当前位置:文档之家› 高级不等式及其解题应用

高级不等式及其解题应用

高级不等式及其解题应用
高级不等式及其解题应用

目录Ch1. 伯努利不等式

Ch2. 均值不等式

Ch3. 幂均不等式

Ch4. 柯西不等式

Ch5. 切比雪夫不等式

Ch6. 排序不等式

Ch7. 琴生不等式

Ch8. 波波维奇亚不等式

Ch9. 加权不等式

Ch10. 赫尔德不等式

Ch11. 闵可夫斯基不等式

Ch12. 牛顿不等式

Ch13. 麦克劳林不等式

Ch14. 定义多项式

Ch15. 舒尔不等式

Ch16. 定义序列

Ch17. 缪尔海德不等式

Ch18. 卡拉玛塔不等式

Ch19. 单调函数不等式

Ch20. 3个对称变量pqr法

Ch21. 3个对称变量uvw法

Ch22. ABC法

Ch23. SOS法

Ch24. SMV法

Ch25. 拉格朗日乘数法

Ch26. 三角不等式

Ch27. 习题与习题解析

1.1若实数i x (i 12n ,,...,=)各项符号相同,且i x 1>-,则:

12n 12n 1x 1x 1x 1x x x ()()...()...+++≥++

++ 1()

1()当12n x x x x ...====时,1()式变为:n 1x 1nx ()+≥+ 2() Ch2. 均值不等式

2.1若12n a

a a ,,...,为正实数,记:

⑴ n Q =,为平方平均数,简称平方均值;

⑵ 12n

n a a a A n

...++

+=

,为算术平均数,简称算术均值;

⑶ n G =,为几何平均数,简称几何均值; ⑷ n 12n

n H 111a a a ...=

+++,为调和平均数,简称调和均值.

则:n n n n Q A G H ≥≥≥ 3()

iff 12n a a a ...===时,等号成立. (注:iff if

and only if =当且仅当.) 3()Ch3.幂均不等式

3.1设12n a a a a (,,...,)=为正实数序列,实数r 0≠,则记:

1

r r r

r

12n r a a a M a n ...()??+++= ???

4()

4()式的r M a ()称为幂平均函数.

3.2若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,则:

r s M a M a ()()≤ 5()

当r s ≤时,5()式对任何r 都成立,即r M a

()关于r 是单调递增函数.

5()3.3设12n m m m m (,,...,)=为非负实数序列,且12n m m m 1...+++=,若12n a a a a (,,...,)=为

正实数序列,且实数r 0≠,则:

1m r r

r r

r

1122n n M a m a m a m a ()(...)=+++ 6()

6()式称为加权幂平均函数.

3.4若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,对m r M a ()则:m m r s M a M a ()()≤

即:11r

r

r s

s

s s

r

1122n n 1122n n m a m a m a m a m a m a (...)(...)+++≤+++ 7() 当r s ≤时,7()式对任何r 都成立,即m r M a ()关于r 是单调递增函数.

7()

Ch4. 柯西不等式

4.1若12n a a a ,,...,和12n b b b ,,...,均为实数,则:

222222212n 12n 1122n n a a a b b b a b a b a b (...)(...)(...)++++++≥+++ 8()

iff

n 12

12n

a a a

b b b ...===时,等号成立.(注:iff if and only if =当且仅当.) 8()

4.2柯西不等式还可以表示为:

222222212n 12n 1122n n a a a b b b a b a b a b n n n

.........()()()+++++++++≥ 9()

简称:“平方均值两乘积,大于积均值平方” 我们将

1122n n a b a b a b n ...+++

简称为积均值,记:n D =则:224n n n Q a Q b D ab [()][()][()]≥

n D ab ()≥ 10() 4.3推论1:若a b c x y z ,,,,,为实数,x y z 0,,>,则:

2222

n 12n 1212n 12n

a a a a a a

b b b b b b (...)......++++++≥

+++ 11() iff

n 1212n

a a a

b b b ...===时,等号成立. 11()式是柯西不等式的推论,称权方和不等式4.4推论2:若12n a a a ,,...,和12n b b b ,,...,均为实数,则:

...+12() iff

n 12

12n

a a a

b b b ...===时,等号成立.

4.5推论3:若a b c x y z ,,,,,为正实数,则:

x y z

b c c a a b y z z x x y

()()()+++++≥+++13() Ch5. 切比雪夫不等式

5.1若12n a a a ...≤≤≤;12n b b b ...≤≤≤,且均为实数.则:

12n 12n 1122n n a a a b b b n a b a b a b (...)(...)(...)++++++≤+++ 14()

iff 12n a a a ...===或12n b b b ...===时,等号成立.

