当前位置:文档之家› 315MHZ和433MHz的参数及天线设计

315MHZ和433MHz的参数及天线设计

315MHZ和433MHz的参数及天线设计
315MHZ和433MHz的参数及天线设计

用途DF无线数据收发模块

无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域

中。

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图

主要技术指标:

1。通讯方式:调幅AM

2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明)

3。频率稳定度:±75KHZ

4。发射功率:≤500MW

5。静态电流:≤

6。发射电流:3~50MA

7。工作电压:DC 3~12V

315MHZ发射模块 8元一个433MHZ发射模块 8元一个

DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为

3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。

DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。

DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为

无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。

DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平应接近DF数据模块的实际工作电压,以获得较高的调制效果。

DF发射发射模块最好能垂直安装在主板的边缘,应离开周围器件5mm以上,以免受分布参数影晌。DF模块的传输距离与调制信号頻率及幅度,发射电压及电池容量,发射天线,接收机的灵敏度,收发环境有关。一般在开阔区最大发射距离约800米,在有障碍的情况下,距离会缩短,由于无线电信号传输过程中的折射和反射会形成一些死区及不稳定区域,不同的收发环境会有不同的收发距离。

DF发射模块都可以和下面介绍的接收模块配套使用(均无编码解码芯片)

超再生和超外差接收机的性能区别:

超再生和超外差电路性能各有优缺点,超再生接收机价格低廉,经济实惠,而且接收灵敏度高,但是缺点也很明显,那就是频率受温度漂移大,抗干扰能力差。超外差式接收机优点是频率稳定,抗干扰能力

好,和单片机配合时性能比较稳定,缺点是灵敏度比超再生低,价格远高于超再生接收机,而且近距离强信号时可能有阻塞现象。

电源电压要与模块工作电压一致,且要做好电源滤波。天线对模块的接收效果影响很大,一般315M采用23cm的导线。433M的约为17cm;天线位天线尽可能伸直,远离屏蔽体,高压,及干扰源的地方。线路板上的铜质电感不能压,否则会改变接收频率。

接收模块1:315MHZ超再生接收模块 5元一个433MHZ超再生接收模块 5元一个

这是DF超再生接收模块的等效电路图,图中LM358是运算放大器,Q2是本振三极管,L0是可调电感,通常315MHZ的是匝,433MHZ 的是匝,可以观察可调电感侧面的铜丝圈数,L2就是绿色的色环电感,本振的高频扼流圈,Q1是高频放大三极管,L1是高放谐振线圈。超再生接收模块的体积:30x13x8毫米模块的中间两个引脚都是信号输出,连通的。

主要技术指标:

1。通讯方式:调幅AM

2。工作频率:315MHZ/433MHZ

3。频率稳定度:±200KHZ

4。接收灵敏度:-106DBM

5。静态电流:≤5MA

6。工作电流:≤5MA

7。工作电压:DC ~5V

8。输出方式:TTL电平

DF接收模块的工作电压为5伏,静态电流4毫安,它为超再生接收电路,接收灵敏度为-105dbm,接收天线最好为25~30厘米的导线,最好能竖立起来。接收模块本身不带解码集成电路,因此接收电路仅是一种组件,只有应用在具体电路中进行二次开发才能发挥应有的作用,这种设计有很多优点,它可以和各种解码电路或者单片机配合,设计电路灵活方便。

这种电路的优点在于:

1。天线输入端有选频电路,而不依赖1/4波长天线的选频作用,控制距离较近时可以剪短甚至去掉外接天线

2。输出端的波形相对比较干净,干扰信号为短暂的针状脉冲,所以抗干扰能力较强。

3。DF模块自身辐射极小,加上电路模块背面网状接地铜箔的屏蔽作用,可以减少自身振荡的泄漏和外界干扰信号的侵入。

4。采用带骨架的铜芯电感将频率调整到315M后封固,这与采

用可调电容调整接收频率的电路相比,温度、湿度稳定性及抗机械振动性能都有极大改善。可调电容调整精度较低,只有3/4圈的调整范围,而可调电感可以做到多圈调整。可调电容调整完毕后无法封固,因为无论导体还是绝缘体,各种介质的靠近或侵入都会使电容的容量发生变化,进而影响接收频率。另外未经封固的可调电容在受到振动时定片和动片之间发生位移;温度变化时热胀冷缩会使定片和动片间距离改变;湿度变化因介质变化改变容量;长期工作在潮湿环境中还会因定片和动片的氧化改变容量,这些都会严重影响接收频率的稳定性,而采用可调电感就可解决这些问题,因为电感可以在调整完毕后进行封固,绝缘体封固剂不会使电感量发生变化。

接收模块2:315MHZ超外差接收模块 13元一个433MHZ超外差接收模块 13元一个

超外差接收模块的体积:35x13x8毫米

主要技术指标:

1。通讯方式:调幅AM

2。工作频率:315MHZ(声表上标注为)(可以提供433MHZ,声表上标注为436,购货时请特别注明)

3。频率稳定度:±75KHZ

4。接收灵敏度:-102DBM

5。静态电流:≤5MA

6。工作电流:≤5MA

7。工作电压:DC 5V

8。输出方式:TTL电平

这里提供的超外差接收模块采用进口高性能无线遥控及数传专用集成电路RX3310A,并且采用声表谐振器,所以工作稳定可靠,适合比较恶劣的环境下全天候工作。

超外差接收机对天线的阻抗匹配要求较高,要求外接天线的阻抗必须是50欧姆的,否则对接收灵敏度有很大的影响,所以如果用1/4波长的普通导线时应为23厘米最佳,要尽可能减少天线根部到发射模块天线焊接处的引线长度,如果无法减小,可以用特性阻抗50欧姆的射频同轴电缆连接(天线焊点右侧有一个专门的接地焊点)

接收模块3:315MHZ超外差CS3411接收模块 12元一个433MHZ超外差CS3411接收模块 12元一个

CS3411超外差接收模块是RX3310A芯片的替代产品,各种性能都和RX3310A类似,其中315MHZ的产品上声表上标注为;433MHZ的产品上声表上标注为。

工作电压:DC 5V ;工作电流:;接收灵敏度:-106dBm ;工作温度: -20℃~+70℃ ;尺寸:36×13×5mm 灵敏度高,内部采用锁相环稳频,接收频点稳定,此模块解调带宽为。

接收模块4:315MHZ 3400超外差接收模块 23元一个

超外差RX3400接收模块的性能比RX3310的更高,主要是灵敏度更高达到-106DB,适合高要求的系统中。

接收模块5:315MHZ 高可靠高灵敏接收模块 26元一个433MHZ 高可靠高灵敏接收模块 26元一个

这是目前性能最好的接收模块,315MHZ上的声表规格是;

433MHZ上的声表规格是采用MICRF的213AYQS芯片,性能类似RX3600。工作电压:DC 5V 工作电流:6mA 接收灵敏度:-110dBm 工作温度:

-40℃~+85℃ 尺寸:35××5mm

接收模块6:315MHZ 超再生低电压微功耗接收模块6元一个

这种是315M超再生低电压低功耗专用接收模块,其他的接收模块工作电压一般要5V以上才能有较好的接收灵敏度,而这种模块工作电压只要~,静态电流小于370微安,接收灵敏度为-95DB,体积只有25*10*3毫米。GND是地线、VCC接3V直流正、RXD是数据输出、TE没

