的固定墙壁,轨道处于匀强电场中,

场强大小为E ,方向沿OX 正方向,如图

1—29所示,小物体以初速0v 从0x

点沿Ox 运动时,受到大小不变的摩擦力f 的作用,且qE f <;设小物体与墙碰撞时不

损失机械能,且电量保持不变,求它在停止运动前所通过的总路程s 。

15.如图1—30所示,一条长为L 的细线,上端固定,下端拴一质量为m 的带电小球。将它

置于一匀强电场中,电场强度大小为E ,方向是水平的,已知当细线离开竖直位置的偏角为α时,小球处于平衡。求:

(1)小球带何种电荷?小球所带的电量;

(2)如果使细线的偏角由α增大到φ,然后将小球由静止开始释放,则φ应为多大,才

能使在细线到达竖直位置时小球的速度刚好为零?

12V 的恒定电压,分别调节变阻器R 1和R 2,使6只灯泡均能正常工作,这时甲乙两种电路消耗的总功率分别为P 1和P 2,试找出两者之间的关系。

17.如图1—32所示,在竖直方向的x 、y 坐标系中,在x 轴上方

有一个有界的水平向右的匀强电场,场强为E ,x 轴的下方有

一个向里的匀强磁场,场强为B 。现从A 自由释放一个带电量

为-q 、质量为m 的小球,小球从B 点进入电场,从C 点进入

磁场,从D 点开始做水平方向的匀速直线运动。已知A 、B 、C

点的坐标分别为(0,y 1)、(0,y 2)、(-x ,0),求D 点的纵坐标y 3。

答案:

1.g M m )1(+ 2.ABC 3.mg 2

1 4.M M m t +430

5.-0.19m A gR 6.290m 7.12)(mL ML g

m M ++μ 8.mgl W m M ml s μ=+=2 9.4:1 10.1.3×105Pa

11.2.5atm 12.0575

2T T H h == 13.M md 4 14.f mv qEx 22200+ 15.(1)正电 αtan E

mg c = (2)αφ2= 16.P 1=2P 2 17.)21(12223x mg

qE y q B g m y ---= 高中奥林匹克物理竞赛解题方法

二、隔离法

方法简介

隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平

桌面上,如图2—1所示,如果它们分别受到水平推

力F 1和F 2作用,且F 1>F 2, 则物体1施于物体2的 作用力的大小为 ( )

解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。

先以整体为研究对象,根据牛顿第二定律:F 1-F 2=2ma ①

再以物体2为研究对象,有N -F 2=ma ② 解①、②两式可得),(2

121F F N +=所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,

A 、

B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运

运,这时物体A 相对于桌面 ( )

A .向左动

B .向右动

C .不动

D .运动,但运动方向不能判断

解析:A 的运动有两种可能,可根据隔离法分析

设AB 一起运动,则B

A m m F a += A

B 之间的最大静摩擦力 g m f B m μ=

以A 为研究对象:若AB F m m m m a m f A B B A A m ,)

(,+≥≥μ即一起向右运动. 若,)(F g

m m m m A B B A +<μ则A 向右运动,但比B 要慢,所以应选B 例3:如图2—3所示,已知物块A 、B

的质量分别为m 1、m 2,A 、B 间的摩擦因数

为μ1,A 与地面之间的摩擦因数为μ2,在

水平力F 的推动下,要使A 、B 一起运动而

B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B

不下滑,需满足的临界条件是:μ1N=m 2g.

设B 不下滑时,A 、B 的加速度为a ,以B

为研究对象,用隔离法分析,B 受到重力,A 对

B 的摩擦力、A 对B 向前的压力N ,如图2—3

甲所示,要想B 不下滑,需满足:μ1N ≥m 2g,即:μ1m 2a ≥m 2g,所以加速度至少为a =g/μ1

再用整体法研究A 、B ,根据牛顿第二定律,有:F —μ2(m 1+m 2)g=(m 1+m 2)g=(m 1+m 2)a ,所以推力至少为g m m F )1

)((2121μμ++=.

