链表基本操作
- 格式:doc
- 大小:126.50 KB
- 文档页数:19
链表操作图书管理基本业务包括:1、对一种书的采编入库(类别、书名、作者、出版社、ISBN(唯一)、价格、数量)。
2、对一种书进行搜索(类别、ISBN、书名、作者)若有多个结果则同时显示出来。
3、对一种书进行清除库存(通过ISBN)。
4、对一种书实现借阅和归还,同时可以查看该学生借阅了几本书。
基本要求:采编入库:新购一种书,登记入册,若库存中已经有了,则总量增加。
(所有项均用英文单词和数字输入)例如入库某种书:Literature,Old Man and the Sea,Hemingway,Tsinghua University Press,978-7-5011-6964-1,35.6,10清除库存:某种书报损或无效了,将它从库存中删除(所有项都删除)。
借阅:如果一种书现存量大于0,则借出去,并登记借阅者的图书证号(自己定义6位数字字符串)。
通过对图书证号的查询,可以知道该学生已经借阅了几本书,并显示书名。
归还:注销对借阅者的登记,改变该书的现存量。
实现提示:1.1图书表可以采用链式或顺序存储结构实现。
图书的顺序表结构:typedef struct Book{char type[30]; //图书类别(文学、期刊、英语…..)char BookName[50]; //图书名称char Author[20]; //作者char Press[50]; //出版社char ISBN[20]; //ISBN编号(每一类书都有唯一编号,如:978-7-5011-6964-1)float Price; //图书价格int Number; //入库数量}Book;typedef struct BList{Book *elem;int length; //当前图书种类数量int listsize; //初始时可存放图书长度}BList;图书的链表结构:typedef struct Book{char BookName[50];char Author[20];char Press[50];char ISBN[20];float Price;int Number;}Book;typedef struct LNode{Book data;Struct LNode *next;}LNode,*LinkList;1.2、图书的入库则是顺序表或链表的插入操作(可以插入到最后一个位置)。
10)调用头插法的函数,分别输入10,20,分别回车:
11)调用尾插法的函数,分别输入30,40
12)查找单链表的第四个元素:
13)主函数中传入参数,删除单链表的第一个结点:
14)主函数传入参数,删除第0个未位置的元素,程序报错:
15)最后,输出单链表中的元素:
return 0;
}
6)编译,连接,运行源代码:
7)输入8,回车,并输入8个数,用空格分隔开,根据输出信息,可以看出,链表已经拆分为两个
五、实验总结
1.单链表采用的是数据+指针的表示形式,指针域总是指向下一个结
点(结构体)的地址,因此,在内存中的地址空间可以是不连续的,操作比顺序存储更加的方便
2.单链表使用时,需要用malloc函数申请地址空间,最后,删除元
素时,使用free函数释放空间。
c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。
在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。
为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。
本文将介绍一些常见的C链表库函数及其用法。
一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。
数据域用于存放数据,指针域用于指向下一个节点。
链表的最后一个节点指针域为空(NULL),表示链表的末尾。
常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。
下面我们来看看C语言中常用的链表库函数。
二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。
```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。
常见的插入方式包括头部插入和尾部插入。
```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。
在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。
数据结构-单链表基本操作实现(含全部代码)今天是单链表的实现,主要实现函数如下:InitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
最坏是O(n),即从头查找p之前的结点,然后删除p所指结点LocateElem(LinkList L,ElemType e) 参数:单链表L,元素e 功能:查找第⼀个等于e的元素,返回指针时间复杂度O(n)代码:/*Project: single linkeed list (数据结构单链表)Date: 2018/09/14Author: Frank YuInitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
单向链表单向链表的基本操作,创建一个由6个节点组成的单向链表,显示链表中每个节点的数据,并且做增加、删除、查找节点以及计算单链表的长度等处理。
➢需求分析:1.功能(1)用尾插法创建一带头结点的由6个节点组成的单向链表:从键盘读入一组整数,作为单链表中的元素,输入完第6个结点后结束;将创建好的单链表元素依次输出到屏幕上。
(2)显示链表中每个节点的数据(3)从键盘输入一个数,查找在以上创建的单链表中是否存在该数;如果存在,显示它的位置,即第几个元素;如果不存在,给出相应提示如“No found node!”。
(4)在上述的单链表中的指定位置插入指定数据,并输出单链表中所有数据。
(5)删除上述单链表中指定位置的结点,并输出单链表中所有数据。
(6)求单链表的长度并输出.2.输入要求先输入单链表中结点个数n,再输入单链表中所有数据,在单链表中需查找的数据,需插入的数据元素的位置、值,要删除的数据元素的位置。
3。
测试数据单链表中所有数据:12,23,56,21,8,10在单链表中需查找的数据:56;24插入的数据元素的位置、值:1,28;7,28;0,28要删除的数据元素的位置:6➢概要设计:1.算法思想:由于在操作过程中要进行插入、删除等操作,为运算方便,选用带头结点的单链表作数据元素的存储结构.对每个数据元素,由一个数据域和一个指针域组成,数据域放输入的数据值,指针域指向下一个结点。