12()由于有12n a a a ...≤≤≤,12n b b b ...≤≤≤条件,即序列同调, 所以使用时,常采用WLOG 12n a a a ...≤≤≤…… (注:WLOG Without Loss Of Generality =不失一般性) 5.2切比雪夫不等式常常表示为:

12n 12n 1122n n

a a a

b b b a b a b a b n n n

.........(

)()()+++++++++≤ 15()

简称:“切比雪夫同调数,均值积小积均值”.

于两个序列数各积之均值. 则:2n n n A a A b D ab ()()[()]≤

n D ab ()≤ 16() Ch6. 排序不等式

6.1若12n a a a ...≤≤≤;12n b b b ...≤≤≤为实数,

对于12n a a a (,,...,)的任何轮换12n x x x (,,...,),都有下列不等式:

1122n n 1122n n n 1n 121n a b a b a b x b x b x b a b a b a b .........-+++≥+++≥+++ 17()

17().

其中,1122n n a b a b a b ...+++称正序和,n 1n 121n a b a b a b ...-+++称反序和,

1122n n x b x b x b ...+++称乱序和. 故17()式可记为:

18()

6.2推论:若12n a a a ,,...,为实数,设12n x x x (,,...,)为12n a a a (,,...,)的一个排序,则:

22212n 1122n n a a a a x a x a x ......+++≥+++ 19()

Ch7. 琴生不等式

7.1定义凸函数:对一切x y a b ,[,]∈,01(,)α∈,若函数f a b R :[,]→是向下凸函数,则:

f x 1y f x 1f y (())()()()ααα+-≤+- 20()

20()式是向下凸函数的定义式.

注:f a b R :[,]→表示区间a b [,]和函数f x ()在a b [,]区间都是实数.

7.2若f a b R :(,)→对任意x a b (,)∈,存在二次导数f x 0''()≥,则f x ()在a b (,)区间为向

下凸函数;iff x a b (,)∈时,若f x 0''()>,则f x ()在a b (,)区间为严格向下凸函数. 7.3若12n f f f ,,...,在a b (,)区间为向下凸函数,则函数1122n n c f c f c f ...+++在在a b (,)区间对

任何12n c c c 0,,...,(,)∈∞也是向下凸函数.

7.4若f a b R :(,)→是一个在a b (,)区间的向下凸函数,设n N ∈,12n 01,,...,(,)ααα∈为实

数,且12n 1...ααα+++=,则对任何12n x x x a b ,,...,(,)∈,有:

1122n n 1122n n f x x x f x f x f x (...)()()...()αααααα+++≤+++ 21()

21()

简称:“对于向下凸函数,均值的函数值不大于函数的均值”. Ch8. 波波维奇亚不等式

8.1若f a b R :[,]→是一个在a b [,]区间的向下凸函数,则对一切x y z a b ,,[,]∈,有:

x y z f x f y f z 2x y y z z x

f f f f 333222

()()()(

)[()()()]++++++++≥++ 22() 22()

8.2波波维奇亚不等式可以写成:

x y z f x f y f z x y y z z x

f f f f 3322223

()()()(

)()()()++++++++++≥

23() 简称:“对于向下凸函数的三点情况,三点均值的函数与函数的均值之平均值,不小于

两点均值的函数值之平均值”.

8.3若f a b R :[,]→是一个在a b [,]区间的向下凸函数,12n a a a a b ,,...,[,]∈,则:

12n 12n f a f a f a n n 2f a n 1f b f b f b ()()...()()()()[()()...()]++++-≥-+++ 24() 其中:12n a a a a n ...+++=

,i j i j

1

b a n 1≠=-∑(对所有的i ) 24()

当1a x =,2a y =,3a z =,n 3=时,x y z a 3++=

,1y z b 2+=,2z x b 2+=,3x y

b 2

+=

代入23()式得:

x y z y z z x x y

f x f y f z 3f 2f f f 3222

()()()(

)[()()()]++++++++≥++ 即:x y z f x f y f z 2x y y z z x

f f f f 333222

()()()(

)[()()()]++++++++≥++ 25() 25()式正是22()式.

Ch9. 加权不等式

9.1若i a 0(,)∈∞,i 01[,]α∈(i 12n ,,...,=),且12n 1...ααα+++=,则:

n 1212n 1122n n a a a a a a ......αααααα≤+++ 26()

26()

26()式形式直接理解为:几何均值不大于算术均值.