例4:如图2—4所示,用轻质细绳连接的A 和B

两个物体,沿着倾角为α的斜面匀速下滑,问A 与B 之

解析:弹力产生在直接接触并发生了形变的物体

之间,现在细绳有无形变无法确定.所以从产生原因上

分析弹力是否存在就不行了,应结合物体的运动情况来

分析.

隔离A 和B ,受力分析如图2—4甲所示,设弹力T 存在,将各力正交分解,由于两物体匀速下滑,处于平衡状态,所以有:

A A f T g m +=αsin ……①

B B f T g m =+αsin ……②

设两物体与斜面间动摩擦因数分别为A μ、B μ,则 αμμcos g m N f A A A A A ==……③

αμμcos g m N f B B B B B ==……④

由以上①②③④可解得:)sin cos ()cos (sin ααμαμα-=-=b B A A g m T g m T 和

若T=0,应有:αμtan =A αμt a n

=B 由此可见,当B A μμ=时,绳子上的弹力T 为零.

若B A μμ≠,绳子上一定有弹力吗?

我们知道绳子只能产生拉力.

当弹力存在时,应有:T>0即 αμαμtan ,tan >

所以只有当B A μμ<时绳子上才有弹力

例5 如图2—5所示,物体系由A 、B 、C 三个

物体构成,质量分别为m A 、m B 、m C .用一水平力F

作用在小车C 上,小车C 在F 的作用下运动时能使

物体A 和B 相对于小车C 处于静止状态.求连接A

和B 的不可伸长的线的张力T 和力F 的大小.(一切

摩擦和绳、滑轮的质量都不计)

解析 在水平力F 作用下,若A 和B 能相对于C

静止,则它们对地必有相同的水平加速度.而A 在绳的

张力作用下只能产生水平向右的加速度,这就决定了

F 只能水平向右,可用整体法来求,而求张力必须用

隔离法.

如图2—5甲所示,设对地的加速度为a ,则有:

a m m m F C B A )(++=…………①

隔离B ,以地为参考系,受重力m B g 、张力T 、C 对B 的弹力N B ,应满足:

g m T a m N B B B ==绳子的张力,…………②

隔离A ,以地为参考系,受重力m A g,绳的张力T ,C 的弹力N A ,应满足;

N A =m A g …………③

T=m A a …………④

当绳和滑轮的质量以及摩擦都不计时,由②、④两式解出加速度

g m m a A

B = 代入①式可得:

g m m m m m F A

C B A B )(++= 例6 如图2—6所示,一根轻质弹簧上端固定,

下端挂一质量为m 0的平盘,盘中有一物体质量为m ,

当盘静止时,弹簧的长度比其自然长度伸长了L ,今

向下拉盘,使弹簧再伸长△L 后停止.然后松手放开,

设弹簧总处在弹性限度以内,则刚松开手时盘对物体

的支持力等于( )

A .mg L L )/1(?+

B .g m m L L ))(/1(0+?+

C .Lmg ?

D .g m m L L )(/0+?

解析 确定物体m 的加速度可用整体法,确定盘对物体的支持力需用隔离法.选整体为研究对象,在没有向下拉盘时有

KL=(m+m 0)g …………①

在向下拉伸△L 又放手时有

K △L=(m+m 0)a ……②

再选m 为研究对象 F N -mg =ma ……③ 解得:mg L

L F N )1(?+= 应选A.此题也可用假设法、极限法求解.

例7 如图2—7所示,AO 是质量为m 的均

匀细杆,可绕O 轴在竖直平面内自动转动.细杆上

的P 点与放在水平桌面上的圆柱体接触,圆柱体

靠在竖直的挡板上而保持平衡,已知杆的倾角为

则挡板对圆柱体的作用力等于 。

解析 求圆柱体对杆的支持力可用隔离法,用力矩平衡求解。求挡板对圆柱体的作用力可隔离圆柱体,用共点力的平衡来解.

