当前位置:文档之家› DVI数字显示接口标准

DVI数字显示接口标准

DVI数字显示接口标准
DVI数字显示接口标准

DVI数字显示接口标

数字显示接口(Digit

al Visual Interface,DV

I)是一种适应数字平板显

示器飞速发展而产生的显

示接口。目前大多数计算

机与外部显示设备之间都是通过模拟VGA接口连接,计算机内部以数字方式生成的显示图像信息,被显卡中的D/A(数字/模拟)转换器转变为R、G、B三原色信号和行、场同步信号,信号通过电缆传输到显示设备中。对于模拟显示设备,如模拟CRT显示器,信号被直接送到相应的处理电路,驱动控制显像管生成图像。而对于LCD、DL P等数字显示设备,显示设备中需配置相应的A/D(模拟/数字)转换器,将模拟信号转变为数字信号。在经过D/A和A/D两次转换后,不可避免地造成了一

些图像细节的损失。

在DVI之前也存在一些数字接口标准,但都未能成为工业标准。目前便携系统中采用低电压差分信令(Low Voltage Differential Signaling,LVDS)数字接口连接液晶显示屏,但是这一技术不太适合桌面显示器。其他数字接口,如数字平板标准(Digital Flat Panel,DFP)、视频电子标准协会的即插即显标准(VESA(r)Plug and Display)、以及OpenLDI标准也未能被业界普遍接受。相反,DVI标准有望成为平板显示的标准数字接口,这是由Silicon I mage、Interl、Compaq、IBM、HP、NEC、Fujitsu等公司共同组成的数字显示工作组(Digital Display Working Group,DDWG)于1999年4月推

出的数字显示接口标准。

TMDS

DVI标准的基础是Silicon Image公司的PanelLink接口技术,这是一种高速串行接口,采用的是跃变最小化差分信令(Transition Minimized Differ ential Signaling,TMDS)传送数据到监视器。

TMDO 通过“on”和“off”

状态间的跃变来传送数据,采用

布尔异或(XOR)或者异非或(X

NOR)操作这一先进的编码算法

来最小化跃变,以避免额外的电

磁干扰(EMI)对电缆的影响,

并附加了平衡直流(DC)信号

的操作。图1表示了TMDS机

构的显示数据(像素)流,在这

个过程中,输入的八位数据被编

码为十位跃变最小化的、直流平

衡的字符。(前八位是编码的数

据,第九位用于识别数据是否采

用了XOR或XNOR逻辑编码,

第十位用于直流平衡。)

如图1所示,DVI允许两个

TMDS链,每一链由三路数据通

道组成,用于传送RGB信息,

最大带宽为165MHz,相当于每

秒165M个像素。

注:给定分辨率所需的带宽

是由监视器的刷新频率和消隐间隔(包括行、场消隐间隔的总和)决定的,可用下列公式计算:

分辨率×刷新频率×(1+消隐间隔)=像素/秒例如,显示SXGA的分辨率、60Hz刷新频率、5%的消隐间隔,则:

1280×1024×60×1.05=82,565,360

在这种情况下,显示SXGA所需带宽为83MHz,利用165MHz带宽的单链

TMDS就够了。

表1 回顾了标准PC显示器的分辨率。表2总结了DVI1.0规范允许的带宽。单链的带宽支持的平板显示分辨率超过1920×1080(60Hz),双链的带宽足以支持高达2048×1536的分辨率。两个链分享同一个时钟,因此具有相同的带宽。系统既允许单链连接,也允许双链连接,取决于监视器的性能。

即插即用

DVI规范支持DVI显示设备(DVI显示器和显示适配器)的热插拔。尽管目前微软公司的视窗操作系统还不支持DVI设备的热插拔,未来的视窗操作系

统将包含这一性能。

表1 显示分辨率

分辨率像素VGA 640×480 SVGA 800×600 XGA 1024×768 SXGA 1280×1024 UXGA 1600×1200 HDTV 1920×1080 QXGA 2048×153

6

表2 DVI1.0支持的分辨率

显示器支持的分辨率单链DVI 双链DVI 60Hz LCD 5%消隐间隔1920×1080(HDTV)2048×1536(QXGA)75Hz CRT 15%消隐间隔1280×1024(SXGA)2048×1536(WXGA)85Hz CRT 约15%消隐间隔102 8×1024(SXGA)1920×1028(HDTV)

DVI 也支持VESA的显示数据通道(Display Data Channel,DDC)和扩展的显示器识别数据(Extended Display Identification Data,EDID)规范。DDC是显示适配器和监视器间的标准通信通道;EDID是一种标准的数据格式,包含了监视器信息,比如厂商信息、监视器时序、最大图像尺寸和色彩性能。EDID信息存储于显示器中,并通过DDC通信。EDID和DDC允许系统、显示器和图形适配器间进行通信,以使系统能根据显示器的特性进行配置。

DVI连接器

DVI连接器有24针,能容纳两路TMDS链和VESA DDC及EDID。DVI

规范定义了两种连接器:

*DVI-Digital(DVI-

D),只支持数字式显示器

*DVI-Integrated(D

VI-I),支持数字式显示

器,并兼容模拟式显示器。

图2 所示的是DVI-D 和DVI-I插座,位于PC的背面。来自数字平板显示器的DVI-D接口的插谷地有12针或24针(单链DVI-I插头只用其中的12 针或24针)DVI-I接口可接受12针或24针DVI插头,或者一种新型的模拟插头,这种模拟插头带有4个附加的针及一个接地平面,以维持模拟RGB信号恒定的阻抗。

支持DVI标准的芯片组

目前提供支持个人电脑与数字显示器的DVI芯片组的厂商已有数家,比较领先的有Silicon、TI等。其中TI公司新推出了五种发射器和七种接收器芯片,都采用了TMDS核心技术,并且与DVI1.0相兼容。新元件提供了广泛的频率范围(25~165MHz),支持各种显示分辨率,从VGA到UXGA。DVI发射器可用于笔记本电脑、桌上型电脑以及全功能的个人电脑;DVI接收器可用于液

晶显示器、数字显示器以及数字投影仪。

DVI接口标准在液晶平面显示器中的应用

目前已有一些公司将DVI标准成功地应用于数字平板显示器中,如上海康泰克电子技术有限公司已将其应用于17英寸液晶显示器。该方案采用了Silico n Image公司的芯片SiI151作为DVI接收器,它将TMDS信号转换为双像素RGB数字信号,并送到图像缩放芯片处理,然后输出到液晶屏,系统框图如图3。该产品还具有DDC通道,能够即插即用。经试验,在DVI接口电缆长度为15