用是生产时测试用的。

DF无线数传模块开发注意事项:

DF模块必须用信号调制才能正常工作,常见的固定码编码器件如PT2262/2272,只要直接连接即可非常简单,因为是专用编码芯片,所以效果很好传输距离很远。模块输出脚在模块内部通过一个上拉39K 电阻到+5V,使用的时候需要考虑解码器件的输入阻抗。DF模块还有一种重要的用途就是配合单片机来实现数据通讯,这时有一定的技巧。1。合理的通讯速率

DF数据模块的最大传输数据速率为,一般控制在左右,应该来说是很低的。过高的数据速率会降低接收灵敏度及增大误码率甚至根本无法工作,所以必要时需要加入延时降低传输速率,可以在数据发送完成后人为延时11毫秒左右,有些客户指望DF模块来传输声音、图象或者文件的话基本是不可能完成的任务,DF模块的主要用途是传输数据量非常小的遥控信号。

2。合理的信息码格式

单片机和DF模块工作时,通常自己定义传输协议,不论用何种调制方式,所要传递的信息码格式都很重要,它将直接影响到数据的可靠收发。

码组格式推荐方案:前导码+同步码+数据帧

前导码长度应大于是10ms,以避开背景噪声,因为接收模块接收到的数据第一位极易被干扰(即零电平干扰)而引起接收到的数据错误。所以采用CPU编译码可在数据识别位前加一些乱码以抑制零电平干扰。同步码主要用于区别于前导码及数据。有一定的特征,好让软件能够通过一定的算法鉴别出同步码,同时对接收数据做好准备。数据帧不宜采用非归零码,更不能长0和长1。采用曼彻斯特编码或POCSAG码等,如下面的数据格式有一定检错功能:

3。单片机对接收模块的干扰

单片机模拟2262时一般都很正常,然而单片机模拟2272解码时通常会发现遥控距离缩短很多,这是因为单片机的时钟频率的倍频都会对接收模块产生干扰,

51系列单片机工作的时候,会产生比较强的电磁辐射,频率范围在9MHZ-900MHZ,因此它会影响任何此频率内的无线接收设备的灵敏度,解决的方法是尽量降低CPU 晶体的频率。测试表明:在1M晶体的辐射强度,只有12M晶体时的1/3,因此,如果把晶体频率选择在500K 以下,可以有效降低CPU的辐射干扰。另外一个比较好的方法是:将接收模块通过一个3芯屏蔽电缆(地,+5V,DATA,屏蔽线的地线悬空)

将模块引出到离开单片机2米以外,则不管51CPU使用那个频率的晶体,这种干扰就会基本消除。对于PIC单片机,则没有上述辐射干扰。可以任意使用。

还可以改用频点较高的接收频率,如433MHz就可增加遥控距离,或者需要采用一些抗干扰措施来减小干扰。比如单片机和遥控接收电路分别用两个5伏电源供电,将DF接收板单独用一个78L05供电,单片机的时钟区远离DF接收模块,降低单片机的工作频率,中间加入屏蔽等。

对单片机模拟2272解码有兴趣的网友可以查看在本网页末尾我们的专门介绍资料。

DF接收模块工作时一般输出的是高电平脉冲,不是直流电平,所以不能用万用表测试,调试时可用一个发光二极管串接一个3K的电阻来监测DF模块的输出状态。

DF无线数据模块和PT2262/PT2272等专用编解码芯片使用时,连接很简单只要直接连接即可,传输距离比较理想,一般能达到600米以上,如果和单片机或者微机配合使用时,会受到单片机或者微机的时钟干扰,造成传输距离明显下降,一般实用距离在200米以内。

SC系列2262、2272芯片都兼容PT系列,详细介绍请点击进入!100PCS 以上价格另议

RX3310集成电路芯片 6元一片

315声表元件 2元一个声表元件元一个(配合RX3310)

433声表元件 2元一个435M声表元件元一个(配合RX3310)

遥控器常用的3356高频发射管,管子上标有R25字样 1元一个中功率3357高频发射管,管子上标有RF字样 2元一个

全部产品价格银行帐号及邮购需知订货流程立即订

货!

手机:电话/传真:0513-联系人:谢刚办公地址:邮编226200 江苏省启东市江海中路511号水晶苑 A1

电子信箱:

电子制作实验室网站启东刚成电子有限公司简介

技术问答:

◆问:高频发射电路的PCB线路如何排布效果较好?

设计印制电路板时应注意:需要提供1个低阻抗电源和最小噪声辐射的地线。要求使用双面PCB板,并把地线平面放在底层以减少无线电的辐射和串扰;旁路电容应尽量靠近每个电源引脚VDD;千万不要把PCB通孔与复俣地线相连;为减少电路中的分布电容,应避免平行线路的出现;线路应越短越好;为防止耦合,应独立其各组成部分;使用接地线使各信号隔离;发射天线可印制在PCB 上。

◆问:超外差和超再生模块有何区别?----()

一、超再生接收电路

超再生解调电路也称超再生检波电路,它实际上是工作在间歇振荡状态下的再生检波电路。一般再生检波电路在中波段工作时灵敏度很高,所以常用来制作简易晶体管收音机。对于工作于短波段的无线遥控或通信设备,再生检波的灵敏度及稳定性都不符合要求。但超再生检波在短波段却具有很高的灵敏度,在接收弱信号时放大率可达几十万倍。因此,对于希望电路简单、灵敏度高,而对选择性和信噪比要求不高的简单无线遥控通信设备(如防盗器等产品),超再生检波电路还是颇有实用价值的。

通常超再生接收机的灵敏度约-85~95DBM,所用器件多,稳定性差,加工复杂。

二、超外差接收电路

超外差式解调电路与超外差收音机相同,它是设置一本机振荡电路产生振荡信号,与接收到的载频信号混频后,得到中频(一般为465kHz)信号,经中频放大和检波,解调出数据信号。由于载频频率是固定的,所以其电路要比收音机简单一些。

超外差接收机灵敏度可达-100~104DBM,而且外围元件少,集成化程度高,适合大规模生产。超外差接收机有声表稳频和LC稳频的两种,采用LC

稳频的灵敏度高可达-104DBM,但是稳定性稍差,而声表稳频的灵敏度约-

100DBM,稳定性好。

超外差接收机对天线的阻抗匹配要求较高,要求外接天线的阻抗必须是50欧姆的,否则对接收灵敏度有很大的影响,要尽可能减少天线根部到发射模块天线焊接处的引线长度,如果无法减小,可以用特性阻抗50欧姆的射频同轴电缆连接(天线焊点右侧有一个专门的接地焊点)。

RX3310A集成电路介绍:

RX3310A是台湾HMARK公司生产的专门用于幅度键控ASK调制的无线遥控及数传信号的接收集成电路,内含低噪音高频放大、混频器、本机振荡、中频放大器、中频滤波器、比较器等,为一次变频超外差电路,双列18脚宽体贴片封装,主要技术指标如下:

工作频率:150~450MHZ

工作电压:~6V

工作电流:毫安(3V电源时)

接收灵敏度:-105DBM(1K数据速率而且天线匹配时)

最高数据速率:

超外差接收芯片RX3310A使用开发资料

从外接天线接收的信号经C10耦合到L2、C11组成的选频网络进行阻抗变换后输入RX3310的内部高频放大器输入端14脚,经芯片内的高频放大后(增益为15~20DB)的信号再经混频器与本机振荡信号(混频,产生的中频信号,此中频信号经内部中频放大后由第3脚输出,再进入比较器放大整形,最后数据从第8脚输出。

三、超再生与超外差比较

超再生式接收机具有电路简单、成本低廉的优点所以被广泛采用,而超外差接收机价格较高,温度适应性强,接收灵敏度更高,而且工作稳定可靠,抗干扰能力强,产品的一致性好,接收机本振辐射低,无二次辐射,性能指标好,容易通过FCC或者CE等标准的检测,符合工业使用规范。

◆问:超外差接收模块近距离不能接收?----()

答:以RX3310A、RX3400为核心组装的超外差式接收都有一个缺点就是强信号、近距离时堵塞不能解码,故一般在距发射机3米之内不解码属于正常的。相比之下,超再生式接收机不存在这个问题。

接收模块的工作电压范围是3~6V,但最佳工作点为5V。偏离最佳工作电压时虽然也能正常工作,但会导致接收灵敏度下降。超外差式接收机对天线阻抗的的匹配要求也较高,偏离50Ω会导致灵敏度激剧降低。因此,接收天线也一定阻抗是50Ω的,并尽量缩短天线根部到接收模块天线焊接处之间连线的长度,必要时可用特性阻抗为50Ω的射频同轴电缆连接。

◆问:关于遥控距离----()

我们所说的遥控距离是发射/接收模块单独工作,并都配接四分之一的波长的拉杆天线,且处于垂直状态工作于额定条件下在直线开阔地上测得的最大可解码距离,如果双方都处在较高的位置,则遥控距离还将更远。

由于工作在UHF频段内,电磁波沿直线传播,遇到障碍物会激剧衰减,遥控距离明显缩短,故使用时应尽量避开障碍物,或尽量架高天线并使用高增益天线,

对固定使用的还可选用高增益的定向天线,以改善通讯效果。

数据速率对通信距离也有较大影响,一般而言,速率越高,距离就越近,建议数据速率取~比较好。另一方面,计算机系统(包括单片机)对RF组件都存在一定的电磁干扰,如果处理不当会导致无线传输传输距离变近,甚至不能正常工作。

答:可解决办法:要比较满意的解决电磁干扰问题,必须从单片机选型、软件设计、PCB板布线和结构设计等诸多方面着手解决。

◆问:51单片机(含各种品牌)对使用315MHz的频率时距离会很近?----()

由于51单片机一般都使用12MHz的晶体作为起振,这样其本身的本振就将近有300MHz的本振频率由I/O口向外辐射的电磁波干扰源,造成315MHz

接收距离很近,甚至不能接收。

答:可解决办法:建议改用频点较高的接收频率,如433MHz就可增加遥控距离;或把单片机屏蔽起来。

如何用单片机模拟2272软件解码难得资料:

在无线遥控领域,PT2262/2272是目前最常用的芯片之一,但由于芯片要求配对使用,在很大程度上影响了该芯片的使用,笔者从PT2262波形特征入手,结合应用实际,提出软件解码的方法和具体措施。

一、概述

PT2262/2272是一种CMOS工艺制造的低功耗低价位通用编解码电路,是目前在无线通讯电路中作地址编码识别最常用的芯片之一。PT2262/2272最多可有12位(A0-A11)三态地址端管脚(悬空,接高电平,接低电平),任意组合可提供531441地址码,PT2262最多可有6位(D0-D5)数据端管脚,设定的地址码和数据码从17脚串行输出。

PT2262/2272必须用相同地址码配对使用,当需要增加一个通讯机时,用户不得不求助于技术人员或厂家来设置相同地址码,客户自己设置相对比较麻烦,尤其对不懂电子的人来说。随着人们对操作的要求越来越高,PT2262/2272的这种配对使用严重制约着使用的方便性,人们不断地要求使用一种无须请教专业人士,无须使用特殊工具,任何人都可以操作的方便的手段来弥补PT2262/2272的缺陷,这就是PT2262软件解码。

二、解码原理

上面是PT2262的一段波形,可以看到一组一组的字码,每组字码之间有同步码隔开,所以我们如果用单片机软件解码时,程序只要判断出同步码,然后对后面的字码进行脉冲宽度识别即可。

2262每次发射时至少发射4组字码,2272只有在连续两次检测到相同的地址码加数据码时才会把数据码中的“1”驱动相应的数据输出端为高电平和驱动VT端同步为高电平。因为无线发射的特点,第一组字码非常容易受零电平干扰,往往会产生误码,所以程序可以丢弃处理。

下面我们来仔细看一下PT2262的波形特征:

振荡频率 f=2*1000*16/Rosc(kΩ) kHz 其中Rosc为振荡电阻这里我们选用的是一种比较常用的频率f≈10 kHz, Rosc=Ω(以下同)。下图是

振荡频率与码位波形的对应关系:同步码头波形:

PT2262有三种编码:0,1,和悬空(表示为f)。

1、数据“0”发送的码位如下:

2、数据“1”发送的码位如下:

3、数据“f”发送的码位如下:

有了以上具体的波形,我们就可以进行软件解码了。T2262每次至少发送4次编码,首先我们可以通过检测11ms宽度的同步码头,有码头才开始进行编码解码,无码头则继续等待。当收到码头时,还要检测是否已经收到过码头,若无,则丢弃第一次编码的信号,以防止误码。

从编码图中可以看出,每一位码字都是从低电平开始到高电平,到低电平,再到高电平。为了检测方便,在接收端我们把编码信号进行了180°倒相,使码位开始的上升沿转化为下降沿,这样当我们使用MCS51系列单片机解码时可使用中断方式及时截获编码。从编码图中还可以看出,每一位码字都可以分成两段,我们以每段中的电平宽度来描述码位:

码位第一段第二段数值表示反码表示

0 窄窄 00 11

1 宽宽 11 00

f 窄宽 01 10

无效码宽窄 10 01

软件解码方法1(反码):

从第一个下降沿开始延时700us左右,检测电平高低,记为A1,再检测第二个下降沿,延时700us左右,检测电平高低,记为A2,这样一个码位就可以译出来了,连续检测12个码位。

软件解码方法2(反码):

从第一个下降沿开始记时,并不断检测电平变化,一有电平变化,立即记录电平宽度B1,再继续记时直至出现第二个下降沿,记录两个下降沿的间隔B2,重复以上步骤,得到B3,B4,判断B1,B2,B3,B4是否在各自允许的误差范围内,是则保存B1,B3,译出一个码位,否则认为误码,丢弃。连续正确检测12个码位。

两种解码方式各有优缺点如下:

解码方式优点缺点

1 程序简单,CPU开销少解码精度差

2 程序复杂,CPU开销大解码精度较高

为了获得较高的解码精度,我们推荐使用方法2,以避免大量的干扰信号的误解码。

三、参考解码软件

说明:ADD1,ADD2中为8位地址,DAT0中为4位数据REMOTE: CLR TR2 ;探头信号检测子程序

CLR RECEIVE ;

MOV DETE_LOOP,#12 ;接收12位编码

REMO0: CLR DETE_T_OVER ;

MOV TH2,#0FEH ;测第1位电平宽度

MOV TL2,#041H ;

SETB TR2 ;

REMO1: JB REM,REMO2 ;等待出现高电平

JB DETE_T_OVER,REMO3 ;限时1500us,超时则认为误码

AJMP REMO1 ;

REMO2: MOV A,TH2 ;测低电平宽度,0FF为宽脉冲,0FE为窄脉冲CJNE A,#0FFH,REMO4 ;

MOV A,TL2 ;

CLR C ;

CJNE A,#098H,$+3 ;

JNC REMO3 ;电平过宽(超过1150us),退出

CLR C ;

CJNE A,#020H,$+3 ;

JC REMO3 ;电平过窄(小于780us),退出

SETB C ;

天线设计指南

天线设计指南?........................................................................................................................... 2 简介?...........................................................................................................................................?2 天线原理?...................................................................................................................................?3 天线类型?...................................................................................................................................?5 天线的选择?............................................................................................................................... 7 天线馈电的考量?..................................................................................................................... 13 芯片天线?.................................................................................................................................?21 各种天线的比较?..................................................................................................................... 25 环境对天线性能的影响?......................................................................................................... 25 塑料外壳的影响?..................................................................................................................... 27 调试 PCB 空板?......................................................................................................................... 32 使用塑料和人体接触来调整调试?......................................................................................... 38?

简易短波环形天线的制作之欧阳家百创编

简易短波环形天线的制作 欧阳家百(2021.03.07) 身居城市市区或郊区喜欢收听短波的坛友们可能有同感,即:无论使用长线天线或拉杆天线,5MHz以下频段干扰严重,电台难以收听。这种电场杂波对低频短波干扰的水平比中波更为严重。为了改良该波段的收听质量,在查阅年夜量中外文资料的基础上,确定试制短波环形天线(国外称之为magnetic loop)。 制品(图1) 国外资料推荐使用直径10mm紫铜管弯成直径为8590cm环形作为初级线圈,考虑到重量,操纵便利等因素,从铜铝材商店购进直径为13mm的紫铜管2.8m,弯成直径为87cm的铜环。同时,采取1m的50塑料管支撑铜环。这是铜环上部的固定点(图2)铜环下部的固定点(图3)。这里要注意的是要在铜管的两端钻好小洞,小洞可以拧上螺丝并可固定小焊片。铜环两端固定完毕后,固定好焊接好引线的焊片,并将引线引出塑料管。

制作一个木板支架(图4),注意要很是牢靠。 将塑料支架固定在模板支架上(图5,图6),一定要牢靠。

制作一个次级线圈(图7),据国外资料,该次级线圈的直径最佳值为初级线圈直径的1/5左右。

该次级圈采取10mm铝管并用电饭煲内胆圆形定型为直径17cm的铝环,内部穿引细花线制成(图8)。 将次级线圈的引出线连接在BNC插座上(图9)

据测定和计算,该短波环的电感量为2uH,配2250pF双连空变,其谐振频率年夜约为212MHz,另配360pF单联空变,其谐振频率约为523MHz。要注意的是两个可变要有一定的隔离距离,不然会相互干扰(图10) 采取一只波段开关分隔(图11)

基站美化天线技术规范

美化天线技术规范

总体概况 随着移动通信的快速发展,城市基站数量不断增多,天线星罗密布,对周围环境带来了一定的负面影响,难以满足对环境美观的要求;同时群众对天线辐射的普遍抗拒心理也导致基站选址建设相当困难,这就要求对天线的安装方案进行特别设计,使之与周围环境协调统一。 美化天线是在尽量不增加传播损耗的情况下,通过一些美学、工艺技术的手段对天线进行伪装,来达到隐蔽的目的。通过采用美化天线,既美化了城市环境,也避免了居民对无线辐射恐惧和抵触,保证通信的覆盖和质量。 经过几年的积累,在美化天线的规范、分类、应用上积累了丰富经验,制定了完善的标准化美化天线体系和定价模式。本手册对美化天线的技术标准、安装验收规范、采购模式等内容进行了梳理,供各分公司参考。 1 建设总体要求 美化天线在满足通信基站工程建设规范要求的基础上,同时需要满足以下原则: (1)技术性原则:在进行天线隐蔽时,首先必须满足无线覆盖的要求,无线信号衰减尽量低,衰减增加不超过1dB。 由于天线需要±30°内的方位角,15°内俯仰角(电调+机械角度)可调整,美化天线的材料和结构对天线调整后的发射性能应没有影响,在天线安装位置的垂直面的正前方不能有金属阻挡。 (2)经济性原则:在进行天线隐蔽时,需要考虑经济效益,尽量选用通用型强、结构简单的隐蔽方案,以节省隐蔽费用。 (3)维护性原则:天线有时需要调整下倾角和方位角以及维护等,天馈线隐蔽方案需要考虑天馈线的维护和扩容的方便。 (4)安全性原则:美化天线要求结构牢固,满足各地风压设计要求。产品应适应全天侯使用,在雨、雪天气及-40℃~70℃温度均可保持良好物理特性;天线罩材料阻燃性好,达到GB8624-1997难燃Ⅰ级。 (5)耐用性原则:要求隐蔽材料经久耐用,耐高温和耐腐蚀,使用寿命不少于10年。

单极子天线的设计

第五章 常用单极子天线的设计与实例 §5.1常用的单极子天线...........................................................................................................- 2 - §5.1.1单极子天线..........................................................................................................- 2 - §5.1.2单极子天线的辐射场和电特性...........................................................................- 4 - §5.1.3单极子天线的馈电方法.....................................................................................- 11 - §5.2宽频带平面单极子天线的设计......................................................................................- 13 - §5.2.1 具有切角的平面单极子天线................................................................................- 14 - §5.2.2 具有短路节加载的平面单极子天线....................................................................- 17 - 5.3 总结....................................................................................................................................- 22 -

常见天线以及调整方法及规范

常见天线以及调整方法及规范 1、板状天线调整方式 板状天线就是定向天线,板状天线是移动通信系统天线的一种,主要用于室外信号覆盖。无论是GSM还是CDM A LTE,板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。 1.1天线方位角调整 使用扳手等工具对锯齿夹码处的螺丝进行松动(上图中红圈位置),然后将天线以安装抱杆为中心转动调节,达到期望方位角后再次将螺丝拧紧固定好。 板状天线方位角调整范围比较大,可以根据实际需求调整?