以杆为研究对象,受力如图2—7甲所示,根据力矩平衡条件:

.cos 3

2,43cos 2θθmg F l F l mg ==解得根据牛顿第三定律,杆对圆柱体的作用力与F 大小相等,方向相反,再以圆柱体为研究对象,将力F 正交分解,如图2—7—乙,在水平方向有

θθθ2sin 3

1cos sin 32mg mg ==

即挡板对圆柱体的作用力为θ2sin 31mg . 例8 如图2—8所示,质量为m 的小球

被两个劲度系数皆为k 的相同弹簧固定在一

个质量为M 的盒中,盒从h 高处(自桌面量

起)开始下落,在盒开始下落的瞬间,两弹簧

未发生形变,小球相对盒静止,问下落的高度

h 为多少时,盒与桌面发生完全非弹性碰撞后还能再跳起来.

解析 盒下落过程可用整体法研究,下落后弹簧的形变情况应用隔离小球研究,盒起跳时可隔离盒研究。 在盒与桌面发生碰撞之前,小球仅受重力作用,着地时速度为:gh v 2=.

碰撞后盒静止,球先压缩下面的弹簧,同时拉上面的弹簧,当小球向下的速度减为零后,接着又向上运动,在弹簧原长位置上方x 处,小球的速度又减为0,则在此过程中,对小球有:

222

1221kx mgx mv ?+= 把盒隔离出来,为使盒能跳起来,需满足:).21(2:2m

M k Mg h Mg kx +=

>代入上式可解得 例9 如图2—9所示,四个相等质量的质点

由三根不可伸长的绳子依次连接,置于光滑水平面

冲量作用在质点A ,并使这个质点速度变为u ,方

向沿绳向外,试求此瞬间质点D 的速度.

解析 要想求此瞬间质点D 的速度,由已知

条件可知得用动量定理,由于A 、B 、C 、D 相关

联,所以用隔离法,对B 、C 、D 分别应用动量定

理,即可求解.以B 、C 、D 分别为研究对象,根据

动量定理:

对B 有:I A —I B cos60°=m B u …………①

I A cos60°—I B =m B u 1…………②

对C 有:I B —I D cos60°=m C u 1……③

I B cos60°—I D =m c u 2…………④

对D 有:I D =m D u 2……⑤

由①~⑤式解得D 的速度u u 13

12= 例10 有一个两端开口、粗细均匀的U 形玻

璃细管,放置在竖直平面内,处在压强为p 0的大

气中,两个竖直支管的高度均为h ,水平管的长度

为2h ,玻璃细管的半径为r,r<

满密度为ρ的水银,如图2—10所示.

1.如将U 形管两个竖直支管的开口分别密封起

来,使其管内空气压强均等于大气压强,问当U 形

管向右做匀加速移动时,加速度应为多大时才能使水

平管内水银柱的长度稳定为(5/3)h ?

2.如将其中一个竖直支管的开口密封起来,使

其管内气体压强为1个大气压.问当U 形管绕以另一

个竖直支管(开口的)为轴做匀速转动时,转数n

应为多大才能使水平管内水银柱的长度稳定为(5/3)

h (U 形管做以上运动时,均不考虑管内水银液面的

倾斜)

解析 如图2—10—甲所示,U 形管右加速运动

时,管内水银柱也要以同样加速度运动,所以A 管

内气体体积减小、压强增大,B 管内气体体积增大、

压强减小,水平管中液体在水平方向受力不平衡即产

生加速度.若U 形管以A 管为轴匀速转动时,水平部

分的液体也要受到水平方向的压力差而产生向心加

速度.

1.当U 形管以加速度a 向右运动时,对水平管中水银柱有F 1—F 2=ma 即a hS S p S h g p B A ?=-+ρρ3

5)3(……① 3h

004

3,)3(:p p S h h p hs p B B B =+=解得中气体有对……③ 2—10—乙 将②、③式代入①式可得ρ

ρh gh p a 20490+= 2.如图2—10—乙,若U 形管以A 管为轴

匀速转动时,对水平管中水银柱有F 2—F 1=ma .