米时,图像清晰,无干扰和失真。

数字时钟显示电路图

数字时钟显示电路图 发布: | 作者: | 来源: liuxianping | 查看:3663次 | 用户关注: 数字时钟以时、分、秒显示时刻,共用六个数码管,本例采用共阳极数码管,用三极管控制电源的通断。工作原理:6个数码管的字型段输入端(a、b、c、d、e、f,g)全部并接到译码器相应的输出端。电源控制开关管分别接到3~6译码器的六个输出端。时钟六个计数器输出端均采用四位,分别为xl【、xt£、 m x?X2n x2z、x2h x2‘,?,x 、x x 、x 相应的每一位都接到4个6选1的选择器上,选择器输出共4位接到 数字时钟以时、分、秒显示时刻,共用六个数码管,本例采用共阳极数码管,用三极管控制电源的通断。 工作原理:6个数码管的字型段输入端(a、b、c、d、e、f,g)全部并接到译码器相应的输出端。 电源控制开关管分别接到3~6译码器的六个输出端。时钟六个计数器输出端均采用四位,分 别为xl【、xt£、 m x? X2n x2z、x2h x2‘,?,x 、x x 、x 相应的每一位都接到 4个6选1的选择器上,选择器输出共4位接到译码器的输入端(y 、y 、y 、Y )上。数码管及与之对应要显示的计数器,由Q]、、的编码(BCD码)进行循环选择例如,当Q 、 1

、均为?0 时,则3~6译码器的输出端1为高电平,第一个数码管加上电源,与此同 时,六选一选择器对应的输出分别为Y y— y Xs—x X —x 。这时译码器的输 出a,b,??,g虽然接到所有数码管上,但由于只有第一个数码管加上电源,故只有该管点 亮,显示第一个计数器的状态(x 、x 。、xX )。同理,当Q 、Q Q 为001”时,第二 个数码管点亮,显示第二个计数器的状态。依此类推,到第六个数码管断电后,接着第一个又开始点亮。如此循环显示,循环周期为6ms,给人的感觉,就相当所有数码管都一直在同时 加电,实际上每次只有一个,消耗的功率只有静态显示的六分之一。由于数码管电流很大,一 般小型管各段全亮时,大约要150mA~200mA 采用静电显示,此例中就要大于1A的 电流。这对长期工作的时钟很不经济,对于大型数码管会更加严重。此外,采用动态显示,数 码管的寿命与静态相比也相应延长Ⅳ 倍(本例为6倍)。

显示器接口知识全解

显示器接口知识全解 显示器接口是指显示器和主机之间的接口,通常有DVI、HDMI和15针D-SubVGA三种: DVI数字输入接口:DVIDigital Visual Interface,数字视频接口是近年来随着数字化显示设备的发展而发展起来的一种显示接口。普通的模拟RGB接口在显示过程中,首先 要在计算机的显卡中经过数字/模拟转换,将数字信号转换为模拟信号传输到显示设备中,而在数字化显示设备中,又要经模拟/数字转换将模拟信号转换成数字信号,然后显示。 在经过2次转换后,不可避免地造成了一些信息的丢失,对图像质量也有一定影响。而 DVI接口中,计算机直接以数字信号的方式将显示信息传送到显示设备中,避免了2次转 换过程,因此从理论上讲,采用DVI接口的显示设备的图像质量要更好。另外DVI接口实 现了真正的即插即用和热插拔,免除了在连接过程中需关闭计算机和显示设备的麻烦。现 在很多液晶显示器都采用该接口,CRT显示器使用DVI接口的比例比较少。需要说明的是,现在有些液晶显示器的DVI接口可以支持HDCP协议,为看有版权的高清电影电视打下基础。 HDMI数字输入接口:HDMI的英文全称是“High Definition Multimedia”,中文的 意思是高清晰度多媒体接口。HDMI接口可以提供高达5Gbps的数据传输带宽,可以传送无压缩的音频信号及高分辨率视频信号。同时无需在信号传送前进行数/模或者模/数转换, 可以保证最高质量的影音信号传送。应用HDMI的好处是:只需要一条HDMI线,便可以同 时传送影音信号,而不像现在需要多条线材来连接;同时,由于无线进行数/模或者模/数 转换,能取得更高的音频和视频传输质量。对消费者而言,HDMI技术不仅能提供清晰的画质,而且由于音频/视频采用同一电缆,大大简化了家庭影院系统的安装。HDMI接口支持HDCP协议,为看有版权的高清电影电视打下基础。 2002年的4月,日立、松下、飞利浦、Silicon Image、索尼、汤姆逊、东芝共7家 公司成立了HDMI组织开始制定新的专用于数字视频/音频传输标准。2002年岁末,高清晰数字多媒体接口High-definition Digital Multimedia InterfaceHDMI 1.0标准颁布, 到2021底已经颁布了1.3版本,主要变化在于近一步加大带宽,以便传输更高分辨率和 色深。HDMI在针脚上和DVI兼容,只是采用了不同的封装。与DVI相比,HDMI可以传输 数字音频信号,并增加了对HDCP的支持,同时提供了更好的DDC可选功能。HDMI支持 5Gbps的数据传输率,最远可传输15米,足以应付一个1080p的视频和一个8声道的音频信号。而因为一个1080p的视频和一个8声道的音频信号需求少于4GB/s,因此HDMI还有很大余量。这允许它可以用一个电缆分别连接DVD播放器,接收器和PRR。此外HDMI支持EDID、DDC2B,因此具有HDMI的设备具有“即插即用”的特点,信号源和显示设备之间会 自动进行“协商”,自动选择最合适的视频/音频格式。 15针D-SubVGA输入接口:也叫VGA接口,CRT彩显因为设计制造上的原因,只能接 受模拟信号输入,最基本的包含R\G\B\H\V分别为红、绿、蓝、行、场5个分量,不管以 何种类型的接口接入,其信号中至少包含以上这5个分量。大多数PC机显卡最普遍的接 口为D-15,即D形三排15针插口,其中有一些是无用的,连接使用的信号线上也是空缺

