当前位置:文档之家› LED发光二极管内部结构详解

LED发光二极管内部结构详解

LED发光二极管内部结构详解

LED发光二极管内部结构详解

LED Lamp(led 灯)主要由支架、银胶、晶片、金线、环氧树脂五种物料所

组成。一、支架:1)、支架的作用:用来导电和支撑2)、支架的组成:支架由

支架素材经过电镀而形成,由里到外是素材、铜、镍、铜、银这五层所组成。3)、支架的种类:带杯支架做聚光型,平头支架做大角度散光型的

Lamp。A、2002 杯/平头:此种支架一般做对角度、亮度要求不是很高的材料,

其Pin 长比其他支架要短10mm 左右。Pin 间距为2.28mmB、2003 杯/平头:一般用来做φ5以上的Lamp,外露pin 长为+29mm、-27mm。Pin 间距为

2.54mm。C、2004 杯/平头:用来做φ3左右的Lamp,Pin 长及间距同2003 支架。

D、2004LD/DD:用来做蓝、白、纯绿、紫色的Lamp,可焊双线,杯较深。

E、2006:两极均为平头型,用来做闪烁Lamp,固IC,焊多条线。

F、2009:

用来做双色的Lamp,杯内可固两颗晶片,三支pin 脚控制极性。G、2009-

8/3009:用来做三色的Lamp,杯内可固三颗晶片,四支pin 脚。二、银胶银胶

的作用:固定晶片和导电的作用。银胶的主要成份:银粉占75-

80%、EPOXY(环氧树脂)占10-15%、添加剂占5-10%。银胶的使用:冷藏,使用前需解冻并充分搅拌均匀,因银胶放置长时间后,银粉会沉淀,如不搅拌

均匀将会影响银胶的使用性能。三、晶片(Chip):发光二极管和LED 芯片的

结构组成1)、晶片的作用:晶片是LED Lamp 的主要组成物料,是发光的半导

体材料。2)、晶片的组成:晶片是采用磷化镓(GaP)、镓铝砷(GaAlAs)或

砷化镓(GaAs)、氮化镓(GaN)等材料组成,其内部结构具有单向导电性。3)、晶片的结构:焊单线正极性(P/N 结构)晶片,双线晶片。晶片的尺寸单

位:mil 晶片的焊垫一般为金垫或铝垫。其焊垫形状有圆形、方形、十字形等。4)、晶片的发光颜色:晶片的发光颜色取决于波长,常见可见光的分类大致为:

LED显示屏常用驱动芯片资料(精)

LED 常用芯片技术资料 1、列电子开关74HC595 (串并移位寄存器) 第14脚DATA ,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 第13脚EN ,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。第12脚STB ,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能 将移入的数据送QA~QH口输出。 第11脚CLK ,时钟口,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR ,复位口,只要有复位信号,寄存器内移入的数据将清空,一般接VCC 。第9脚DOUT ,串行数据输出端,将数据传到下一个。第15、1~7脚,并行输出口也就是驱动输出口,驱动LED 。 2、译码器 74HC138 第1~3脚A 、B 、C ,二进制输入脚。第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A 、B 、C 信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。

3、缓冲器件74HC245 第1脚DIR ,输入输出端口转换用,DIR=“1” A输入B 输出,DIR=“0” B输入A 输出。第2~9脚“A ”信号输入输出端;第11~18脚“B ”信号输入输出端。 第19脚G ,使能端,为“1”A/B端的信号将不导通,为“0”时A/B端才被启用。

4、4953的作用:行驱动管,功率管。 1、3脚VCC , 2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。 5、74HC04的作用:6位反相器。 信号由A 端输入Y 端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。 6、 74HC126(四总线缓冲器)正逻辑 Y=A 2、SDI 串行数据输入端 3、CLK 时钟信号输入端, 4、LE 数据锁存控制端 5~20、恒流源输出端 21、OE 输出使能控制端 22、SDO 串行数据输出端,级联下一个芯片 23、R-EXT 外接电阻,控制恒流源输出端电流大小

LED发光二极管原理(图文)讲解学习

LED发光二极管原理(图文)半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。(3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