若转轴为n ,则有:

h n m S p S h g p B 6

7)2()3(20πρ?=-+'……① 对B 中气体有,)3(0S h h p hS p B ?-'=解得:02

3p p B ='……② 将②式代入①式可解得转速

ρ

ρπ1406910gh p h n += 例11 如图2—11所示,一个上下都与大气相通

的竖直圆筒,内部横截面的面积S=0.01m 2,中间用两

个活塞A 与B 封住一定质量的理想气体,A 、B 都可

沿圆筒无摩擦地上、下滑动,但不漏气,A 的质量可

不计,B 的质量为M ,并与一倔强系数k=5×103N/m

的较长的弹簧相连.已知大气压强p 0=1×105Pa ,平衡

时,两活塞间的距离l 0=0.6m.现用力压A 使之缓慢向

下移动一定距离后,保持平衡,此时,用于压A 的力

F=5×102N.求活塞A 向下移动的距离.(假定气体温度保持不变.)

解析 活塞A 下移的距离应为B 下降的距离与气体长度的减小量之和,B 下降的距离可用整体法求解.气体长度的变化可隔离气体来求解.

选A 、B 活塞及气体为研究对象,设用力F 向下压A 时,活塞B 下降的距离为x , 则有:F=kx …………① 选气体为研究对象,据玻意耳定律有S l S

F p S l p ?+=)(000…………② 解①②两式可得x =0.1m l =0.4m 则活塞A 下移的距离为:左=0.1+0.6—0.4=0.3m 例12 一个密闭的气缸,被活塞分成体积相等

的左右两室,气缸壁与活塞是不导热的,它们之间没

有摩擦,两室中气体的温度相等,如图2—12所示,

现利用右室中的电热丝对右室中的气体加热一段时

间,达到平衡后,左室的体积变为原来体积的3/4,气体的温度T 1=300K.求右室中气体的温度.

解析 可隔离出A 、B 两部分气体,用理想气体状态方程求解.

对左边气体有143T V p T pV '=……①对右边气体有2

45T V p T pV '=② ①、②两式相比,可得右室中气体温度K T T 5003

512==

例13 如图2—13所示,封闭气缸的活塞被很

细的弹簧拉着,气缸内密封一定质量的气体,当温

度为27℃时,弹簧的长度为30cm ,此时缸内气体

的压强为缸外大气压的1.2倍,当气温升到123℃

时,弹簧的长度为36cm ,求弹簧的原长.

解析 本题所研究的对象就是密封在气缸内的一定质量的气体,气体所处的初态为: T 1=300K 、V 1=SL 1、(S 为气缸横截面积,L 1为弹簧长度)p 1=p 0+F 1/S=1.2P 0末态为T 2=396K 、V 2=SL 2 p 2=p 0+F 2/S (p 0为大气压强,F 1、F 2为弹簧的弹力).气体从初态过渡到末态时质量恒定,所以可利用状态方程求解: 将上述各状态参量代入状态方程:2

22111T V p T V p = 解得:01232.11.1p p p ==由于弹力产生的压强等于气缸内外气体的压强差, 所以:00112.0p p p S

L K =-=? ① 002232.0p p p S

L K =-=? ② 联立①、②式得:126.1L l ?=?

)(6.1:0102L L L L -=-即

解得弹簧的原长为L 0=20cm

例14 一个由绝缘细细构成的钢性圆形轨道,其半径为R ,此轨道水平放置,圆心在O 点,一个金属小珠P 穿在此轨道上,可沿轨道无摩擦地滑动,小珠P 带电荷Q.已知在轨道平面内A 点(OA=r

解析 小珠P 虽沿轨道做匀速圆周运动,但

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理奥赛解题方法七 对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A′点水平抛出所做的运动。 根据平抛运动的规律: 2 x v t 1 y gt 2 = ? ? ? = ?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v0 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A和B ,间距为d ,一个小球以初速度v0从两墙正中间的O点斜向上抛出,与A和B各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。