数字显示电路设计说明

物理与电子工程学院 《数字电路》课程设计报告书 设计题目:数字显示电路设计 专业:自动化 班级: 10级1班 学生:想 学号: 2110341106 指导教师:胡林 年月日

物理与电子工程学院课程设计任务书 专业:自动化班级: 10级2班

摘要 采用动态扫描的方式实现设计要求。动态扫描显示需要由两组信号来控制:一组是字段输出口输出的字形代码,用来控制显示的字形,称为段码;另一组是位输出口输出的控制信号,用来选择第几位数码管工作,称为位码。各位数码管的段线并联,段码的输出对各位数码管来说都是相同的。因此在同一时刻如果各位数码管的位选线都处于选通状态的话,6位数码管将显示相同的字符。若要各位数码管能够显示出与本位相应的字符,就必须采用扫描显示方式,即在某一时刻,只让某一位的位选线处于导通状态,而其它各位的位选线处于关闭状态。同时,段线上输出相应位要显示字符的字型码。这样在同一时刻,只有选通的那一位显示出字符,而其它各位则是熄灭的,如此循环下去,就可以使各位数码管显示出将要显示的字符。 MAX+PLUS II 是一个完全集成化的可编程逻辑环境,能满足用户各种各样的设计需要。它支持Altera公司不同结构的器件,可在多平台上运行。MAX+PLUS II 具有突出的灵活性和高效性,为设计者提供了多种可自由选择的设计方法和工具。 丰富的图形界面,可随时访问的在线帮助文档,使用户能够快速轻松地掌握和使用MAX+PLUSII软件。 MAX+PLUSII 具有的强大功能极大地减轻了设计者的负担,使设计者可以快速完成所需的设计,使用该软件,用户从开始设计逻辑电路到完成器件下载编程一般只需要数小时时间,其中设计的编译时间往往仅需数分钟。用于可在一个工作日完成实现设计项目的多次修改,直至最终设计定型。 MAX+PLUS II 开发系统众多突出的特点,使它深受广大用户的青睐。 关键词:数字显示电路;动态扫描;段码

电子产品一般常用接口详解

我们经常在家里的电视机、各种播放器上,视频会议产品和监控产品的编解码器的视频输入输出接口上看到很多视频接口,这些视频接口哪些是模拟接口、哪些是数字接口,哪些接口可以传输高清图像等,下面就做一个详细的介绍。目前最基本的视频接口是复合视频接口、S-vidio接口;另外常见的还有色差接口、VGA接口、接口、HDMI接口、SDI接口。 1、复合视频接口 接口图: 说明:复合视频接口也叫A V接口或者Video接口,是目前最普遍的一种视频接口,几乎所有的电视机、影碟机类产品都有这个接口。 它是音频、视频分离的视频接口,一般由三个独立的RCA插头(又叫梅花接口、RCA 接口)组成的,其中的V接口连接混合视频信号,为黄色插口;L接口连接左声道声音信号,为白色插口;R接口连接右声道声音信号,为红色插口。 评价: 它是一种混合视频信号,没有经过RF射频信号调制、放大、检波、解调等过程,信号保真度相对较好。图像品质影响受使用的线材影响大,分辨率一般可达350-450线,不过由于它是模拟接口,用于数字显示设备时,需要一个模拟信号转数字信号的过程,会损失不少信噪比,所以一般数字显示设备不建议使用。 2、S-Video接口 接口图: 说明:S接口也是非常常见的

接口,其全称是Separate Video,也称为SUPER VIDEO。S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE(分离)”,它将亮度和色度分离输出,避免了混合视讯讯号输出时亮度和色度的相互干扰。S接口实际上是一种五芯接口,由两路视亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。 评价: 同AV接口相比,由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度。但S-Video仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb和Cr进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现)。而且由于Cr Cb的混合导致色度信号的带宽也有一定的限制,所以S-Video虽然已经比较优秀,但离完美还相去甚远。S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。 3、YPbPr/YCbCr色差接口 接口图: 说明: 色差接口是在S接口的基础上,把色度(C)信号里的蓝色差(b)、红色差(r)分开发送,其分辨率可达到600线以上。它通常采用YPbPr和YCbCr两种标识,前者表示逐行扫描色差输出,后者表示隔行扫描色差输出。现在很多电视类产品都是靠色差输入来提高输入讯号品质,而且透过色差接口,可以输入多种等级讯号,从最基本的480i到倍频扫描的480p,甚至720p、1080i等等,都是要通过色差输入才有办法将信号传送到电视当中。 评价: 由电视信号关系可知,我们只需知道Y、Cr、Cb的值就能够得到G(绿色)的值,所以在视频输出和颜色处理过程中就统一忽略绿色差Cg而只保留Y Cr Cb,这便是色差输出的基本定义。作为S-Video的进阶产品,色差输出将S-Video传输的色度信号C分解为色差Cr和Cb,这样就避免了两路色差混合译码并再次分离的过程,也保持了色度信道的最大带宽,只需要经过反矩阵译码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号信道,避免了因繁琐的传输过程所带来的影像失真,所以色差输出的接口方式是目前最好模拟视频输出接口之一。 4、VGA接口

浅谈数字音频接口

浅谈数字音频接口 作者:Purer (1)关于数字音频接口的基本知识 “数字音频接口”是用来定义两个数字音频设备之间的数 字接口协议的界标准格式,它分为家用的.专业的,电脑的三种格式: ①家用的标准:S/PDIF(索尼/飞利浦数字接口格式),EIAJ CP-340 IEC-958 同轴或光缆,属不平衡式。其标准的输出电平是0.5Vpp(发送器负载75Ω),输入和输出阻抗为 75Ω(0.7-3MHz频宽)。常用的有光纤.RCA和BNC。我们常见的是RCA插头作同轴输出,但是用RCA作同轴输出是个错误的做法,正确的做法是用BNC作同轴输出,因为BNC头的阻抗是75Ω,刚刚好适合S/PDIF的格式标准,但由于历史的原因,