1.2下倾角的调节 1.2.1机械下倾角的调节 使用扳手等工具对连接臂处的螺丝进行松动(图片中红圈位置),然后对天线的机械角度进行调节,达到期望角度后将螺丝拧紧固定好。 电子下倾的调整 1.2.2 电子倾角的调节 板状天线电调有两种,一种是旋转调节,一种是插拔调节 上图为旋钮式调节电调。旋转旋钮(图中蓝色部分),电调滑标会移动,红色指针(图中箭头指示的地方)到达某一刻度电调即为多少度。

上图为插拔式调节电调。在调节电子下倾的时候直接通过插拔电调滑标(图中红圈标示部分)即可对其进行调节,滑标漏出的刻度即为当前电子下倾值。 电子下倾的可调范围一般在天线标签上都有标示,如下图: ODV3-065R18K-G \ 电调天线171O-2170MHz 产^>^8^710003-001 V4-0000 规恪代码 B 宙下喻角070应— 俪|]|删卿I执豐c囂:詈 CA1430053775 2U斗 2、美化天线的调节 随着移动通信网络的迅速发展,传统基站天线与周边环境的冲突越来越大,很难融入周边的环境,因此直接影响到城市的美好环境。另外,随着人们环保意识的提高,大多数市民因为对移动通信基站的不了解而对基站进入其周边大楼具有一种盲目的排斥心理。这些都极大地加大了移动通信运营商基站物业协调、工程实施和基站维护等工作的难度。天线美化工程作为一种手段,满足了人们对城市环境要求越来越高的需求,越来越受到有关各方的广泛关注。 美化天线一般可以分为以下几个类型分类: 1、美化排气管

平板天线的设计原理

细说平板天线 杨庆增 《卫视周刊》近日刊登出一些有关平板天线的译文资料,引起不少读者的关注。其实平板天线在国外及国内早已有所研究和开发,只是由于种种原因,尚未达到十分普及的程度,特别是成本价格下不来,技术指标尚需改善。1998年底,国内已有某厂家研制出来样品,去年有线电视展会上,也曾有个国外厂商,拿来了样品供展览,试用的结果也不是令人很满意。是什么原因制约着平板天线这么多年来,迟迟不见广泛使用,我们不妨从其结构、工作原理、工艺技术等方面来谈谈。 应该说,平板天线与我们现在已大量使用的抛物面式天线有很大的不同。抛物面天线是采用一次或二次反射式的接收天线,而平板天线是直接接收式天线,前者的天线面是起反射作用的,后者的天线面就是直接接收的天线,因此二者有本质的不同。 一、平板天线结构的揭秘 如果我们将平板天线的天线面纵向切开的话,我们就会见到这个天线面是由五层结构组成。如图一。 第一层和第五层为天线保护层,又称天线罩,是用耐腐蚀介质做成。它起到防止氧化、衰减紫外线对印刷板电路的影响、防雨、雪侵蚀的作用。图一的结构图中未画这二层。 第二层为接收天线层。是一层印刷电路板金属层,其上面印刷着许许多多排列整齐的单元振子天线阵,故可称天线基板层。这一层决定着平板天线的技术质量。单元振子天线可以是多样的。 第三层为印刷电路板的介质层,它支撑着第二层。 第四层为接地导体层,它是一层金属箔板,既起到对天线阵的反射作用,又可以是馈线的另一导体,组成微带传输线。天线阵的输出,与装在平板天线板后的高频头联接。 由此我们可以看出,平板天线有一个较为复杂的结构,又使用着微波技术中的微带电路技术,对其要求的工艺又很高,特别是天线阵中的相位的同相性要求极其严格,它和反射式抛物面天线的结构相差很大,因此设计与制造都有较大的难度。平板天线理论的提出已有十余年的历史,至今未见质优价廉的平板天线的大量出现于国内市场,其原因恐怕就在如此。 二、平板天线及其工作原理 卫星直播电视的出现,使频率提高到12GHz,波长变短达到2.5cm,这为平板天线的出现提供了可能。 实际上平板天线是从雷达和通信常用的阵列式天线移植到Ku波段卫星电视接收天线上

短波和调频接收天线

短波和调频接收天线 天线在整个接收系统中的重要性是不言而喻的。再好的接收机,没有好的输入信号,肯定得不到好的效果。港人有个让人羡慕的蛛网天线,2000OK仿制过AOR LA320(即是2000 OK天线),小姨子鼓捣过懒汉天线、烂木头天线,卡累丢做过中波天线,还有任天鸿搞的加感型小环天线,加上军火商贩卖的44米双极等等,最让我不能忍受的还有南霸天这个老土豪的T2FD(想到距离窗口近50米的天台,可望而不可及)……这些都说明,有个好的天线对接收效果是多么的重要! 于是我们都想做个好的天线。 可是,研究了无数的天线理论,拜读了无数大侠的著作,我们发现好的天线,对尺寸都有要求,而且还是很严格的。一个适用于调频广播接收的八木天线,最少也得1.6米宽。至于适用于短波的接收天线,没有几十米是下不来的。现在房子这么贵,谁有那么大的空间啊?即使你能上到天台,可架的高了,还要想方设法避免雷公光顾,头痛不已。 可是我们还是要追求好的接收效果(只追求蓬蓬声的不在此列,那是富人们才玩的),天线还是要做。俺经过百度+Google+反复比较,因地制宜DIY了一副短波接收天线和一副调频接收天线,该天线不占地方,简单易做,效果不错,不须调试,拿来就用——还很便宜,呵呵 【短波天线】 该短波天线是根据港人转载的一个老外的网站,因为是全英文的,俺以前还试着翻译了一下,一并贴过来: 原文点击打开连接描述的非常仔细,但是很多步骤并不一定要做,俺只简短描述其梗概。 1、天线优点:强方向性,因此对周围环境的噪声能起到很大的抑制作用,从而保证接收信号的清晰,适合电磁环境差的地方使用。 2、需要的器材:空调铜管约3米、粗铜丝约0.6米、可变电容器、带屏蔽的馈线、接收机天线插头、支撑用PVC管材约1.2-1.5米

天线CAD大作业微带天线设计

天线CAD大作业 学院:电子工程学院 专业:电子信息工程

微带天线设计 一、设计要求: (1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。微波基板介电常数为r ε = 6,厚度H ≤5mm ,线极化。总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。 (2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。 二、设计步骤 计算天线几何尺寸 微带天线的基板介电常数为r ε= 6,厚度为 h=5mm,中心频率为 f=1.15GHz,s m /103c 8?=天线使用50Ω同轴线馈电,线极化,则 (1)辐射切片的宽度2 1 )2 1(2-+=r f c w ε=69.72mm (2)有效介电常数2 1)12 1(2 1 2 1 r e - +-+ += w h r εεε=5.33 (3)辐射缝隙的长度) 8.0/)(258.0() 264.0/)(3.0(h 412.0+-++=?h w e h w e L εε=2.20 (4)辐射切片的长度L e f c L ?-=22ε=52.10mm (5)同轴线馈电的位置L1 21 )121(21 2 1)(re -+-+ += L h r r L εεξ=5.20 )1 1(21re L L ξ-= =14.63mm 三、HFSS 设计 (1)微带天线建模概述 为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:

微带天线的HFSS设计模型如下: 立体图俯视图 模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。模型建立好后,设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。 (2) HFSS设计环境概述 *求解类型:模式驱动求解。 *建模操作 ①模型原型:长方体、圆柱体、矩形面、圆面。 ②模型操作:相减操作 *边界条件和激励 ①边界条件:理想导体边界、辐射边界。 ②端口激励:集总端口激励。 *求解设置:

环形中波天线的详细制作方法

环形中波天线 环形磁场天线最大的好处就是它只接收电磁波中磁场部分的能量,将其转化为电流提供给接收机。这一特性带来的最大好处就是它不会持取弥漫在室内的各种电器产生的电磁干扰,因此在室内,特别是在城市楼房环境中,环形磁场天线可以接收到很好的效果。如果在同样的环境下使用双极或者长线等电场天线,大多数信号将被淹没在各种各样的电磁干扰噪声里面。 环形磁场天线是在业余条件下比较容易制作的一种天线,只需要一个十字支架,然后将线按照一定间距绕在上面就可以了。通常有轴向螺旋和平面螺旋两种绕法,平面绕法通常又叫做蛛网天线。两种绕法性能上没有太大差别,平面绕法结构上相对简单一些,但面积利用率稍低。 我这个天线用到了以下材料: 方木条(15mm x 15mm),建材城都可以买,很便宜。我买的是胡桃木,相对贵一些。松木只需要一块钱一米。两根2.2米的足够了。 8mm厚胶合板,15cm x 15cm M3木螺丝若干,找质量好的,上起来容易。我那个金色的,好看。 电线,用来绕天线,比较理想的是22号聚酯漆包线,能镀银更好。我没有这种线,就用20股丝包线代替了,也不错。 工具:螺丝刀,锯子,电钻等等。 9.5-365p空气可变电容; 斜锯齿PCB,这个东西比较难搞,也比较贵,建议考虑别的方法代替,例如拧螺丝,或者用薄木片自己锯。 先设计好你想做的天线尺寸,然后计算出要绕的圈数。如果你的电容也是9.5-365p的,频率覆盖540-1700KHz,线圈间距5mm,而且你绕的是正方形的线圈,那么可以根据下面的表来差需要绕的圈数: 正方形边长(cm)圈数 30 22 40 20 50 17 60 14 70 12 80 11 90 10 100 9

天线设计规范

天线设计规范 深圳麦汉科技技术有限公司 研发部内部标准及对外培训资料 2013.7.10 编制:黄年宇

第1篇 项目评估基本概念

1-1 背景 根据公司年度经营计划,研发工程师要同客户建立积极主动地工作关系,不仅要现场分析和解决测试中遇到的问题,还要能够对客户的新项目进行现场评估和提出建议。而后者是目前大部分工程师的弱项,掌握基本的评估技巧和准则,不仅是公司实力的体现,也是个人能力的提升。 下面将分为几方面对项目的评估做基本的介绍: *天线的空间和性能 *直板机PIFA天线的评估 *直板机Monopole天线的评估 *翻盖机PIFA天线的评估 *翻盖机Monopole天线的评估 *滑盖机PIFA天线的评估 *滑盖机Monopole天线的评估 *双模机的评估 *SAR的评估 *装饰件的评估 *天线材质的选择 *人体模拟评估 *评估中的注意事项

1-2 天线空间和性能(PIFA ) 所需空间H>6.0mm S>400mm2H>6.5mm S>450mm2H>6.5mm S>450mm2H>7.0mm S>500mm2H>7.0mm S>500mm2H>7.0mm S>550mm2H>7.0mm S>600mm2H>7.0mm S>600mm2H>5.5mm S>200mm2H>7.0mm S>550mm2H>5mm S>150mm2频段 CDMA800 850&1900 900&1800 850&1800&1900 900&1800&1900 GSM 四频 GSM 三频+WCDMA GSM 四频+WCDMA GPS LTE-38、39、40 Bluetooth 可能达到的性能VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<1.5 EFF >50%VSWR<2 EFF >50%VSWR<2 EFF ≈50%

天线技术标准

无线网络系统菜用标准化设计:所选设备全部符合国际标准、行业标准和国家标准。 技术规范: 无线: 1. 无线标准:IEEE 80 2.11a/b/g 2. 频带: A Mode: 5725~ 5850 MHz for US B/G Mode: 2400~2483.5 MHz All Mode: Frequency accuracy < 20ppm 3. 数据速率(Mbps): 6,9,12,18,24,36,48,54(802.11a/b/g) 4. 无线协议: 802.11a:OFDM,802.11b/g:DSSS 5. 调制: 802.11a:BPSK、QPSK、16QAM、64QAM 802.11b/g:DBPSK、DQPSK、CCK 6. 信道: 802.11a: 13(美国,FCC):8个室内信道,5个室外信道 13+(欧洲,ETSI),13(日本,MKK) 5 (Ch: 149,153,157,161,165):中国 802.11b/g: 11(美国,FCC) 13(欧洲,ETSI) 11(1~11)(中国) 7. 发射功率: 视配置而定 8. 接收灵敏度 A Mode: -87dBm@6Mbps -70dBm@54Mbps B Mode: -94dBm@1Mbps -87dBm@11Mbps G Mode: -87dBm@6Mbps -70dBm@54Mbps 9. LO(晶体)频率稳定性: +/-20PPM,在普通操作范围(0到55°C)内、 电气特性: 1. 电源输入:自感应120/240 V AC,50/60Hz,单一分离的相位,内置ANSI / IEEE C6 2.41 C3级别集成的分支电路保护 2. 直流输入:48V,最大6A 3. 802.3af PoE(以太网线供电) 保护电路: 天线保护: < 0.5uJ for 6kV/3kA 电气保护: - ANSI/IEEE C62.41, UL 1449-2 ed., 10kA@8/20 uS Waveform, 36kA per phase - EN61000-4-5 Level 4 AC Surge Immunity - EN61000-4-4 Level 4 EMC Field Immunity

HFSS 天线设计实例

HFSS 天线设计实例 这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化 设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:

2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate 介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:

1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为 ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm

天线的方向图测量(设计性试验)

中国石油大学近代物理实验报告 班级:材料物理10-2 姓名:同组者:教师: 设计性实验不同材质天线的方向图测量【实验目的】 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 【预习问题】 1.什么是天线? 2.AT3200天线实训系统有那几部分组成,分别都有什么作用? 3.与AT3200天线实训系统配套的软件有几个,分别有什么作用? 【实验原理】 一.天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低。要能够有效地辐射或者接收电磁波,天线在 结构和形式上必须满足一定的要求。图B1-1给出 由高频开路平行双导线传输线演变为天线的过程。 开始时,平行双导线传输线之间的电场呈现驻波分 布,如图B3-1a。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长,它们所激发 的电磁场在两线外部的大部分空间由于相位相反 而互相抵消。如果将两线末端逐渐张开,如图B3-1b 所示,那么在某些方向上,两导线产生的电磁场就 不能抵消,辐射将会逐渐增强。当两线完全张开时, 如图B3-1c所示,张开的两臂上电流方向相同,它 们在周围空间激发的电磁场只在一定方向由于相 位关系而互相抵消,在大部分方向则互相叠加,使 辐射显著增强。这样的结构被称为开放式结构。由 末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 图B3-1 传输线演变为天线a. 发射机 c. b.