解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 020x v cos t 1y v sin t gt 2 =θ????=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 202gd v 所以,抛射角θ =1 2arcsin 202gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为 a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追 捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎 物,猎犬不断调整方向,速度方向始终“盯”住对方,它们 同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: a 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° 由此可知三角形收缩到中心的时间为:t =s v '=2a 3v (此题也可以用递推法求解,读者可自己试解。) 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R 。槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径。不计

高中物理解题方法大全(完整版)

" 高中物理解题方法指导 (完整版) 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 - 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 ^ 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理奥林匹克竞赛专题4.动量和角动量习题

习题 4-1. 如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。在质点旋转一周的过程中,试求: (1)质点所受合外力的冲量I ; (2)质点所受张力T 的冲量I T 。 解: (1)根据冲量定理:???==t t P P d dt 00 ??P P F 其中动量的变化:0v v m m - 在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零 (2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。 重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量2πmg /ω,方向为竖直向上。 4-2.一物体在多个外力作用下作匀速直线运动,速度=4m/s 。已知其中一力F 方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。求:

(1)力F 在1s 到3s 间所做的功; (2)其他力在1s 到s 间所做的功。 解: (1)由做功的定义可知: (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。 4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求: (1)质点在任一时刻的动量; (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。 解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。 4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。今有一质量为m =20g 的子弹

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

全国高中物理竞赛专题十三 电磁感应训练题解答

1、 如图所示为一椭圆形轨道,其方程为()22 2210x y a b a b +=>>,在中心处有一圆形区域, 圆心在O 点,半径为()r b <,圆形区域中有一均匀磁场1B ,方向垂直纸面向里,1B 以 1B t k ??=的速率增大,在圆外区域中另 有一匀强磁场2B ,方向与1B 相同,在初始时,A 点有一带正电q 的质量为m 的粒子, 粒子只能在轨道上运动,把粒子由静止释放,若要其通过C 点时对轨道无作用力,求2B 的大小。 解:由于r b a <<,故轨道上距O 为R 的某处,涡旋电场强度为 22122B r kr E R t R ?==? 方向垂直于R 且沿逆时针方向,故q 逆时针运动。 q 相对O 转过θ?角时,1B 对其做功为 2 2kr W F x Eq x q R R θ?=?=?=? 而2B 产生的洛伦兹力及轨道支持力不做功,故q 对O 转过θ角后,其动能为 2 2122 k kr E mv W q θ==?=∑ q 的速度大小为 2kr q v m θ = q 过C 时,()3 20,1,2,2 n n θππ=+= C 处轨道不受力的条件为 2 2mv qvB ρ = 其中ρ为C 处的曲率半径,可以证明:2 a b ρ=(证明略) A C 1 B 2 B O x y

将v 和θ的表达式代入上式可得 ()22 320,1,2,2br mk B n n a q ππ?? = += ??? 2、 两根长度相等,材料相同,电阻分别为R 和2R 的细导线,两者相接而围成一半径为a 的圆环,P Q 、为其两个接点,如图所示,在圆环所围成的区域内,存在垂直于图面、指向纸内的匀强磁场,磁感应强度的大小随时间增大的变化率为恒定值b 。已知圆环中感应电动势是均匀分布的,设M N 、为圆环上的两点,M N 、间的圆弧为半圆弧的一半,试求这两点间的电压()M N U U -。 解:根据法拉第定律,整个圆环中的感应电动势的大小 2E r b t π?Φ = =? (1) 按楞次定律判断其电流方向是逆时针的,电流大小为 23E E I R R R = =+ (2) 按题意,E 被均匀分布在整个圆环上,即?MN 的电动势为4E ,?NQPM 的电动势为34E ,现考虑?NQPM ,在这段电路上由于欧姆电阻所产生电势降落为()22I R R +,故 3242M N R U U E R I ? ?-=-+ ?? ? (3) 由(1)、(2)、(3)式可得 21 12 M N U U r b π-=- (4) 当然,也可采用另一条路径(?MTN 圆弧)求电势差 ()211 424321212 N M M N E R E E R U U I E r b U U R π-= -=-===--g g 与(4)式相符。 3、 如图所示,在边长为a 的等边三角形区域内有匀强磁场B ,其方向垂直纸面向外。一个边长也为a 的等边三角形导轨框架ABC ,在0t =时恰好与上述磁场区域的边界重合,而后以周期T 绕其中心在纸面内顺时针方向匀速转动,于是在框架ABC 中产生感应电流,规 R T M N P Q 2R S