在一般的家用机上用的是RCA作同轴输出。 ②专业的标准:AES/EBU(美国音频工程协会/欧洲广播联盟数字格式),AES3-1992,平衡XLR电缆,属平衡式结构。输出电压是2.7Vpp(发送器负载110Ω),输入和输出阻抗为110Ω(0.1-6MHz频宽)。 ③电脑的标准:AT﹠T(美国电话电报公司)。 (2)关于各种接口的优点与缺点 从单纯的技术的角度来说,光纤电缆是导体传输速度最快的,是一个极好的数据传输的接线,但是由于它需要光纤发射口和接收口,问题就是出在这里,光纤发射口和接收口的光电转换需要用光电二极管,由于光纤和光电二极管不可能有紧密的接触,从而产生数字抖动(Jitter)类的失真而这个失真是叠加的,因它有两个口(发射口和接收口)。再加上在光电转换过程中的失真,使它是几种数字电缆中最差的。但奇怪的是日本的机十分喜欢用光纤电缆,可能生产成本比同轴便宜。 同轴电缆是欧洲机喜欢用的,凡是有数字输出的都有同

数字显示电路设计讲课教案

数字显示电路设计

物理与电子工程学院 《数字电路》课程设计报告书 设计题目:数字显示电路设计 专业:自动化 班级: 10级1班 学生姓名:李想 学号: 2110341106 指导教师:胡林 年月日

物理与电子工程学院课程设计任务书 专业:自动化班级: 10级2班

摘要 采用动态扫描的方式实现设计要求。动态扫描显示需要由两组信号来控制:一组是字段输出口输出的字形代码,用来控制显示的字形,称为段码;另一组是位输出口输出的控制信号,用来选择第几位数码管工作,称为位码。各位数码管的段线并联,段码的输出对各位数码管来说都是相同的。因此在同一时刻如果各位数码管的位选线都处于选通状态的话,6位数码管将显示相同的字符。若要各位数码管能够显示出与本位相应的字符,就必须采用扫描显示方式,即在某一时刻,只让某一位的位选线处于导通状态,而其它各位的位选线处于关闭状态。同时,段线上输出相应位要显示字符的字型码。这样在同一时刻,只有选通的那一位显示出字符,而其它各位则是熄灭的,如此循环下去,就可以使各位数码管显示出将要显示的字符。 MAX+PLUS II 是一个完全集成化的可编程逻辑环境,能满足用户各种各样的设计需要。它支持Altera公司不同结构的器件,可在多平台上运行。MAX+PLUS II 具有突出的灵活性和高效性,为设计者提供了多种可自由选择的设计方法和工具。 丰富的图形界面,可随时访问的在线帮助文档,使用户能够快速轻松地掌握和使用MAX+PLUSII软件。 MAX+PLUSII 具有的强大功能极大地减轻了设计者的负担,使设计者可以快速完成所需的设计,使用该软件,用户从开始设计逻辑电路到完成器件下载编程一般只需要数小时时间,其中设计的编译时间往往仅需数分钟。用于可在一个工作日内完成实现设计项目的多次修改,直至最终设计定型。MAX+PLUS II 开发系统众多突出的特点,使它深受广大用户的青睐。 关键词:数字显示电路;动态扫描;段码

各种显示接口的介绍

各种显示接口的介绍 中国投影网行业资讯2009-9-10 9:47:10编辑:晨阳[ 大中小] TV接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCA)可以算是TV的改进型接口,外观方面有了很大不同。它传输的是复合视频信号,也称做复合视频信号(CVBS)接口。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。 在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,也就是Y、C分离传输,所以我们又称它为“二分量视频接口”。与AV 接口相比,S端子不再对色度与亮度混合传输,这样就避免了设备内信号干扰而产生的图像失真,能够有效的提高画质的清晰程度。 但S-Video仍要将色度与亮度两路信号混合为一路色度信号进行成像,所以说仍然存在着画质损失的情况。虽然S端子不是最好的,不过一般情况下AV信号为640线,S端子可达到1024线,但是这需要由片源来决定。一般来说这种接口在DVD、PS2、XBOX、NGC 等视频和游戏设备上广泛使用。 色差分量接口 对于色差来说,目前可能应用并不算很普遍,主要的原因是一些CRT电视机并没有提供色差分量的输入接口。简单的说,相比过去的AV和S端子,色差是将信号分为红、绿、

数字日历电路的设计

课程设计报告 课程名称:数字日历电路的设计 专业/班级:通信工程 姓名:王平 学号:0930******** 指导教师:栾华东

目的与要求 (1)设计基准脉冲电路产生的信号; (2)能进行年、月、日的计时以及独立的时间显示电路; (3)能进行星期的显示; (4)快速校时; (5)充分结合和利用所学的内容来完成; (6)选作内容 ○1可以进行某年某月某日的备忘预设置,到达备忘日期后,该日期可以以4Hz的频率闪动; ○2可以进行某年某月某日的备忘预设置,到达备忘日期后,报警灯闪动。 原理及方案 (1)多谐振荡器电路:这里利用了555定时器和RC组成的多谐振荡器,产生1kHz的信号。 (2)分频器电路:利用三片74LS90集成芯片构成分频器将1kHz信号分频得到1Hz的秒脉冲信号,同时再利用一片74LS90芯片得到2Hz的校时信号。 (3)校时电路:利用一个开关和或门逻辑元器件组合而成。可以分别对时间和年、月、日等进行校时。 (4)译码显示器:采用了共阴极的七段数字显示器,和译码器74LS48集成芯片组合成。 (5)时、分、秒计数电路:分别用两片74LS90集成芯片组成24进制、60进制、60进制作为时间的计数,均从0开始计数。

(6)星期计数电路:由74LS161构成的,从1开始计数到6,然后跳到8(星期日),完成一个星期的计数。 (7)年、月、日计数电路:年份的计数用4片74LS90构成104进制计数,月份由两片74LS90构成12进制并从1开始计数,而日也用74ls90构成经过数据选择器74LS151根据月份进行大月31进制、小月30进制、二月29进制的计数。 (8)备忘录预设置电路:由计数器、译码器和显示器构成可以对某日某月的设置。 (9)报警灯闪动系统:通过比较器74LS85对预设置和当前日期比较,相等时输出信号使灯闪动。 原理方框图如下:

Dante数字音频传输技术

浅谈Dante数字音频传输技术 1.概述 Dante数字音频传输技术是一种基于3层的IP网络技术,为点对点的音频连接提供了一种低延时、高精度和低成本的解决方案[4][5]。Dante技术可以在以太网(100M或者1000M)上传送高精度时钟信号以及专业音频信号并可以进行复杂的路由。与以往传统的音频传输技术相比,它继承了CobraNet与EtherSound所有的优点,如无压缩的数字音频信号,保证了良好的音质效果;解决了传统音频传输中繁杂的布线问题,降低了成本;适应现有网络,无需做特殊配置;网络中的音频信号,都以“标签”的形式进行标注等。同时具备自身独特的优势: 1)更小的延时。在100M网络带宽,总传输音频通道为3个时,延时仅为34μs。Dante系统可自动调节可用的网络带宽,以便将延时时间降低到最小[7]。 2)采用了IEEE1588精密时钟协议进行时钟同步。 3)采用了zeroconf(Zero Configuration Networking)[6][7]协议,利用自动配置服务器自动检查接口设备、标识标签以及区分IP地址等工作,无需启动高层级别的DNS或者DHCP服务,同时节省了复杂的手工网络配置。 4)网络的高兼容特性。Dante技术可以允许音频信号和控制数据以及其他不相干的数据流共享在同一个网络中而不受干扰,用户可以最大限度的利用现有网络而无需为音频系统建立专网。如,在Dante网络中可以加入现有的普通TCP/IP设备(PC机等),或者一些音频处理软件等。 5)自愈系统。为了避免意外导致的音频传输中断,Dante系统可以设定多重自我修复机制,例如时钟丢失、网络故障等。 6)音频通道的传输模式可以是单播或是多播。Dante技术可以通过IGMP(Internet Group Message Protocol)进行管理,可根据接收点的需要过滤或屏蔽广播音频通道,这使得多播音频的路由变得可控。 这些独特的优势,将成为Dante技术在专业音频领域及其他工程领域的奠基石。 2.Dante音频传输技术 目前的IT产业中有很多网络技术可供选用,但以太网仍然是最为稳定可靠和广泛使用的协议。所以Audinate将Dante运行于以太网上也成了合理的、迎合市场的选择。Dante 音频传输技术可以任由音频信号在以太网中使用TCP/IP方式任意传送,而且在这个过程中保持了信号的精确还原。 3.1基本原理 采用Audinate公司新推出的Dante-MY16-AUD卡[8][9],将其插到语音服务器主机上,并与交换机相连,如下图所示,即可实现基于Dante技术的数字音频传输。真正实现了音频网络达到“即插即用”的功能,方便那些不了解任何网络技术的人。

数字显示电路

数字电子技术综合实验一 数字显示电路 组员: 目录 ●一、实验目的……………………………………………………、 3 ●二、设计要求……………………………………………、、4 ●三、各模块设计方案……………………………………、5 ●四、电路的焊接成型及工作检测………………、、14 ●五、实验感想及问题………………………、、…………、14 ●六、元件清单及制作费用………………………………………………、、21 一、实验目的 数字显示电路实验将传统的4个分离的基本实验,即基本门电路实验,编码器、显示译码器、7段显示器实验,加法器实验与比较器实验综合为‘—个完整的设计型的组合电路综合实验。通过本实验,要求我们熟悉各种常用MSI组合逻辑电路的功能与使用方法,学会组装与调试各种MSI组合逻辑电路,掌握多片MSI、SSI组合逻辑电路的级联、功能扩展及综合设计技术,使我们具有数字系统外围电路、接口电路方面的综合设计能力。 本次实验的目的为: 1、掌握基本门电路的应用,了解用简单门电路实现控制逻辑。 2、掌握编码、译码与显示电路的设计方法。

3、掌握用全加器、比较器设计电路的方法。 二、设计要求 操作面板左侧有16个按键,编号为0到15,另正面板右侧配2个共阳7段显示器,操作面板图如图1所示。 图1:显示电路面板示意图 设计一个电路:当按下小于10的按键后,右侧低位7段显示器显示数字,左侧7段显示器显示0;当按下大于9的按键后,右侧低位7段显示器显示个位数字,左侧7段显示器显示l。若同时按下几个按键,优先级别的顺序就是15到0。现配备1个4位二进制加法器74LS283,2个8线-3线优先编码器74LSl48,2个四2输入与非门74LS00,一个非门7404,2个显示译码器74LS47。 三、各模块设计方案 该数字显示电路为组合逻辑电路,可分为编码、译码与显示电路以及基本门电路、全加器电路。实验采用的主要器件有1个4位二进制加法器74LS283,2个8线-3线优先编码器74LSl48,2个四2输入与

电脑显示器接口介绍

您的电脑显卡与显示器连接接口选择正确吗? 电脑处理信息的结果,最后都要输出到显示器上,显示出来给我们看。显卡的输出接口就是电脑与显示器之间的桥梁,它负责向显示器输出相应的图像信号。多数显卡都有不止一个接口,选择哪个接口更好,是我们需要了解的。 下面的附图1是我的老电脑的显卡接口,附图2是我的新电脑的显卡接口。这两个附图包括了现在各种显卡的主要接口。 附图1 附图2 现在我们看到的各种显卡上常用的输出接口有两种:VGA和DVI,我们要根据自己显卡和显示器接口的情况,选择合适的接口连接,以保证显示质量。下面我对这两种接口分别做以介绍,并说明如何选择合适的接口。 VGA接口:早年使用的的CRT显示器由于其工作原理所决定,只能接收模