2.数据结构:单链表结点类型:typedef struct Liistnode {int data;struct Listnode *next;}NODE;3.模块划分:a)用尾插法建立带头结点的单链表*CreateList函数;b)显示链表中每个结点的数据PrintList函数;c)从键盘输入一个数,查找单链表中是否存在该数FoundList函数;d)在单链表中指定位置插入指定数据并输出单链表中所有数据InsertList函数;e)删除单链表中指定位置的结点并输出单链表中所有数据DeleteList函数;f)计算单链表的长度并在屏幕上输出LengthList函数;g)主函数main(),功能是给出测试数据值,建立测试数据值的带头结点的单链表,调用PrintList函数、FoundList函数、InsertList函数、DeleteList函数、LengthList函数实现问题要求。
实验二单链表基本操作一实验目的1.学会定义单链表的结点类型,实现对单链表的一些基本操作和具体的函数定义,了解并掌握单链表的类定义以及成员函数的定义与调用。
2.掌握单链表基本操作及两个有序表归并、单链表逆置等操作的实现。
二实验要求1.预习C语言中结构体的定义与基本操作方法。
2.对单链表的每个基本操作用单独的函数实现。
3.编写完整程序完成下面的实验内容并上机运行。
4.整理并上交实验报告。
三实验内容1.编写程序完成单链表的下列基本操作:(1)初始化单链表La。
(2)在La中第i个元素之前插入一个新结点。
(3)删除La中的第i个元素结点。
(4)在La中查找某结点并返回其位置。
(5)打印输出La中的结点元素值。
2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。
合并思想是:程序需要3个指针:pa、pb、pc,其中pa,pb分别指向La表与Lb表中当前待比较插入的结点,pc 指向Lc表中当前最后一个结点。
依次扫描La和Lb中的元素,比较当前元素的值,将较小者链接到*pc 之后,如此重复直到La或Lb结束为止,再将另一个链表余下的内容链接到pc所指的结点之后。
3.构造一个单链表L,其头结点指针为head,编写程序实现将L逆置。
(即最后一个结点变成第一个结点,原来倒数第二个结点变成第二个结点,如此等等。
)四思考与提高1.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作?2.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?1.编写程序完成单链表的下列基本操作:(1)初始化单链表La。
(2)在La中第i个元素之前插入一个新结点。
(3)删除La中的第i个元素结点。
(4)在La中查找某结点并返回其位置。
(5)打印输出La中的结点元素值。
#include<stdio.h>#include<stdlib.h>#include <malloc.h>#define OK 1#define ERROR 0typedef int Status;typedef int ElemType;//定义存储结构typedef struct Lnode{int data; /*每个元素数据信息*/struct Lnode *next; /*存放后继元素的地址*/} LNode,*LinkList;int main(){void Create_L(LinkList &L,int n);void Print_L(LinkList L);Status ListInsert_L(LinkList &L,int i,ElemType e);Status ListDelete_L(LinkList &L,int i,ElemType &e);Status Find_L(LinkList L,int e);LinkList La;//创建单链表Laint n;printf("请输入链表La中的元素个数:\n");scanf("%d",&n);Create_L(La,n);//初始化单链表printf("现在La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("现在准备插入元素,请输入插入位置及所插入元素的值\n");int i,e;scanf("%d %d",&i,&e);ListInsert_L(La,i,e);printf("插入后La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("现在准备删除元素,请输入删除位置\n");scanf("%d",&i);ListDelete_L(La,i,e);printf("删除后La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("请输入所要查找元素的值:\n");scanf("%d",&e);Find_L(La,e);printf("所要查找元素的位置为:%d\n",Find_L(La,e)); }void Create_L(LinkList &L,int n){int j=1;L=(LinkList)malloc(sizeof(Lnode));L->next =NULL;//先建立一个带头结点的单链线性表L for(int i=n;i>0;--i){LinkList p=(LinkList)malloc(sizeof(Lnode));printf("请输入链表La中的第%d个元素:\n",j++);scanf("%d",&p->data);p->next=L->next;L->next =p;}//(逆序实现)/*LinkList q=L;for(int i=1;i<=n;i++){LinkList p=(LinkList)malloc (sizeof(Lnode));q->next=p;p->next=NULL;q=q->next ;printf("请输入链表La中的第%d个元素:\n",i);scanf("%d",&p->data);}//(正序实现)*/}//初始化单链表//输出单链表void Print_L(LinkList L){LinkList p;p=L->next;while(p){printf("%d ",p->data );p=p->next;}printf("\n");}//在单链表L的第i个位置前插入元素eStatus ListInsert_L(LinkList &L,int i,ElemType e) {LinkList p=L;int j=0;while(p&&j<i-1){p=p->next; ++j;}if(!p||j>i-1) return ERROR;LinkList s=(LinkList)malloc(sizeof(LNode));s->data=e; s->next=p->next;p->next=s;return OK;} //ListInsert_L//删除单链表L中第i个位置上的元素Status ListDelete_L(LinkList &L,int i,ElemType &e) {LinkList p=L;int j=0;while( p->next && j<i-1){p=p->next; ++j;}if(!p->next||j>i-1) return ERROR;LinkList q=p->next; p->next=q->next;e=q->data;free(q);return OK;}//LinkDelete_L/*查找元素并返回位置*/Status Find_L(LinkList L,int e){LinkList p=L->next;int j=1;while(p->data!