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

高中物理-常考题型与解题方法全汇总

高中物理-常考题型与解题方法全汇总 题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2 物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类,一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4 抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都

高中物理竞赛专题训练

高中物理竞赛专题训练 1、一圆柱体的坚固容器,高为h,上底有一可以打开和关闭的密封阀门,现把此容器沉入深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门。设大气压强为P0, 湖水的密度为,则容器内部底面受到的向下的压强为_________,若将 此容器从湖底移动湖面上,这时容器内部底面上受到的向下的压强为 _________。(P 0+gH、P0+gH) 2、氢原子处于基态时,能量E=_________;当氢原子处于n=5的能量状态时,氢原子的能量为__________;当氢原子从n=5状态跃迁到n=1的基态时,辐射光子的能量是_________,是_________光线(红外线、可见或紫外线)。(—13.6 ev、—0.54ev 、13.06ev、紫外线) 3、质量为m的物体A置于质量为M、倾角为的斜面B上,A、B之间光滑接触,B的底面与水平地面也是光滑接触。设开始时A与B均为静止,而后A以某初速度沿B的斜面向上运动,如图所示,试问A在没有到达斜面顶部前是否会离开斜面?为什么?讨论中不必考虑B向前倾倒的可能性。(不会离开斜面,因为A与B的相互作用力为(mMcos g) / [M+m(sin)2],始终为正值) 4、一电荷Q1均匀分布在一半球面上,无数个点电荷、电量均为Q2位于通过球心的轴线上,且在半球面的下部。第k个电荷与球心的距离为,而k=1,2,3,4……,设球心处的电势为零,周围空间均为自由空间。若Q1已知求Q2。(—Q1/2)

5、一根长玻璃管,上端封闭,下端竖直插入水银中,露出水银面的玻璃管长为76 cm。水银充满管子的一部分。玻璃管的上端封闭有0.001mol的空气,如图所示。外界大气压强为76cmHg。空气的定容摩尔热容量为C V =20.5J/mol k。当玻璃管与管内空气的温度均降低100C时,试问管内空气放出多少热量?(0.247焦耳) 6、如图所示,折射率n=1.5的全反射棱镜上方6cm处放置一物体AB,棱镜直角边长为6cm,棱镜右侧10cm处放置一焦距f1=10cm的凸透镜,透镜右侧15cm处再放置一焦距f2=10cm的凹透镜,求该光学系统成像的位置和像放大率。(在凹透镜的右侧10cm处、放大率为2) 7、在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q(与Q同号)的自由点电荷。若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少?(会做周期性振动,周期为) 8、一匀质细导线圆环,总电阻为R,半径为a,圆环内充满方向垂直于 环面的匀强磁场,磁场以速率K均匀的随时间增强,环上的A、D、C三点位置对称。电流计G

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

(完整版)高中物理八大解题方法之七:逆向思维法

高中物理解题方法之逆向思维法 江苏省特级教师 戴儒京 内容提要:本文通过几道物理题的解法分析,阐述逆向思维解题方法的几种应用:一、在解题程序上逆向思维;二、在因果关系上逆向思维;三、在迁移规律上逆向思维。 所谓“逆向思维”,简单说来就是“倒过来想一想”。这种方法用于解物理题,特别是某些难题,很有好处。下面通过高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况。 一、 在解题程序上逆向思维 解题程序,一般是从已知到未知,一步步求解,通常称为正向思维。但有些题目反过来思考,从未知到已知逐步推理,反而方便些。 例1.如图1所示, 图1 一理想变压器的原副线圈分别由双线圈ab 和cd (匝数都为n 1)、ef 和gh (匝数都为n 2)组成。用I 1和U 1表示输入电流和电压,用I 2和U 2表示输出电流和电压。在下列四种接法中,符合关系1 2212121,n n I I n n U U ==的有: (A ) b 与c 相连,以a 、d 为输入端;f 与g 相连,以e 、h 为输入端。 (B ) b 与c 相连,以a 、d 为输入端;e 与g 相连、f 与h 相连作为输入端。