拟信号,这就要求显卡能够输出模拟信号。VGA接口就是显卡上输出模拟信号的接口,也叫D-Sub接口。在2000年以前,显卡与显示器连接的主要接口只有VGA一种。现在应用越来越广的LCD显示器可以接收而且应该接收数字信号,因而不必再设置VGA接口了。但实际情况是现在市面上仍然有一些低端产品为了能与早期的VGA接口显卡相匹配,仍然采用VGA接口,甚至有的只有VGA接口。为了适应这部分显示器的需要,所以现在多数中低端显卡上仍然带有VGA 接口。 那么LCD显示器使用VGA接口和电脑连接有什么问题呢?我们知道,电脑处理的是数字信号,其输出的也是数字信号。为了输出模拟信号,以适应只有VGA接口显示器的需要,电脑输出的数字图像信号先要在显卡的数字/模拟 (D/A)转换器里转变为R、G、B三基色信号和行、场同步信号,然后这些模拟信号再通过连接线传输到显示器中。对于模拟显示设备,如CRT显示器,模拟信号可以直接送到相应的处理电路里,驱动控制显像管生成图像。而LCD显示器是需要靠数字信号来控制显示图像的,所以显卡输出的模拟信号还要在LCD 显示器的模拟/数字(A/D)转换器里转换为数字信号。图像信号在经过D/A、A/D两次转换后,不可避免地会引起信号的衰减。而模拟信号在处理和传输过程中要比数字信号易受干扰,会产生噪声(这也是造成模拟电视和数字电视显示质量不同的主要原因),这些都会造成图像细节的损失,导致图像出现失真甚至显示错误。VGA接口用于连接CRT显示器是无法改变的,只能如此。但用于连接LCD显示器,由于转换过程中的图像信号损失会使显示效果有所下降,所以是不甚合适的。 DVI接口:1999年,Silicon Image、Intel、Compaq、IBM、HP、NEC、Fujitsu等IT业巨头联合推出了这一数字接口标准。DVI接口有下面两个主要的优点: 首先是速度快。 DVI传输的是数字信号,数字图像信息不需要经过任何转换,直接传送到LCD显示器上,减少了数字→模拟→数字的转换过程,节省了时间,因此它的传输速度更快。 其次是画面清晰。由于使用DVI接口连接电脑和显示器无需进行数字→模拟→数字的转换,避免了信号的衰减。而且使用DVI接口进行数据传输,信号不易受干扰,这些都使图像的清晰度和细节表现力都得到了提高,使显示的色彩更准确。 根据以上分析可知,使用LCD显示器最好不要用VGA接口和电脑相连,而要使用DVI接口和电脑相连。当然,这需要您的LCD显示器有DVI接口,否则,即使显卡上有DVI接口,也没有办法连接。我在网上查了一下,现在的显卡(不管高中低)基本上都有DVI接口。相反倒是许多低端LCD显示器没有DVI接口,各位摄友选择LCD显示器时要注意了。当然,使用DVI数字接口还需要用专门的连接线,一般情况下,有DVI接口的LCD显示器都会配有此连接线。我的老显示器是2006年买的,当时市售的多数普通LCD显示器还没有DVI接口的,我的这款显示器是有DVI接口的,并配有相应的连接线。所以从那时开始,我就使用DVI接口连接电脑和显示器了。 在显卡上,我们还会看到其他一些接口,如在两张附图中所看到的S端子、HDMI接口和DP接口,这里也简单介绍一下。 S端子输出的也是模拟图像信号,主要用于连接电脑与电视机。早年的显示器都比较小,显示效果也比电视差,所以在显卡上设置了这种接口。早期的

设计数字显示电路

大连理工大学城市学院 数字电路与系统课程设计设计题目:设计数字显示电路 学院:电子与自动化学 专业: 学生: 同组人: 指导教师: 完成日期: 2012年3

目录第一章设计任务 1.1项目名称 1.2项目设计说明 1.2.1设计任务和要求 1.2.2进度安排 1.3项目总体功能模块图 第二章需求分析 2.1问题基本描述 2.2系统模块分解 2.3系统各模块功能的基本要求 第三章设计原理 3.1 设计原理 3.2 MAXPLUSII介绍 第四章系统功能模块设计 4.1计数模块 4.1.1计数模块流程图 4.1.2输入输出引脚及其功能说明 4.1.3程序代码实现 4.2数据选择模块 4.2.1数据选择模块流程图 4.2.2输入输出引脚及其功能说明 4.2.3程序代码实现

4.3七段译码显示模块 4.3.1七段译码显示模块流程图 4.3.2输入输出引脚及其功能说明 4.3.3程序代码实现 第五章调试并分析结果 5.1输入说明 5.2预计输出 5.3测试结果记录 5.4测试结果分析 第六章结论 6.1心得体会 6.2参考文献

第一章设计任务 1.1 项目名称:设计数字显示电路 本项目的主要内容是设计并实现8位数码管轮流显示8个数字。该电路将所学的数字电路与系统大部分知识和VHDL语言结合。 1.2项目设计说明 1.2.1设计任务和要求 A、用CPLD设计一个八位数码管显示电路; B、8位数码管轮流显示8个数字,选择合适的时钟脉冲频率实现8个数码 管同时被点亮的视觉效果。 1.2.2进度安排 第一周至第二周每周二2课时,共10课时。具体安排为:第一周至第三周 6课时自行设计、第四周实验结果验收、第五周交报告并进行答辩。 1.3项目总体功能模块图

显示接口

目前主流接口有分模拟/数字,视频/影音,物理上分RF射频信号相关,D-Sub相关,Din相关,DVI相关,其他(比如DP基于PCIe,HDBaseT基于RJ45) 模拟方面协议主要有D-Sub,Din两种 Din支持单独的音频和单独的视频 Monophonic 5/180° Stereophonic Monophonic Stereophonic 基本是理想的线路输出/输入双通道,3.5mm接口也能做到线路输出(Line out)和线路输入(Line in),不过需要两个接口,共6根线(多了一个地线),Din-5直接解决了这个问题。此外Din的音频协议还支持部分卡拉OK,MIDI的输入 Mini-Din协议就和视频有关,mini-Din有S-video色差端子,PS/2键鼠接口等 色差端子:(也可以双向传播) PS/2端子

作为对比,S端子是基于RCA端子(AV接口)的,PS/2可以看作I2C的改进版 RCA端子有3个独立端子,视频,左声道,右声道,这里的视频信号是Y/C混合信号 然后就诞生了YPBPR/YCBCR,这个也是三个独立端子,不过都是视频信号,分别是Y(亮度),PB/CB(),PR/CR(蓝色色差信号),PB/CB(红色色差信号),P和C的差别是P为模拟信号,C为数字信号 I2C则是内部的数据总线,只有两条,SDA,SCL,即数据,时钟,内部的电源和地是直接提供的,不需要总线接口。 上面说了Din和相关的接口,现在说D-subminiature,大名鼎鼎的VGA接口,不过这个不只限于VGA,D-subminiature还是串口协议(9pin COM,URAT),和并口协议(25pin LPT),专业音频的接口,就算在视频领域,D-sub也不只有VGA一种型号。 Normal density High density Double density Name Pin layout Name Pin layout Name Pin layout DA-15 8-7 DA-26 9-9-8 DA-31 10-11-10 DB-25 13-12 DB-44 15-15-14 DB-52 17-18-17 DC-37 19-18 DC-62 21-21-20 DC-79 26-27-26 DD-50 17-16-17 DD-78 20-19-20-19 DD-100 26-25-24-25 DE-09 5-4 DE-15 5-5-5 DE-19 6-7-6 DB-19 10-9 DF-104 21-21-21-21-20 音频领域里有DA15,DB25,HD26,DD-50AES,DD-50等多种接口,不过这些接口都是数字接口走的是差分信号。 模拟视频领域里还有DB13W3这种接口,这种接口还有Sun,SGI/DCC两种协议 下面主要介绍Sun