=e&&p->next){p=p->next;j++;}if(p->data==e) return j;else{printf("无当前元素\n");return ERROR;}if(!p){printf("无当前元素\n");return ERROR;}}//定位2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。
数据结构链表的基本操作一、引言链表是计算机科学中的一种数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
链表可以用于实现栈、队列和其他数据结构。
本文将详细介绍链表的基本操作。
二、链表的基本概念1. 节点:链表中的每个元素称为节点,它包含两部分:数据和指向下一个节点的指针。
2. 头结点:链表中第一个节点称为头结点,它不包含实际数据,只有指向第一个真正节点的指针。
3. 尾节点:链表中最后一个节点称为尾节点,它的指针为空。
4. 空链表:不包含任何元素的链表称为空链表。
三、链表的基本操作1. 创建链表创建一个空链表很简单,只需要让头结点指针为空即可。
如果需要创建带有多个元素的非空链表,则需要依次创建每个节点,并将前一个节点的指针指向当前节点。
2. 插入元素在插入元素时,需要先找到要插入位置前面的那个节点。
然后新建一个要插入的节点,并将其指针指向原来位置上后面那个节点。
最后将前面那个节点的指针改为新建立的节点。
3. 删除元素在删除元素时,需要先找到要删除的那个节点。
然后将前一个节点的指针指向后一个节点,从而跳过要删除的那个节点。
最后释放要删除的节点。
4. 遍历链表遍历链表是指依次访问链表中每个元素。
可以使用循环结构来实现遍历操作。
从头结点开始,依次访问每个节点,并将其数据输出即可。
5. 查找元素查找元素时,需要从头结点开始依次遍历每个节点,直到找到目标元素或者遍历完整个链表为止。
6. 反转链表反转链表是指将原来的链表顺序倒置。
可以使用三个指针分别表示当前节点、前一个节点和后一个节点,依次修改它们之间的指针即可实现反转操作。
四、链表的应用举例1. 栈和队列:栈和队列都可以用链表来实现。
栈是一种先进后出(FILO)的数据结构,而队列是一种先进先出(FIFO)的数据结构。
2. 链式存储文件系统:文件系统中通常采用基于树或者基于哈希表的存储方式。
但是在某些情况下,也可以采用基于链式存储方式来实现文件系统。
数据结构实验报告之链表顺序表的操作1、编写程序实现顺序表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计⼀个主程序完成如下功能:(1)初始化顺序表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出顺序表L;(9)删除L的第2个元素,之后输出顺序表L;(10)销毁顺序表L。
2、编写程序实现单链表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计⼀个主程序完成如下功能:(1)初始化单链表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出单链表L;(4)输出单链表L的长度;(5)判断单链表L是否为空;(6)输出单链表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出单链表L;(9)删除L的第2个元素,之后输出单链表L;(10)销毁单链表L。
1顺序表2 #include<stdio.h>3 #include<malloc.h>4 #include<stdlib.h>56#define TRUE 17#define FALSE 08#define OK 19#define ERROR 010#define INFEASIBLE -111#define OVERFLOW -212 typedef int Status;13 typedef char ElemType;1415#define LIST_INIT_SIZE 100 //线性表存储空间的初始分配量16#define LISTINCREMENT 10 //线性表存储空间的分配增量17 typedef struct {18 ElemType *elem; //存储空间基地址19int length; //当前长度20int listsize; //当前分配的存储容量21 } SqList;2223 Status InitList_Sq(SqList &L) { //算法2.324 L.elem = (ElemType *)malloc(LIST_INIT_SIZE * sizeof(ElemType));25if (!L.elem) exit(OVERFLOW); //存储分配失败26 L.length = 0; //空表长度为027 L.listsize = LIST_INIT_SIZE; //初始存储容量28return OK;29 }//InitList_Sq3031 Status ListInsert_Sq(SqList &L, int i, ElemType e) { //算法2.432 ElemType *newbase, *p, *q;33if (i<1 || i>L.length + 1) return ERROR; //i值不合法34if (L.length >= L.listsize)35 { //当前存储空间已满,增加分配36 newbase = (ElemType*)realloc(L.elem, (L.listsize + LISTINCREMENT) * sizeof(ElemType));37if (!newbase) exit(OVERFLOW); //存储分配失败38 L.elem = newbase; //新基址39 L.listsize += LISTINCREMENT; //增加存储容量40 }41 q = &(L.elem[i - 1]); //q为插⼊位置42for (p = &(L.elem[L.length - 1]); p >= q; --p) *(p + 1) = *p; //元素右移43 *q = e; //插⼊e44 ++L.length; //表长增145return OK;46 }4748void