(C ) a 与c 相连,b 与d 相连作为输入端;f 与g 相连,以e 、h 为输出端。 (D ) a 与c 相连,b 与d 相连作为输入端;e 与g 相连、f 与h 相连作为输出端。 析与解:一般的选择题,是从题干所给的已知条件去求解,解出结果与选项比较,哪个正确选哪个。但本题我们不能根据两个公式去求解法,而只能逐一选项讨论哪种解法能得出题干给出的公式。 对(A ),初级ab 和cd 两线圈串联,总匝数为2 n 1,次级ef 和gh 两线圈亦串联,总匝数为2 n 2,据变压器变压比公式及变流比公式有1 21221212121,22n n U U I I n n n n U U ====。 对(B ),初级总匝数为2 n 1,次级总匝数为n 2(ef 与gh 并联),不符合题给两公式。 对(C ),初级总匝数为n 1,次级总匝数为2n 2,亦不符合题给两公式。 对(D ),初级总匝数为 n 1,次级总匝数为n 2 , 符合题给两公式。 故本题选(A 、D )。 这种在解题程序上的逆向思维法,较多用于选择题和证明题,因为此类题给出了要求的结果,便于逆推。 二、在因果关系上逆向思维 物理过程有一定的因果关系,通常从原因出发推导结果,称为正向思维。但有时反过来,从结果倒推原因,可称为逆向思维。 例2.某人透过焦距为10厘米,直径为4.0厘米的薄凸透镜观看方格纸,每个方格的边长均为0.30厘米。他使透镜的主轴与方格垂直,透镜与纸面相距10厘米,眼睛位于透镜主轴上离透镜5.0厘米处。问他至多能看到同一行上几个完整的方格? 析与解:眼睛看到方格,应是方格纸反射的自然光经透镜折射后射到人的眼中,我们根据光路的可逆性,把眼睛看作光源,求此光源发出的光经透镜折射(会聚)后能照到方格纸上多大的范围? 光路图为图2所示。 C

河北省邢台市育才中学人教A版高中物理奥赛辅导一轮复习七 对称法 练习(附答案)$826277

北京天梯志鸿教育科技有限责任公司七、对称法 针对训练 1.从距地面高19.6m处的A点,以初速度为5.0m/s沿水平方向 投出一小球. 在距A点5.0m处有一光滑墙,小球与墙发生弹性碰撞(即入射角等于反射角,入射速率等于反射率),弹回后掉到地面B处. 求:B点离墙的水平距离为多少? 2.如图7—17所示,在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q (与Q同号)的自由点电荷. 若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少? 3.如图7—18所示是一个由电阻丝构成的平面正方形无穷网络,当各小段电阻丝的电阻均为R时,A、B两点之间的等效电阻为R/2,今将A,B之间的一小段电阻丝换成电阻为R′的另一端电阻丝,试 问调换后A,B之间的等效电阻是多少? 4.有一无限大平面导体网络,它由大小相同的正六角形网眼组成,如图7—19所示,所有六边形每边的电阻均为R0,求a,b两结 点间的等效电阻.