天线微波暗室设计方案样本

第一部分: 天线微波暗室设计方案书 一、范围 1、主题内容 微波暗室性能和屏蔽性能总体方案设计书重点是根据微波暗室技术要求, 论证了微波暗室吸波材料的选择、微波暗室性能、暗室屏蔽材料的选用, 暗室屏蔽的关键件: 门、通风窗、电源滤波器、屏蔽接地等主要问题, 并确定最佳方案, 以保证微波暗室屏蔽性能、暗室性能达到贵所提出的性能指标。 2、适用范围 本设计书适用于微波暗室建设工程, 待中标后作为设计依据。 二、引用文件 1. GJBz20219-94中华人民共和国国家军用使用标准 《军用电磁屏蔽室通用技术要求和检验方法》 2.微波暗室技术要求 三、微波暗室设计 微波暗室, 就是从几何上比较对称, 建筑空间满足一定要求的房屋中安装吸波材料, 使室的各内壁、天棚、地板对于所接收到的电磁波反射甚微, 从而较好的模拟自由空间环境, 进行室内天线测试的场所。 1、技术要求 1.1屏蔽效能( 包括所有屏蔽间) 1GHz~20GHz ≥100dB 20GHz~40GHz ≥80dB 1.2暗室性能( 屏蔽暗室) 工作频率范围: 400MHz~40GHz 反射电平: -38dB~-50d B

静区的范围: ?1.2m×1.2m ( 中心位于暗室长轴中轴线,转台上方) 场不均匀性: 横向≤±0.3 dB 纵向≤±2 dB 交叉极化率: -25 dB 2、设计微波暗室的基本思路 随着天线技术的发展, 天线测试技术也随着发展。就天线方向图测试方法来说, 以往人们熟知的方法是室外场地远场测试。但由于微波吸收材料技术和计算机的飞跃发展, 以及其它学科, 如全息照相技术的成熟, 方向图测试技术从室外场地测试发展到相互竞争又相互补充的多种测试方法。由以往的室外测试逐渐转为室内测试为主, 室外测试为辅。近年来大量微波暗室建成使用, 就是鲜明的标志。国内已建成微波暗室80多个, 有些正在筹建中, 而国外建成的微波暗室超过400多个。 3、微波暗室尺寸确定准则 微波暗室的几何尺寸和微波暗室的性能与里面的实验产品类型有关。应用最广泛的微波暗室为矩形室, 因矩形室的结构外形比较简单、通用性强。一般资料中, 设计矩形微波暗室的长度和宽度是按下列原则进行设计的。 3.1 微波暗室长度的确定 一般确定任一暗室的长度的基本因素是被检测的天线( 目标) 的尺寸和它所测的最高频率。一般确定任一暗室的长度的基本因素是被检测的天线( 目标) 的尺寸和它所测的最高频率。这两个因素确定了平面波照射的远场条件。待测天线和波源天线之间的距离由下式给出: R≥ 2 2D

2021年简易短波环形天线的制作

简易短波环形天线的制作 欧阳光明(2021.03.07) 身居城市市区或郊区喜欢收听短波的坛友们可能有同感,即:无论使用长线天线或拉杆天线,5MHz以下频段干扰严重,电台难以收听。这种电场杂波对低频短波干扰的水平比中波更为严重。为了改良该波段的收听质量,在查阅年夜量中外文资料的基础上,确定试制短波环形天线(国外称之为magnetic loop)。 制品(图1) 国外资料推荐使用直径10mm紫铜管弯成直径为8590cm环形作为初级线圈,考虑到重量,操纵便利等因素,从铜铝材商店购进直径为13mm的紫铜管2.8m,弯成直径为87cm的铜环。同时,采取1m的50塑料管支撑铜环。这是铜环上部的固定点(图2)铜环下部的固定点(图3)。这里要注意的是要在铜管的两端钻好小洞,小洞可以拧上螺丝并可固定小焊片。铜环两端固定完毕后,固定好焊接好引线的焊片,并将引线引出塑料管。

制作一个木板支架(图4),注意要很是牢靠。 将塑料支架固定在模板支架上(图5,图6),一定要牢靠。

制作一个次级线圈(图7),据国外资料,该次级线圈的直径最佳值为初级线圈直径的1/5左右。

该次级圈采取10mm铝管并用电饭煲内胆圆形定型为直径17cm 的铝环,内部穿引细花线制成(图8)。 将次级线圈的引出线连接在BNC插座上(图9)

据测定和计算,该短波环的电感量为2uH,配2250pF双连空变,其谐振频率年夜约为212MHz,另配360pF单联空变,其谐振频率约为523MHz。要注意的是两个可变要有一定的隔离距离,不然会相互干扰(图10) 采取一只波段开关分隔(图11)

FPC类天线设计要求(天珑资料)

F P C类天线设计要求 综述:FPC类天线最主要的问题是:1.起翘问题2.成本问题3.生产操作问题4.断裂问题 §1FPC类天线主要的结构组装方式 一.FPC+支架 FPC直接粘贴在支架表面,金手指一般设计到支架底面,在PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指,天线(支架加FPC)固定在PCB上,或者PCB固定在下图右图的支架中间。 二.FPC+机壳 FPC直接粘贴在机壳表面,金手指部分穿过机壳预留的间隙,延伸到机壳另一面,PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指。 此类天线特殊要求: a所有的转角都至少金手指所粘贴部位不能有顶针. c不能打脱模剂,做好不使用自带脱模剂的材料. 2.如果机壳表面有喷油工艺,则FPC的粘胶面尽量远离喷油面的边缘,喷油区常有飞油导致FPC粘帖不良. §2FPC类天线塑胶部件设计技术要求 一.贴FPC的塑胶件表面要设计得尽量平缓,避免R值1mm--4mm之间的小圆弧面,大于5mm的圆弧尽量改为斜平面组合模拟大圆弧,其中每个斜平面的宽度尽量大于等于4mm。 二.在塑胶件表面的合适位置设计加一些定位柱或热熔柱,以帮忙FPC粘贴时的定位和预防FPC的起翘,每个平面上的定位柱不得超过2个。柱子为直径高。如设计为热熔柱,则柱子为直径,高。 三.塑胶件开模时要求在贴FPC的表面顶针印痕和和其他印痕,断差应控制在以内,以免表面起台阶和披峰导致FPC起翘起皱,同时表面抛光处理或DVI-27或花纹,以便FPC跟塑胶件粘贴更牢固. 四.金手指部位所贴的面为一个平面,并且不准在此平面设置顶针,尽量为光面或细火花纹,必须 实心,不准为中空的结构. 五.FPC所要贴到的面都要求有圆角,一般以上(不超过,特殊部位以上(不超过,不能为尖角. 如下图紫色位置是准备贴FPC的部位,红色位置是要求到圆角的位置。 六.机壳上的缝隙设计要求其长度和宽度要能穿过相应FPC金手指的长度和宽度(根据金手指尺寸而定,两者相差单边以上). 七.塑胶件在注塑生产时,要求不能打脱模剂,同时在图纸中注明. 八.塑胶件(支架和机壳)生产可选用ABS和普通PC或是PC+ABS等原材料,但避免选用PC141R和PC241R等型号原材料,因为此类带”R”型号的原材料本身带脱模剂. §3FPC的设计技术要求和选材参考 一.普通FPC的结构 普通的单面板FPC由以下5层材料构成: 背胶+基材+AD+铺铜+油墨 背胶厚度一般为, 基材厚度(普通Pi和PET基材为,Pi半对半基材为 AD厚度一般为. 铜箔的厚度一般为. 油墨的厚度一般为和. 所以普通的单面板FPC的总厚度在左右. 二、FPC基材的选材 基材: 这种基材耐高温,可焊接,能制作双面板或是多面板的FPC,可用于须制作双面板或多面板的FPC天线项目中,也可以用于FPC金手指需要焊接的项目中. 根据Pi基材的厚度可分为Pi半对半基材(T=和Pi一对半基材(T=25um)等, Pi半对半基材是目前较薄且较柔软的一种基材,这种基材贴服性好,可用于弯折面多,圆弧面陡峭的天线项目中.背胶基层胶层AD铜箔油墨镀镍层镀金层基材.