DispSqList(SqList L)49 {50int i;51for (i = 0; i < L.length; i++)52 printf("%c ", L.elem[i]);53 }5455 Status ListDelete(SqList &L, int i, ElemType &e)56 {57 ElemType *p,*q;58if ((i < 1) || (i > L.length)) return ERROR;59 p = &(L.elem[i - 1]);60 e = *p;61 q = L.elem + L.length - 1;62for (++p; p <= q; ++p)63 *(p - 1) = *p;64 --L.length;65return OK;66 } //ListDelete_Sq6768 Status GetElem(SqList L, int i, ElemType &e)69 {70if (L.length == 0 || i<1 || i>L.length)71return ERROR;72 e = L.elem[i - 1];73return OK;74 }7576int ListLength(SqList L)77 {78return(L.length);79 }8081 Status DestroyList(SqList &L)82 {83 free(L.elem);84 L.length = 0;85return OK;86 }8788 Status ListEmpty(SqList L)89 {90return(L.length == 0);91 }9293int LocateElem(SqList L, ElemType e)94 {95int i = 0;96while (i < L.length && L.elem[i] != e) i++;97if (i >= L.length) return0;98else return i + 1;99 }100101void main()102 {103 SqList h;104 ElemType e;105 InitList_Sq(h);106 ListInsert_Sq(h, h.length + 1, 'a');107 ListInsert_Sq(h, h.length + 1, 'b');108 ListInsert_Sq(h, h.length + 1, 'c');109 ListInsert_Sq(h, h.length + 1, 'd');110 ListInsert_Sq(h, h.length + 1, 'e');111 DispSqList(h);112 printf("%d\n\n",ListLength(h));113 ListEmpty(h);114if (ListEmpty(h))116 printf("Empty\n\n");117 }118else119 {120 printf("Not empty\n\n");121 }122 GetElem(h, 4, e);123 printf("%c\n", e);124 printf("%d\n",LocateElem(h, 'c'));125 ListInsert_Sq(h,3,' f');126 DispSqList(h);127 ListDelete(h, 2, e);128 DispSqList(h);129 DestroyList(h);130 }131132133134135136单链表137138139140 #include<stdio.h>141 #include<malloc.h>142 #include<stdlib.h>143144#define TRUE 1145#define FALSE 0146#define OK 1147#define ERROR 0148#define INFEASIBLE -1149#define OVERFLOW -2150 typedef int Status;151152 typedef char ElemType;153154155 typedef struct LNode {156 ElemType data;157int length;158struct LNode *next;159 }LNode, *LinkList;160161162 Status InitList_L(LinkList &L) {163 L = (LinkList)malloc(sizeof(LNode));164 L->next = NULL;165return OK;166 }167168 Status ListInsert_L(LinkList L, int i, ElemType e) { 169 LinkList p = L,s;170int j = 0;171while (p && j < i - 1)172 {173 p = p->next;174 ++j;175 }176if (!p || j > i - 1)177 {178return ERROR;179 }180else181 {182 s = (LinkList)malloc(sizeof(LNode));183 s->data = e;184 s->next = p->next;185 p->next = s;186return OK;187 }188 }189190void DispList_L(LinkList L)191 {192 LinkList p = L->next;193while (p != NULL)194 {195 printf("%c\n", p->data);196 p = p->next;197 }198200201void DestoryList(LinkList &L)202 {203 LinkList p = L, q = p->next;204while (q != NULL)205 {206 free(p);207 p = q;208 q = p->next;209 }210 free(p);211 }212213 Status ListLength_L(LinkList L) {214 LinkList p = L; int n = 0;215while (p->next != NULL)216 {217 n++;218 p = p->next;219 }220return (n);221 }222223 Status ListDelete(LinkList L, int i, ElemType &e){ 224int j;225 LinkList p, q;226 p = L;227 j = 1;228while (p->next && j < i)229 {230 p = p->next;231 ++j;232 }233if (!