5.如图7—20所示,某电路具有8个节点,每两个节点之间都连有一个阻值为2Ω的电阻,在此电路的任意两个节点之间加上10V电压,求电路的总电流,各支路的电流以及电阻上消耗的总功率. 6.电路如图7—21所示,每两个节点间电阻的阻值为R,求A、B间总电阻R AB. 7.电路如图7—22所示,已知电阻阻值均为15Ω,求R AC,R AB,R AO各为多少欧? 8.将200个电阻连成如图7—23所示的电路,图中各P点是各支路中连接两个电阻的导线上的点,所有导线的电阻都可忽略. 现将一电动势为ε,内阻为r的电源接到任意两个P点处,然后将任一个没接电源的支路在P点处切断,发现流过电源 的电流与没切断前一样,则这200个电阻R1,R2,…,R100,r1,r2,

高中物理竞赛经典方法 2.隔离法

二、隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 赛题精讲 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2 , 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .12F F 2+ D .12F F 2 - 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。先以整体为研 究对象,根据牛顿第二定律:F 1-F 2 = 2ma ① 再以物体2为研究对象,有N -F 2 = ma ② 解①、②两式可得N = 12 F F 2 +,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 解析:A 的运动有两种可能,可根据隔离法分析 设AB 一起运动,则:a =A B F m m + AB 之间的最大静摩擦力:f m = μm B g 以A 为研究对象:若f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。 若μ< A B B A m m (m m )g + F ,则A 向右运动,但比B 要慢,所 以应选B 例3:如图2—3所示,已知物块A 、B 的质量分别为m 1 、m 2 ,A 、B 间的摩擦因数为μ1 ,A 与地面之间的摩擦因数为μ2 ,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N = m 2g 。

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理奥赛专题十三 磁场

专题十三 磁场 【拓展知识】 1.几种磁感应强度的计算公式 (1)定义式:IL F B = 通电导线与磁场方向垂直。 (2)真空中长直导线电流周围的磁感应强度:r I K r I B ==πμ20 (πμ20=K )。 式中r 为场点到导线间的距离,I 为通过导线的电流,μ0为真空中的磁导率,大小为4π×10-7H/m 。 (3)长度为L 的有限长直线电流I 外的P 处磁感应强度:)cos (cos 4210θθπμ-= r I B 。 (4)长直通电螺线管内部的磁感应强度:B=μ0nI 。 式中n 为单位长度螺线管的线圈的匝数。 2.均匀磁场中的载流线圈的磁力矩公式:M=NBISsin θ。 式中N 为线圈的匝数,S 为线圈的面积,θ为线圈平面与磁场方向的夹角。 3.洛伦兹力 F =qvBsin θ (θ是v 、B 之间的夹角) 当θ=0°时,带电粒子不受磁场力的作用。 当θ=90°时,带电粒子做匀速圆周运动。 当0°<θ<时90°,带电粒子做等距螺旋线运动,回旋半径、螺距和回旋周期分别为 qB mv R θsin =; qB mv h θπcos 2= ; qB m T π2= ; 4.霍尔效应 将一载流导体放在磁场中,由于洛伦兹力的作用,会在磁场和电流两者垂直的方向上出现横向电势差,这一现象称为霍尔效应,这电势差称为霍尔电势差。

【典型例题】 1.如图所示,将均匀细导线做成的环上的任意两点A和B与固定电源连接起来,总电流为I,计算由环上电流引起的环中心的磁感应强度。 2.如图所示,倾角为θ的粗糙斜面上放一木制圆柱,其质量为m = 0.2kg,半径为r,长为l =0.1m,圆柱上顺着轴线绕有N =10匝线圈,线圈平面与斜面平行,斜面处于竖直向上的匀强磁场中,磁感应强度为B =0.5T,当通入多大电流时,圆柱才不致往下滚动? 3.如图所示,S为一离子源,它能各方向会均等地持续地大量发射正离子,离子的质量皆为m、电量皆为q,速率皆为v0。在离子源的右侧有一半径为R的圆屏,图中OOˊ是通过圆屏的圆心并垂直于屏面的轴线,S位于轴线上,离子源和圆屏所在的空间有一范围足够大的匀强磁场,磁感应强度的大小为B,方向垂直于圆屏向右。在发射的离子中,有的离子不管S的距离如何变化,总能打到圆屏面上,求这类离子的数目与总发射离子数之比,不考虑离

相关主题
文本预览
相关文档 最新文档