Ch10. 赫尔德不等式

10.1若实数a b 0,>,实数p q 1,>且11

1p q +=,则:p q a b ab p q

≤+ 27()

iff p q a b =时,等号成立. 27()

10.2若12n a a a ,,...和12n b b b ,,...为正实数,p q 1,>且

11

1p q

+=,则: 1

1p

p

p q

q

q p

q

1122n n 12n 12n a b a b a b a a a b b b ...(...)(...)+++≤++++++ 28()

28()

iff p p p

n 12q q q 12n

a a a

b b b ...===时,等号成立.

10.3赫尔德不等式还可以写成:

11

p p p q q q p q

1122n n 12n 12n a b a b a b a a a b b b n n n .........()()+++++++++≤ 29()

即:2n p q D ab M a M b [()]()()≤

n D ab ()≥ 30() 简称:“幂均值的几何均值不小于积均值”. (注:赫尔德与切比雪夫的不同点:赫尔德要求是11

1p q

+=,切比雪夫要求是同调;赫尔德的积均值小,切比雪夫的积均值大.)

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

不等式的性质知识点及题型归纳总结

不等式的性质知识点及题型归纳总结 知识点精讲 一、不等式的基本性质 不等式的性质是证明和解不等式的主要依据.运用时,对每一条性质要弄清条件和结论,注意条件加强和放宽厚条件和结论之间的变化;不仅要记住不等式运算法则的结论形式,还要掌握法则成立的条件,避免由于忽略某些限制条件而造成解题失误. 1. 两个不等式的同向合成,一律为“”(充分不必要条件) (1)(传递性,注意找中间量) (2)(同向可加性) (3)(同正可乘性,注意条件为正) 注:如,其逆命题不成立,如但是. 2. 一个不等式的等价变形,一律为“”(充要条件),这是不等式解法的理论依据 (1). (2)(对称性) (3)(乘正保号性) (4) (5)(不等量加等量) (6)(乘方保号性,注意条件为正) (7)(开方保号性,注意条件为正) (8)(同号可倒性);. 最为重要的3条不等式性质为:①;②; ③,在不等式问题中都有重要的应用,但应注意他们的适用条件,可以用口诀“同. 向同正可乘 .......”来记忆. .....;同号取倒需反向 题型归纳及思路提示 题型1 不等式的性质 思路提示 应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率. 例7.1 对于实数,有以下命题:①若,则;②若,则;③若则;④若,则;⑤若,则. 其中真命题的个数是() A. 2个 B. 3个 C. 4个 D. 5个 分析:判断命题的真假,要紧扣不等式的性质,应注意条件与结论之间的联系. 解析:①中值的正负或是否为零未知,因而判断不等关系缺乏依据,故该命题是假命题;②中,由 可知,则,故该命题是真命题;③中,不等式两边同乘,可得,若 同乘,可得,易知成立,故该命题为真命题;④中,由可知,

高中数学不等式解题技巧

不等式解题漫谈 一、活用倒数法则 巧作不等变换——不等式的性质和应用 不等式的性质和运算法则有许多,如对称性,传递性,可加性等.但灵活运用倒数法则对解题,尤其是不等变换有很大的优越性. 倒数法则:若ab>0,则a>b 与1a <1 b 等价。 此法则在证明或解不等式中有着十分重要的作用。如:(1998年高考题改编)解不等式log a (1-1 x )>1. 分析:当a>1时,原不等式等价于:1-1x >a,即 1x <1-a ,∵a>1,∴1-a<0, 1x <0,从而1-a, 1 x 同 号,由倒数法则,得x>11-a ; 当00, 1x >0, 从而1-a, 1x 同号,由倒数法则,得11时,x ∈(11-a ,+∞);当0log b a B 、| log a b+log b a|>2 C 、(log b a)2 <1 D 、|log a b|+|log b a|>|log a b+log b a| 分析:由已知,得0