(p->next) || j > i)234 {235return ERROR;236 }237 q = p->next;238 p->next = q->next;239 e = q->data;240 free(q);241return OK;242 }243244 Status ListEmpty_L(LinkList L)245 {246return(L->length == 0);247 }248249 Status GetElem(LinkList L, int i, ElemType &e) 250 {251int j;252 LinkList p;253 p = L->next;254 j = 1;255while (p&&j<i)256 {257 p = p->next;258 ++j;259 }260if (!p || j > i)261 {262return ERROR;263 }264 e = p->data;265return OK;266 }267268 Status LocateElem(LinkList L, int e)269 {270 LinkList p = L;271int n=0;272//p->length = 0;273while (p != NULL)274 {275if(p->data != e)276 {277 p = p->next;278 n++;279 }280else281 {282break;283 }284 }285if(p != NULL)286 {287return n;288 }289else290 {291return ERROR;292 }293 }294295void main()296 {297 LinkList h;298 ElemType e;299 InitList_L(h);300 ListInsert_L(h, 1, 'a');301 ListInsert_L(h, 2, 'b');302 ListInsert_L(h, 3, 'c');303 ListInsert_L(h, 4, 'd');304 ListInsert_L(h, 5, 'e');305 DispList_L(h);306 printf("%d\n", ListLength_L(h)); 307if (ListEmpty_L(h))308 {309 printf("Empty\n\n");310 }311else312 {313 printf("Not empty\n\n");314 }315 GetElem(h, 4, e);316 printf("%c\n", e);317 printf("%d\n", LocateElem(h, 'c')); 318 ListInsert_L(h, 3, 'f');319 DispList_L(h);320 ListDelete(h, 2, e);321 DispList_L(h);322 DestoryList(h);323 }。
链表基本操作链表作为一种重要的数据结构,在计算机程序设计中被广泛应用。
链表是一种元素之间通过指针相连接的线性结构,每个元素包含数据和指向下一个元素的指针。
链表能够灵活地增加和删除元素,适用于许多需要频繁插入和删除数据的场景。
在本文中,我们将介绍链表的基本操作,并按照类别进行介绍。
创建链表链表的创建是链表操作的第一步。
首先需要声明链表节点类型的结构体,并定义链表头指针。
然后通过动态内存分配函数malloc为链表节点动态分配内存,建立链表节点之间的关系,直到最后一个节点。
struct Node{int data;Node* next;};Node* createLinkedList(int n){Node* head = NULL;Node* tail = NULL;for(int i = 0; i < n; i++){Node* node = (Node*)malloc(sizeof(Node));node->data = 0;node->next = NULL;if(head == NULL){head = node;}else{tail->next = node;}tail = node;}return head;}插入数据链表的插入操作包括在链表头插入和在链表尾插入两种情况。
在链表头插入时,新节点的指针指向链表头,链表头指针指向新节点。
在链表尾插入时,先找到链表尾节点,然后将新节点插入在尾节点后面。
void insertAtFront(Node** head, int data){Node* node = (Node*)malloc(sizeof(Node));node->data = data;node->next = *head;*head = node;}void insertAtEnd(Node** head, int data){Node* node = (Node*)malloc(sizeof(Node)); node->data = data;node->next = NULL;if(*head == NULL){*head = node;}else{Node* tail = *head;while(tail->next != NULL){tail = tail->next;}tail->next = node;}}删除数据链表的删除操作包括在链表头删除和在链表尾删除两种情况。
链表的基本操作
链表是一种通用的数据结构,它利用指针对数据元素的每一个节点进行存储,当需要访问任何指定的节点时,受益于指针技术,可以较快的访问指定节点。
在一般的链表中,可以进行如下几种基本操作:
1.插入:链表可以在既有链表中的任何一个位置插入数据元素,通过改变相应指针指向,实现插入操作。
2.删除:链表也可以通过调整相应指针指向,实现删除操作。
3.搜索:在链表中搜索某个元素可以采用顺序搜索的方式,从链表的首元节点开始,逐个比较,直到找到所要查找节点。
4.遍历:链表可以从链表的首元节点开始,按照指针指向,依次访问每一个节点,从而实现对链表的元素的遍历。
5.修改:修改链表可以通过先将要修改的节点找出来,然后调整相应的数据值来实现。
链表的基本操作是一个非常常用的数据结构,可以有效的提高编程效率,更加方便的实现某些算法,广泛应用于很多的计算机程序。
所以在学习更多的数据结构的时候,了解链表的基本操作,也是一个不可忽视的组成部分。
单链表的实现及其基本操作结点的引⼊链表是⼀种链式存储结构,链式存储结构的特点是⽤⼀组任意的存储单元存储数据元素。
为了能正确表⽰数据元素之间的线性关系,需引⼊结点概念。
⼀个结点表⽰链表中的⼀个数据元素,节点中除了储存数据元素的信息,还必须存放指向下⼀个节点的的指针(单、双链表的最后⼀个节点除外,它们存储的是⼀个空指针NULL)结点的结构如下图所⽰:代码如下:1 typedef struct node{2int data;3struct node* pNext;4 }Node, *PNode;View Code注:这⾥假设结点中储存的是整型 (int) 的数据单链表由多个结点依次连接⽽成,我们不难想象出它结构:我们注意到:在第⼀个结点的前⾯多了⼀个头结点,这是为了处理空表的⽅便⽽引⼊的,它的指针指向链表的第⼀个结点,⽽它的data域不存放任何信息。