音频接口的类型及介绍

音频接口的类型及介绍 音频接口的类型及介绍(共5类) 除了高清视频带来的不仅仅是视觉上的冲击,音频方面质量也有很大提高,能给大家带来更逼真的现场效果。目前主流的音频接口有如下几种: RCA模拟音频 RCA接头就是常说的莲花头,利用RCA线缆传输模拟信号是目前最普遍的音频连接方式。每一根RCA线缆负责传输一个声道的音频信号,所以立体声信号,需要使用一对线缆。对于多声道系统,就要根据实际的声道数量配以相同数量的线缆。立体声RCA音频接口,一般将右声道用红色标注,左声道则用蓝色或者白色标注。 S/PDIF S/PDIF(Sony/Philips Digital Interface,索尼和飞利浦数字接口)是由SONY公司与PHILIPS公司联合制定的一种数字音频输出接口。该接口广泛应用在CD播放机、声卡及家用电器等设备上,能改善CD的音质,给我们更纯正的听觉效果。该接口传输的是数字信号,所以不会像模拟信号那样受到干扰而降低音频质量。需要注意的是,S/PDIF接口是一种标准,同轴数字接口和光线接口都属于S/PDIF接口的范畴。 数字同轴 数字同轴(Digital Coaxial)是利用S/PDIF接口输出数字音频的接口。同轴线缆有两个同心导体,导体和屏蔽层共用同一轴心。同轴线缆是由绝缘材料隔离的铜线导体,阻抗为75欧姆,在里层绝缘材料的外部是另一层环形导体及其绝缘体,整个电缆由聚氯乙烯或特氟纶材料的护套包住。同轴电缆的优点是阻抗稳定,传输带宽高,保证了音频的质量。虽然同轴数字线缆的标准接头为BNC接头,但市面上的同轴数字线材多采用RCA接头。 光纤 光纤(Optical)以光脉冲的形式来传输数字信号,其材质以玻璃或有机玻璃为主。光纤同样采用S /PDIF接口输出,其是带宽高,信号衰减小,常常用于连接DVD播放器和AV功放,支持PCM数字音频信号、Dolby以及DTS音频信号。 XLR接口 与RCA模拟音频线缆直接传输声音的方式完全不同,平衡模拟音频(Balanced Analog Audio)接口使用两个通道分别传送信号相同而相位相反的信号。接收端设备将这两组信号相减,干扰信号就被抵消掉,从而获得高质量的模拟信号。平衡模拟音频通常采用XLR接口和大三芯接口。XLR俗称卡侬头,有三针插头和锁定装置组成。由于采用了锁定装置,XLR连接相当牢靠。大三芯接口则采用直径为毫米的插头,

数字加法显示电路设计报告

数字电路与自动化课程设计报告设计题目:数字加法显示电路 姓名:XXX

班级:XXXXXX 学号:XXXXXX 小组成员:XXX 设计时间:XXXX-XX-XX 目录 一、设计目的 二、设计要求 三、方案论证与比较 四、设计原理和电路图

五、硬件制作与调试 六、设计小结 七、参考书目 数字加法显示电路 一、设计目的 通过设计一个四位数字加法显示电路,充分了解与掌握组合逻辑电路的设计过程。以及达到一下目的: 1、掌握电路板的初级焊接技术; 2、掌握组合逻辑电路的基本设计过程与方法; 3、了解基本电子芯片的使用; 4、实现组合逻辑电路设计的理论与实际相结合; 5、进一步学习电路的调试与焊接; 二、设计要求

用加法器,比较器,译码器与七段数码管设计一个四位数字加法显示电路。 要求:使用加法器输入两个两位二进制之和,通过与比较器比较,实现电子屏幕只能够显示小于10的数字,大于10的不显示。三、方案论证与比较 方案一、在电路中拨动开关输入两数与规定的数10((1010)2)时,这时只经过加法器(74ls283),比较器(74ls85),译码器(74ls48)后直接输出该数的十进制并在数码管上输出。例如输入0010和0011则输出数码管输出5。 方案二、当电路中由拨动开关输入两个二进制数经加法器相加后与比较器比较,大于或等于10((1010)2)小于16时非门、与门而控制译码器使译码器u工作而不输出。例如0111+0111=14》10而不输出。 当电路中由拨动开关输入两个二进制数经加法器相加后大于16时,加法器将会有进位,此时非门控制译码器的使能端使译码器不工作而不输出。例如输入1100+1100=24》16,此时有进位而不输出。 四、设计原理和电路图

数字音频接口详解

前言: 上一篇接口介绍文章我们已经整理出来呈现给大家了(《你有几个不认识?模拟音频接口详解》),今天我们为大家介绍常见的数字信号接口。 数字接口的优势在于它“说一是一”,在传输中有较强的抗干扰能力,即便出现误码,一些编码方式也能够对其进行修正,因此信号的可靠性对比模拟信号有着不可比拟的优势。主流数字接口: 什么是S/PDIF? S/PDIF(Sony/Philips Digital Interface,索尼和飞利浦数字接口)是由SONY公司与PHILIPS公司联合制定的一种数字音频输出接口。该接口广泛应用在CD播放机、声卡及家用电器等设备上,能改善CD的音质,给我们更纯正的听觉效果。该接口传输的是数字信号,所以不会像模拟信号那样受到干扰而降低音频质量。需要注意的是,S/PDIF接口是一种标准,同轴数字接口和光线接口都属于S/PDIF接口的范畴。 傲王SQ210W的两声道模拟输出和光纤+同轴输出 数字同轴

左为RCA同轴数字接口;右边为BNC接口 同轴音频接口(Coaxial),标准为SPDIF(Sony / Philips Digital InterFace),是由索尼公司与飞利浦公司联合制定的,在视听器材的背板上有Coaxial作标识,主要是提供数字音频信号的传输。它的接头分为 RCA和BNC两种。同轴线缆有两个同心导体,导体和屏蔽层共用同一轴心。同轴线缆是由绝缘材料隔离的铜线导体,阻抗为75欧姆,在里层绝缘材料的外部是另一层环形导体及其绝缘体,整个电缆由聚氯乙烯或特氟纶材料的护套包住。