解不等式的方法归纳

一、知识导学
解不等式的方法归纳
1. 一元一次不等式 ax>b
(1)当 a>0 时,解为 x b ; a
(2)当 a<0 时,解为 x b ; a
(3)当 a=0,b≥0 时无解;当 a=0,b<0 时,解为 R.
2. 一元二次不等式:(如下表)其中 a>0,x1,x2 是一元二次方程 ax2+bx+c=0 的两实根,且
x1<x2 (若 a<0,则先把它化正,之后跟 a>0 的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是:
①将 f(x)的最高次项的系数化为正数;
类型 解集
ax2+bx+c>0
ax2+bx+c≥0
ax2+bx+c<0
ax2+bx+c≤0
Δ>0
{x|x<x1 或 x> x2}
{x|x≤x1 或 x≥ x2}
{x|x1<x<x2} {x|x1≤x≤x2}
{x|x≠- b ,
Δ=0
2a
R
x R}
Ф
{x|x=- b }
2a
Δ<0
R
R
Φ
Φ
②将 f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的 f(x)值的符号变化规律,写出不等式的解集.
4.分式不等式:先整理成 f (x) >0 或 f (x) ≥0 的形式,转化为整式不等式求解,即:
g(x)
g(x)
f (x) >0 f(x)·g(x)>0 g(x)
f
(x)
≥0
f (x) 0 g(x) 0

f (x) g(x)>0
g(x)
然后用“根轴法”或化为不等式组求解. 二、疑难知识导析 1.不等式解法的基本思路 解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解 变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化 为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、 有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元 一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.
整理为 word 格式

人教课标版高中数学选修4-5:《不等式的基本性质》教案(1)-新版

1.1 课时1 不等式的基本性质 一、教学目标 (一)核心素养 在回顾和复习不等式的过程中,对不等式的基本性质进行系统地归纳整理,并对“不等式有哪些基本性质和如何研究这些基本性质”进行讨论,使学生掌握相应的思想方法,以提高学生对不等式基本性质的认识水平. (二)学习目标 1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础. 2.掌握不等式的基本性质,并能加以证明. 3.会用不等式的基本性质判断不等关系和用比较法. (三)学习重点 应用不等式的基本性质推理判断命题的真假;代数证明. (四)学习难点 灵活应用不等式的基本性质. 二、教学设计 (一)课前设计 1.预习任务 (1)读一读:阅读教材第2页至第4页,填空: a b >? a b =? a b >?> ②a c b c a b +>+?> ③ac bc a b >?> ④33a b a b >?> ⑤22a b a b >?> ⑥,a b c d ac bd >>?> 2.预习自测 (1)当x ∈ ,代数式2(1)x +的值不大于1x +的值. 【知识点】作差比较法 【解题过程】2(1)(1)x x +-+=2(1)x x x x -=- 【思路点拨】熟悉作差比较法 【答案】[0,1]

(2)若c ∈R ,则22ac bc > a b > A.? B.? C.? D.≠ 【知识点】不等式的基本性质 【解题过程】由22ac bc >,得0c ≠,所以20c >;当,0a b c >=时,22ac bc =. 【思路点拨】掌握不等式的基本性质 【答案】A. (3)当实数,a b 满足怎样条件时,由a b >能推出 11a b ,所以当0ab >时,11a b <. 【思路点拨】掌握作差比较法 【答案】当0ab >时, 11a b <. (二)课堂设计 1.问题探究 探究一 结合实例,认识不等式 ●活动① 归纳提炼概念 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的. 【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 认识作差比较法 关于实数,a b 的大小关系,有以下基本事实: 如果a b >,那么a b -是正数;如果a b =,那么a b -等于零;如果a b <,那么a b -是负数.反过来也对. 这个基本事实可以表示为:0;0;0a b a b a b a b a b a b >?->=?-=

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

解不等式的方法归纳

解不等式的方法归纳 一、知识导学1. 一元一次不等式ax>b(1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <;(3)当a =0,b ≥0时无解;当a =0,b <0时,解为R .2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0的两实根,且x 1<x 2(若a <0,则先把 它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成)()(x g x f >0或) ()(x g x f ≥0的形式,转化为整式不等式求解,即: )()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解.二、疑难知识导析1.不等式解法的基本思路解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.2.不等式组的解集是本组各不等式解集的交集,所以在解不等式组时,先要解出本组内各不等式的解集,然后取其交集,在取交集时,一定要利用数轴,将本组内各不等式的解集在同一数轴上表示出来,注意同一不等式解的示意线要一样高,不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集. 3.集合的思想和方法在解不等式问题中有广泛的应用,其难点是区分何时取交集,何时取并集.解不等式的 另一个难点是含字母系数的不等式求解—注意分类.三、经典例题导讲[例1] 如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是___.A. -1≤k ≤0 B. -1≤k<0 C. - 类型解 集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=- a b 2} Δ<0 R R Φ Φ