单链表的基本操作1.创建链表1 PNode createList()2 {3int len, value;45 PNode pHead = (PNode)(malloc(sizeof(Node)));6 PNode pTail = pHead;7 pTail->pNext = NULL;89 printf("请输⼊你要的节点个数:");10 scanf("%d", &len);11for(int i=1;i<=len;i++){12 printf("请输⼊第%d个节点的值:", i);13 scanf("%d", &value);1415 PNode pNew = (PNode)malloc(sizeof(Node));16 pNew->data = value;17 pTail->pNext = pNew;18 pTail = pNew;19 pTail->pNext = NULL;20 }2122return pHead;23 }View Code2.遍历链表void traverse(PNode pHead){printf("遍历结果为:\n");PNode pTra = pHead;while(pTra->pNext != NULL){printf("%d ", pTra->pNext->data);pTra = pTra->pNext;}printf("\n");}View Code3.判断链表是否为空1bool isEmpty(PNode pHead)2 {3if(pHead->pNext==NULL)4return true;5else6return false;7 }View Code4.链表长度1int length(PNode pHead)2 {3int len = 0;4while(pHead->pNext!=NULL){5 pHead = pHead->pNext;6 len++;7 }8return len;910 }View Code5.插⼊结点1bool insert(PNode pHead, int pos, int val)2 {3if(pos<1 || pos>length(pHead)){4return false;5 }else{6 PNode pInsert = pHead;7for(int i=1;i<pos;i++){8 pInsert = pInsert->pNext;9 }1011 PNode pNew = (PNode)malloc(sizeof(Node));12 pNew->data = val;13 pNew->pNext = pInsert->pNext;14 pInsert->pNext = pNew;1516return true;17 }1819 }View Code6.删除结点1bool del(PNode pHead, int pos)2 {3if(pos<1 || pos>length(pHead)){4return false;5 }else{6 PNode pDel = pHead;7for(int i=1;i<pos;i++){8 pDel = pDel->pNext;9 }1011if(pos==length(pHead)){12free(pDel->pNext);13 pDel->pNext = NULL;14 }else{15 PNode pNext = pDel->pNext->pNext;16free(pDel->pNext);17 pDel->pNext = pNext;18 }1920return true;2122 }232425 }View Code7.查找节点(1)按元素值查找1 PNode locate(PNode pHead, int value)2 {3 PNode p = pHead->pNext;4while(p&&p->data!=value){ //NULL 是 05 p = p->pNext;6 }7return p;8 }View Code(2)按序号查找1 PNode get(PNode pHead, int k)2 {3 PNode p = pHead;4for(int i=1;i<=k;i++){5 p = p->pNext;6 }7return p;89 }View Code完整代码1 #include<stdio.h>2 #include<stdlib.h>3 typedef struct node{4int data;5struct node* pNext;6 }Node, *PNode;78 PNode createList();9void traverse(PNode pHead);10bool isEmpty(PNode pHead);11int length(PNode pHead);12bool insert(PNode pHead, int pos, int val);13bool del(PNode pHead, int pos);14 PNode get(PNode pHead, int k); //按序号查找15 PNode locate(PNode pHead, int value);//按值查找 1617int main(void)18 {19//test2021return0;22 }2324 PNode createList()25 {26int len, value;2728 PNode pHead = (PNode)(malloc(sizeof(Node)));29 PNode pTail = pHead;30 pTail->pNext = NULL;3132 printf("请输⼊你要的节点个数:");33 scanf("%d", &len);34for(int i=1;i<=len;i++){35 printf("请输⼊第%d个节点的值:", i);36 scanf("%d", &value);3738 PNode pNew = (PNode)malloc(sizeof(Node));39 pNew->data = value;40 pTail->pNext = pNew;41 pTail = pNew;42 pTail->pNext = NULL;43 }4445return pHead;46 }474849void traverse(PNode pHead)50 {51 printf("遍历结果为:\n");52 PNode pTra = pHead;53while(pTra->pNext != NULL)54 {55 printf("%d ", pTra->pNext->data);56 pTra = pTra->pNext;57 }58 printf("\n");59 }6061bool isEmpty(PNode pHead)62 {63if(pHead->pNext==NULL)64return true;65else66return false;67 }6869int length(PNode pHead)70 {71int len = 0;72while(pHead->pNext!