BNC接口规格图 其优点是阻抗恒定,传输频带较宽,优质的同轴电缆频宽可达几百兆赫。同轴数字传输线标准接头采用BNC头,其阻抗是75Ω,与75Ω的同轴电缆配合,可保证阻抗恒定,确保信号传输正确。传输带宽高,保证了音频的质量。虽然同轴数字线缆的标准接头为BNC接头,但市面上的同轴数字线材多采用RCA接头。 光纤

数字显示电路课程设计

数字电路与自动化课程设计报告设计题目:数字加法显示器 姓名:张何桂 班级:10应电(一)班 学号:1006010147 小组成员:张何桂、黄道平 设计时间:2011/11/8

一、设计目的 1 掌握组合逻辑电路的基本设计过程与方法。 2 了解基本电子芯片的使用及结构。 3 掌握电路板的初级焊接技术。 4 实现掌握组合逻辑电路的基本设计过程与方法;组合逻辑电路设计的理论与实际相结合。 5 掌握逻辑门的工作和使用方法。 6 为以后电路设计打下基础。 二、设计要求 用加法器,比较器,译码器与七段数码管设计一个四位数字加法显示电路。要求功能:使用加法器输入两个四位二进制的和,通过与比较器比较,同时用逻辑门把加法器的共同控制数码显示器,实现电子屏幕只能够显示小于10的数字。 三、方案论证与比较 1方案论证 方案1如下 图1方案1 如图1,八个开关通过控制高低电平信号,输入到全加器,输出的信号传输

的进位输出端输出的高低电平通过非门和与非门输出的高低电平来控制7段译码显示器的共阴极高低电平,进而来控制数字大于10的和小于10的亮与不亮。方案2如下 图2方案2 如图2,八个开关通过控制高低电平信号,输入到全加器,输出的信号传输给比较器,跟十进制的数字10比较,然后输出结果为高低电平,同时和全加器的进位输出端输出的高低电平通过译码器4511的灭灯端BI高低电平来控制7段译码的显示,进而来控制数字大于10的和小于10的亮与不亮。 方案3如 图3方案3 如图3,八个开关通过控制高低电平信号,输入到全加器,输出的信号传输

进位输出端输出的高低电平通过或门输出的高低电平来控制7段译码显示器的共阴极高低电平,进而来控制数字大于9的和小于9的亮与不亮。 2方案比较 由于方案1和方案2多了一个逻辑门,增加了电路的线路和复杂程度,这样会使焊接过程中更容易出错,不利于检测单个元器件是否能够正常运行。而方案三中,少了一个逻辑门电路,便于电路板的布局、焊接与控制,同时也更容易在制作完成后的调试,故选择方案3。 四、设计原理和电路图 1 设计原理 74283并行进位加法器输入信号为两个四位二进制的高低电平A4~A1和B4~B1。当输入为A4为高电平,其A3~A1为低电平,B4~B1为低电平(即十进制的8+0),这时通过加法器的四位并行全加器相加输出为结果sum4为高电平,sum3~sum1为低电平(即1000)。然后通过7485比较器的输入端为A3~A0信号输入1000与B3~B0输入信号1001比较为8<9,则比较器的输出端OAGTB为低电平,同时74283加法器没有进位,输出端也为低电位,通过7432逻辑或门输出为低电位传输给数码显示器的共阴极,与此同时4511译码器把加法器的输出结果进行译码为OA~OG为高电位给数码显示器,这时的译码器为正常译码,使其数码管的a~g段亮,为数字8。当输入信号为1000+0010(即十进制数字8+2),通过加法器,比较器和译码器与8+0的原理一样,这时的译码器也为正常译码,但比较器中10>9,则比较器的输出为高电平,信号传输给7432逻辑或门输出端输出为高电平来控制数码显示器的公共端为高电平,会使其数码显示器灭灯。当输入信号为数字十进制的8+8时,加法器、比较器和译码器工作原理与上相同,这时的译码器不正常译码,因为这时相加的结果为16进了一位,则全加器的进位输出端C4为高电位,比较器的结果为16>9,即比较器的输出端也为高电位,通过7432逻辑或门输出结果为高电平,这时的数码显示器的公共端为高电位,因为4511是共阴极的译码显示器,则数码显示器灭灯。 2 电路图如图3 五、硬件制作与调试

浅析数字音频的原理和理论应用解读

浅析数字音频的原理和理论应用 王庆华 滨州市人民广播电台山东省滨州市256600 摘要 数字音频是随着数字信号处理技术、计算机技术、多媒体技术的发展而形成的一种全新的声音处理手段。在现代生活中可以说普遍存在,随处可见,这种技术带给我们带来了听觉上的享受,作为工作者更应该掌握它的基本原理和应用,发展的看待这种技术,能够更好地驾驭它并在其基础上有所发展。 关键词:采样率码率采样量化编码 A/D数模转化 D/A模数转化 数字音频是一种利用数字化手段对声音进行录制、存储、编辑、压缩或播放的技术。而所谓的数字化就是把计算机数据的存储是以0、1的形式存取的,那么数字音频就是首先将音频文件转化,接着再将这些电平信号转化成二进制数据保存,播放的时候就把这些数据转换为模拟的电平信号再送到喇叭播出,数字声音和一般磁带、广播、电视中的声音就存储播放方式而言有着本质区别。相比而言,它具有存储方便、存储成本低廉、存储和传输的过程中没有声音的失真、编辑和处理非常方便等特点。 一、模拟音频技术 人耳是声音的主要感觉器官,人们从自然界中获得的声音信号和通过传声器得到的声音电信号等在时间和幅度上都是连续变化的,时间上连续,而且幅度随时间连续变化的信号称为模拟信号(例如声波就是模拟信号,音响系统中传输的电流,电压信号也是模拟信号),记录和重放信号的音源即使模拟音源,例如磁带/录音座、LP/LP电唱机等;唱片(LP)表面上起伏跌宕(细小到你很难看见,而且并非是表面纹路形成的沟痕的底部,事实上这些跌宕起伏是存在于纹路的两侧)或者是磁带上的磁粉引起的磁场强度来表示音箱上振膜的即时位置,比如说,当唱片表面在某一时刻比前一时刻的纹路呈下降趋势时,音箱上的振膜就会向里

相关主题
文本预览
相关文档 最新文档