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

高考数学不等式解题方法技巧

4 4 1 x 时,1+ log x 3 v 2log x 2 ;当 x 时,1+ log x 3 = 2log x 2) 3 3 3.利用重要不等式求函数最值 时,你是否注意到:“一正二定三相等,和定积最大,积定和最小 ”这17字方 针。 1 x 2 3 【例】(1)下列命题中正确的是 A 、y x 的最小值是 2 B 、y 的最小值是 2 C 、 X Vx 2 2 y 2 3x 4(x 0)的最大值是 2 4'、3 D 、y 2 3x 4 (x 0)的最小值是 2 4-3 (答:C ); x x (2)若x 2y 1,则2x 4y 的最小值是 ______________ (答: 2^2 ); (3)正数x, y 满足x 1 2y 1,则 1 x -的最小值为 (答: y 3 2 .2 ); a 2 b 2 a b 4.吊用不等式有:(1) ;2 2 v ab 1 1 (恨据曰标不寺式左右的运算结构选用 ); a b (2) a 、b 、c R , a 2 .2 2 b c ab bc ca (当且仅当a b c 时,取等号); (3) 若 a b 0,m 0,则- b m (糖水的浓度问题)。 a a m 【例】 如果正数a 、b 满足ab a b 3 ,则ab 的取值范围是 (答:9, ) 不等式应试技巧总结 1不等式的性质: (1)同向不等式可以相加;异向不等式可以相减 :若a b,c d ,贝U a c b d (若a b,c d ,则 a c b d ),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘 ,但不能相除; 异向不等式可以相除 ,但不能相乘:若 a b 0,c d 0,则 ac bd (若 a b 0,0 c d ,则 a -); c d (3)左右同正不等式:两边可以同时乘方或开方 :若 a b 0 ,则 a n b n 或 n a 1 1 1 1 则 ;若ab 0 , a b ,贝U a b a b 【例】 (1)对于实数a,b,c 中, 给出下列命题: ①若a b,则 ac 2 bc 2 ; ③若a 2 2 b 0,则 a ab b ④ 若a b 0,则- 1 ⑤ a b ⑥若a b 0,则: a lb ;⑦若c a b 0,则丄 ;⑧若a b,1 1 c a c b a b 命题是 (答: ②③⑥⑦⑧); (2)已知1 x y 1 , 1 x y 3,则3x y 的取值范围是 ______________________ (答:1 n b ; (4)若 ab 0 , a b , ②若 ac 2 bc 2 ,则a b ; b a 右a b 0,则 a b 则a 0,b 0。其中正确的 3x y 7 ); (3)已知a b c ,且a b c 0,则—的取值范围是 a (答: 2,- 2 2.不等式大小比较的常用方法 : (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商 式) ; ( 3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性; (8)图象法。其中比较法(作差、 (常用于分数指数幕的代数 (7)寻找中间量或放缩法 【例】 时取等号) ;当0 a 1时, (2) 作商)是最基本的方法。 1 t 1 1,t 0 ,比较—log a t 和log a 的大小(答:当a 1 t 1 -lOg a t log a 」(t 1 时取等号)); 2 2 1 a 2 4a 2 ,q 2 a 2 ,试比较p,q 的大小(答:p (3) 比较 1+ log x 3 与 2log x 2( x 0且x 1)的大小(答:当0x1或x 1 t 1 1 时,-lOg a t ( t q ); 4 时,1+ log x 3 > 2log x 2 ; 3

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

不等式解题技巧

不等式解题技巧 【基本知识】 1、若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取 “=”) 2、(1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) 3、0x >若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 4、, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立; )(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号 成立. 5、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可 以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)熟悉一个重要的不等式链: b a 2 +2 a b +≤≤2 2 2b a + 【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1、 已知5 4x < ,求函数14245 y x x =-+-的最大值。 2、当04x <<时,求(82)y x x =-的最大值。

解绝对值不等式的方法总结(1)

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x 1.解不等式(1)|x-x 2-2|>x 2 -3x-4;(2) 2 34 x x -≤1

(完整版)不等式与不等式组小结与解含参数问题题型归纳

第九章不等式与不等式知识点归纳 一、不等式及其解集和不等式的性质 用不等号表示大小关系的式子叫做不等式。常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。 注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈。 ②方向:大于向右画,小于向左画。 不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变; ②不等式两边同时乘(或除)同一正数,不等号不变; ③不等式两边同时乘(或除)同一负数,不等号改变。 作差法比较a 与b 的大小:若a-b>0,则a>b;若a-b<0;则a<b;若a-b=0, 则a=b。例1 、下列式子中哪些是不等式? ①0a+b=b+a; ②a<b-5; ③-3>-5;④x≠1 ;⑤2x-3。 例2、若a 1可得a ;②由ax

相关主题
文本预览
相关文档 最新文档