=NULL){73 pHead = pHead->pNext;74 len++;75 }76return len;7778 }7980bool insert(PNode pHead, int pos, int val)81 {82if(pos<1 || pos>length(pHead)){83return false;84 }else{85 PNode pInsert = pHead;86for(int i=1;i<pos;i++){87 pInsert = pInsert->pNext;88 }8990 PNode pNew = (PNode)malloc(sizeof(Node));91 pNew->data = val;92 pNew->pNext = pInsert->pNext;93 pInsert->pNext = pNew;9495return true;96 }9798 }99100bool del(PNode pHead, int pos)101 {102if(pos<1 || pos>length(pHead)){103return false;104 }else{105 PNode pDel = pHead;106for(int i=1;i<pos;i++){107 pDel = pDel->pNext;108 }109110if(pos==length(pHead)){111free(pDel->pNext);112 pDel->pNext = NULL;113 }else{114 PNode pNext = pDel->pNext->pNext;115free(pDel->pNext);116 pDel->pNext = pNext;117 }118119return true;120121 }122123124 }125126 PNode get(PNode pHead, int k)127 {128 PNode p = pHead;129for(int i=1;i<=k;i++){130 p = p->pNext;131 }132return p;133134 }135 PNode locate(PNode pHead, int value)136 {137 PNode p = pHead->pNext;138while(p&&p->data!=value){ //NULL 是 0 139 p = p->pNext;140 }141return p;142 }View Code。
链表的实现及应用实验原理与方法链表简介链表是一种数据结构,由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
链表中的节点可以在内存中分散存储,相比于数组,链表更加灵活,动态插入和删除元素的效率更高。
链表的基本操作以下是链表的几个基本操作:1.创建链表:创建一个空链表,设置头节点为空。
2.插入节点:在链表的指定位置插入一个新节点,调整指针指向。
3.删除节点:根据给定值,在链表中找到并删除节点,调整指针指向。
4.查找节点:根据给定值,在链表中查找节点。
链表的实现方法链表可以通过不同的实现方法来实现,以下是两种常见的实现方法:单链表(Singly Linked List)单链表是最简单的链表形式,每个节点只包含一个指针指向下一个节点,最后一个节点指向空。
单链表的插入和删除操作效率高,但查找节点的效率较低。
双链表(Doubly Linked List)双链表在单链表的基础上增加了一个指向前一个节点的指针。
双链表的插入和删除操作相对复杂一些,但查找节点的效率更高,可以在双链表中前后遍历。
链表的应用链表作为一种常见的数据结构,在许多实际问题中都有广泛的应用,以下是几个常见的应用场景:1.链表用于实现栈和队列:链表可以轻松地实现栈和队列等数据结构,插入和删除操作效率高。
2.链表用于LRU缓存淘汰算法:链表可以按照访问顺序存储数据,当缓存容量不够时,可以通过删除链表尾部的节点来实现淘汰。
3.链表用于多项式求解:链表可以存储多项式的每一项,方便进行运算和求解。
链表的实验原理与方法链表的实验原理与方法可以包括以下几个方面:1.实验原理:了解链表的基本原理,包括节点结构、指针指向等。
2.实验设备:准备笔记本电脑和编程环境。
3.实验步骤:–步骤1:创建一个链表,设置头节点为空。
–步骤2:插入节点:根据需要在链表中插入节点,调整指针指向。
–步骤3:删除节点:根据需要在链表中删除节点,调整指针指向。
–步骤4:查找节点:根据给定值在链表中查找节点。
题目一链表基本操作一、数据结构与核心算法的设计描述1、单链表的最大长度#define MAXSIZE 1002、单链表的结点类型定义/* 定义elemtype为int类型 */typedef int elemtype;/* 单链表的结点类型 */typedef struct STD{elemtype elem;STD *next;}list, * linklist;3、初始化单链表/* 函数功能:对链表进行初始化。
参数:链表(linklist L)。
成功初始化返回1,否则返回0 */int init(linklist &L){L=(linklist)malloc(sizeof(list));//头结点申请内存。
if(!L) //判断有无申请到空间。
return 0; //没有申请到内存,参数失败返回0L->next=NULL;L->elem=0; //单链表中有多少元素return 1; //成功参数返回1}4、清空单链表/* 函数功能:把链表清空。
参数:链表(linklist L)。
成功清空链表返回1*/int makeempty(linklist &L){linklist p,q;p=L->next;while(p) //当p非空时,删除p{q=p;p=p->next;free(q);}L->next=NULL; //只剩头指针,所以L->next=NULLL->elem=0; //清空后链表中元素为0return 1; //清空后返回1}5、求链表长度/*函数功能:返回链表的长度。
参数;链表(linklist L)。
函数返回链表的长度 */ int getlength(linklist L){linklist p;p=L->next;int j=0;while(p){j++; //统计链表中元素p=p->next;}return j; //最后返回链表长度.}6、判断链表是否为空/*函数功能:判断链表是否为空。
参数;链表(linklist L)。
链表为空时返回0,不为空返回1*/ int isempty(linklist L){if(L->next) //头结点后有元素表示链表不空则返回1return 1;elsereturn 0; //头结点后没有元素表示链表不空则返回0}7、检查链表是否为满/*函数功能:判断链表是否为满。