hfss设计天线范例

第二章创建项目 本章中你的目标是: √保存一个新项目。 √把一个新的HFSS设计加到已建的项目 √为项目选择一种求解方式 √设置设计使用的长度单位 时间:完成这章的内容总共大约要5分钟。 一.打开HFSS并保存一个新项目 1.双击桌面上的HFSS9图标,这样就可以启动HFSS。启动后的程序工作环境如图:

图2-1 HFSS工作界面 1.打开File选项(alt+F),单击Save as。2.找到合适的目录,键入项目名hfopt_ismantenna。 图2-2 保存HFSS项目 二.加入一个新的HFSS设计 1.在Project菜单,点击insert HFSS Design选项。( 或直接点击图标。)一个新的工程被加入到hfopt_ismantenna项目中,默认名为HFSSModel n。

图2-3 加入新的HFSS设计 2.为设计重命名。在项目树中选中HFSSModel1,单击鼠标右键,再点击Rename项,将设计重命名为hfopt_ismantenna。 图2-4 更改设计名

三.选择一种求解方式 1.在HFSS菜单上,点击Solution Type选项. 2.选择源激励方式,在Solution Type 对话框中选中Driven Mode项。 图2-5 选择求解类型图2-6 选择源激励方式 四.设置设计使用的长度单位

1.在3D Modeler菜单上,点击Units选项. 2.选择长度单位,在Set Model Units 对话框中选中mm项。 图2-5 选择长度单位图2-6 选择mm作为长度单位 第三章构造模型 本章中你的目标是: √建立物理模型。 √设置变量。 √设置模型材料参数 √设置边界条件和激励源 √设置求解条件 时间:完成这章的内容总共大约要35分钟。

环形天线1

基于rfPIC无线发射器件的环形天线设计 类别:电子综合阅读:1471 1 引言 随着无线通信技术的发展和应用,低功耗、便携式微小型无线通信产品也日益受到消费者的青睐。为了能使微小型的无线通信产品收发数据效率更高,提高产品的实用性和可靠性,设计了一种针对于rfPIC12F675基于PCB板的环形天线。天线是将无线电发射机输出的射频信号功率由电磁波的形式辐射出去的一个重要的无线电设备。 目前,有许多柱式天线或其他体积较大的外置天线。为了在保证传输效率的情况下,减小天线的体积和降低功耗,将天线设计在PCB板上,以适合于低功耗、便携式的无线通信产品的需求。该设计基于MICROCHIP公司的发射芯片,其内部集成了压控晶振VCO和锁相环PLL等电路,简化了无线通信中其他电路的设计,降低整体设计难度和设计成本,同时提高了系统的电磁兼容能力和可靠性。该系统采用的RF芯片为rfPIC12F675,其发射功率可达10dB。此外(1),该单片机采用精简指令系统(RISC)、哈佛总线结构和两级流水线取指令方式,对恶劣的环境具有很强的适应性。 2 环形天线工作原理 环形天线和人体非常相似,有普通的单极或多级天线功能。再加上小型环形天线的体积小、高可靠性和低成本,使其成为微小型通信产品的理想天线。典型的环形天线由电路板上的铜走线组成的电回路构成,也可能是一段制作成环形的导线。其等效电路相当于两个串连电阻与一个电感的串连(如图1所示)。Rrad是环形天线实际发射能量的电阻模型,它消耗的功率就是电路的发射功率。假设流过天线回路的电流为I,那么Rrad的消耗功率,即RF功率为Pradiate=I2?Rrad。电阻Rloss是环形天线因发热而消耗能量的电阻模型,它消耗的功率是一种不可避免的能量损耗,其大小为Ploss=I2?Rloss。如果Rloss>Rrad,那么损耗的功率比实际发射的功率大,因此这个天线是低效的。天线消耗的功率就是发射功率和损耗功率之和。实际上,环形天线的设计几乎无法控制Ploss和Prad,因为Ploss是由制作天线的导体的导电能力和导线的大小决定的,而Prad是由天线所围成的面积大小决定的。 3 参数值的计算 (1)电阻值的计算

天线设计毕业论文

第一章绪论 一、绪论 1.1 课题的研究背景及意义 自古至今,通信无时无刻不在影响着人们的生活,小到一次社会交际中的简单对话;大到进行太空探索时,人造探测器与地球间的信息交换。可以毫不保留地说,离开了通信技术,我们的 生活将会黯然失色。近年来,随着光纤技术越来越成熟,应用范围越来越广。在广播电视领域, 光纤作为广播电视信号传输的媒体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统 具有的传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,已成为 城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常使用的电视传送 方式。随着全球通信业务的迅速发展,作为未来个人通信主要手段的现代通信技 术引起了人们的极大关注,我国在移动通信技术方面投入了巨大的人力物力,我国很多地区的电力通信专用网也基本完成了从主干线向光纤过度的过程。目前,电力系统光纤通信网已成为我国规模较大,发展较为完善的专用通信网,其数据、语音,宽带等业务及电力生产专业业务都是由光纤通信承载,电力系统的生产生活,显然,已离不开光纤通信网。 无线通信现状另一非常活跃的通信技术当属,无线通信技术了。无线通信技术包括了移动通信技术和无线局域网( WLAN )技术等两大主要方面。移动通信就目前来讲是 3G时代,数字化和网络化已成为不可逆转的趋势。目前,移动通信已从模拟通信发展到了数字移动通 信阶段。无线局域网可以弥补以光纤通信为主的有线网络的不足,适用于无固定场所,或有线局域网架设受限制的场合,当然,同样也可以作为有线局域网的备用网络系统。WLAN ,目前广泛应用 IEEE802.11 系列标准。其中,工作于 2.4GHZ频段的 820.11可支持 11Mbps 的共享接入速率;而802.11a 采用 5GHZ 频段,速率高达 54Mbps ,它比802.11b 快上五倍,并和 820.11b兼容。给人们的生活工作带来了很大的方便与快捷。 在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均 需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波,但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低,要能够有效地辐射或接收电磁波,天线在结构和形式上必须满足一定的要求。快速发展的移动通信系统需要的是小型化、宽频带、多功能 (多频段、多极化 )、高性能的天线。微带天线作为天线 家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。

相关主题
文本预览
相关文档 最新文档