参数;链表(linklist L)。
链表为满时返回0,不为满返回1*/ int isfull(linklist L){if(L->elem <= MAXSIZE) //头结点的elem储存的为链表的长度。
return 1; //其小于MAXSIZE表示链表不满elsereturn 0; //否则返回0}8、遍历链表/*函数功能:遍历链表,输出每个节点的elem值。
参数;链表(linklist L) 通过循环逐个输出节点的elem值*/void show(linklist L){linklist p;p=L->next;if(isempty(L)==0) //当链表为空时则输出链表为空{cout<<"链表为空!";}while(p) //当链表为不空时则输出链表每个节点的elem值{cout<<p->elem<<" ";p=p->next;}cout<<endl;}9、从链表中查找元素/*函数功能:从链表中查找有无给定元素。
参数;链表(linklist L),给定元素(int i)如果链表中有给定元素(i)则返回1,否则返回0*/int find(linklist L, int i){linklist p;p=L->next;while(p){if(p->elem==i) //判断有无元素I,有返回1return 1;p=p->next;}return 0; //没有找到返回0}10、从链表中查找与给定元素值相同的元素在表中的位置/*函数功能:从链表中查找给定元素的位置。
参数;链表(linklist L),给定元素(int i) 如果链表中有给定元素i则返回元素的位置, 没有则返回0*/int location(linklist L,int i){linklist p;int j=0;p=L->next;while(p){j++;if(p->elem==i) //判断有无元素i,有返回其的位置jreturn j;p=p->next;}return 0; //没有则返回0}11、向链表中插入元素/*函数功能:向链表中的某个位置插入元素。
参数;链表(linklist L),位置(int i),元素(elemtype e)。
成功插入返回1,否则返回0 */int insert(linklist &L, int i, elemtype e){linklist p, s;int j = 0;p = L;while (p&&j<i-1) //查找第i个元素的前驱{p = p->next;j ++;}if(j>i-1||!p) //不符合条件返回0return 0;s = (linklist)malloc(sizeof(list)); //给节点s分配内存s->elem = e;s->next = p->next; //插入操作p->next = s;L->elem++; //插入完成后头结点的elem加1return 1; //成功插入返回1}12、从链表中删除元素/*函数功能:在链表中的某个位置删除元素。
参数;链表(linklist L),位置(int i),元素(elemtype e)。
成功删除返回1,否则返回0 */int deleteelem(linklist &L,int i){linklist p,q;int j=0;p=L;while (p->next&&j<i-1) //查找第i个元素的前驱{p=p->next;j++;}if(j>i-1||!(p->next)) //不符合条件返回0return 0;q=p->next;p->next=q->next; //删除操作free(q);L->elem--; ////插入完成后头结点的elem减1return 1; //成功删除返回1}13、主界面函数/* 函数功能:显示所有操作功能。
参数;无*/void zhujiemian(){cout<<endl<<endl;cout<<"\t\t\t\t数据结构实验一"<<endl;cout<<"\t\t------------------------------------------"<<endl<<endl;cout<<"\t\t 1 链表初始化"<<endl;cout<<"\t\t 2 清空链表"<<endl;cout<<"\t\t 3 求链表长度"<<endl;cout<<"\t\t 4 链表是否为空"<<endl;cout<<"\t\t 5 检查链表是否为满"<<endl;cout<<"\t\t 6 遍历链表"<<endl;cout<<"\t\t 7 从链表中查找元素"<<endl;cout<<"\t\t 8 从链表中查找与给定元素值相同的元素在表中的位置"<<endl;cout<<"\t\t 9 向链表中插入元素"<<endl;cout<<"\t\t10 从链表中删除元素"<<endl<<endl;cout<<"\t\t其他键退出"<<endl;cout<<"\t\t------------------------------------------"<<endl<<endl<<endl;cout<<"\t请选择要进行操作的序号(1--10):";}二、函数调用及主函数设计主函数主要设计:zhujiemian(); //显示主界面cin>>a; //输入要进行的操作的序号cout<<endl;do{switch(a) //用switch语句进行选择操作{case 1: //初始化if(init(L)==1)cout<<"初始化成功!"<<endl;elsecout<<"初始化失败!"<<endl;break;case 2:if(makeempty(L)==1) //链表置空cout<<"链表已清空!"<<endl;elsecout<<"链表清空失败!"<<endl;break;case 3: //链表的长度b=getlength(L);cout<<"链表的长度为:"<<b<<endl;break;case 4: //判断链表是否空if(isempty(L)==1)cout<<"链表不空!"<<endl;elsecout<<"链表为空!"<<endl;break;case 5: //判断链表是否满if(isfull(L)==1)cout<<"链表不满!"<<endl;elsecout<<"链表已满!"<<endl;break;case 6: //遍历链表show(L);break;case 7: //链表是否有要查找元素cout<<"您要查找的元素:";cin>>b;if(find(L,b)==1)cout<<"链表中有元素"<<b<<endl;elsecout<<"链表没中有元素"<<b<<endl;break;case 8: //输出链表要查找元素的位置cout<<"您要查找的元素为:"<<endl;cin>>b;if(location(L,b)==0)cout<<"没有您要查找的元素"<<b<<endl;elsecout<<"您查找的元素"<<b<<"在第"<<location(L,b)<<"个位置。