LED发光二极管检测方法

1.发光二极管的特点 ? 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式 L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 ?????? L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。

led驱动芯片型号有哪些_十款led驱动芯片电路设计

led驱动芯片型号有哪些_十款led驱动芯片电路设计 怎么选择自己合适的LED驱动IC? 1、市场褒贬不一的LED驱动IC-AMC7150在当时AMC7150还是不错的,我想了想还是提提,它有个很重要的因数就是价格,有不到2元的市场价格,是你采用它的理由。AMC7150目前有几十家可以直接替换的IC型号,价格战会无法避免。 在设计参数要求不高的低压4-25V产品中可以选择它,基本驱动能力在3W以下应用设计。比如1W串3颗或3W1颗LED设计是稳定的。 目前士兰半导体推出新款IC,主要是针对驱动24V驱动6颗LED市场。价格要高于AMC7153优惠于欧美市场IC,适合设计1-6颗LED,输入6-25V输入电压,SOP8封装形式,主要针对目前低端射灯市场。 这个IC驱动1-7颗1WLED。效率可达92%,6-28V电压输入范围降压型驱动应用设计。比前面两款IC最大的优势是封装SOT23大小,线路简介,符合目前多数小体积灯杯设计使用要求。 大阻值范围电流调节,可以电位器宽阻值范围调节亮度,比如设计台灯等产品需要这样时。这颗IC目前市场反应良好,也是SOT23小体积封装,输入7-30V电压降压恒流驱动1-7pscLED,线路简洁实用。设计时Rs要紧靠IC避免供电电压大幅度不动,这样会影响恒流效果。 总体电子物料成本要略高于前款IC。 LM3402市场反映不错,输入电压范围涵盖整个汽车应用领域,内置MOS管最多可以15颗LED,1-3颗LED是感觉有些贵,5颗以上时性价比很不错。目前接触到的客户工程师评价很高,接受领域比较广线路简洁实用,是国半众多LED驱动IC中间佼佼者。 LM3404和LM3402的线路一样,不同的是电流可以达到1A,驱动1-15pcsLED性价比较高。 上面所列IC规格都是内置MOS管,内置MOS管可以简化线路设计,小体积,降低设计综合成本,故障率也会降低。因其目前IC工艺制成、成本等原因大于1A以上的LED驱

液晶显示器基本构造

液晶显示器基本构造

液晶显示器基本构造1.产品分类 液晶显示器无源方 有源方 反射型 半透型 透射型 TN ( 扭曲向列 HTN (高扭曲向 标准及订制 STN (超扭曲向 FTN (格式化超 D – TFD (数字 正性 / 负性 REC TNR 彩色偏光片 彩色印刷 特别产 TFT (薄膜晶体

2.客户订制液晶屏 为满足客户不同的应用要求,清显公司为客户提供从图案设计到成品制造的技术支持。 1.确定玻璃尺寸2.选择连接方式3.选择显示方式 4.选择视角5.选择偏光片类型6.驱动与特性7.彩色液晶显示技术8.开始设计根据产品的实际应 金属 脚 TN HT 6点 反 射 驱动 彩色 印刷

第一步:确定玻璃尺寸 1.确定玻璃尺寸 经济玻璃 LCD是从 大玻璃上切割而得的,而大玻璃的尺寸 1.1 0.7 0.55 0.4 用于 传呼 用于 手表, 传呼 多用于手 一般用 途。如电 子记事 薄,视听 产品,家

注:玻璃厚度不同,价格也不同。一般来讲,玻璃越薄,价格越贵。 第二步:选择连接方式: 可以用几种方法将LCD与PCB(印刷线路板)连接。用户应当结合产品的应用场合,性能要求,加工条件等,选择合适的连接方式

第三步:选择显示方式 3 选 择 显 示 方 式 TN (扭曲FTN (格式 STN (超扭 HTN (高扭 正性与负 在TN 型的LCD 中,向列型液晶分子被夹在两块透明玻璃之间。在上下两片玻璃上液晶分子的取 向偏转90°。在上下玻璃的外侧贴偏光片。此种类型LCD 的显示特点是对比度高。动态驱动性能佳。功耗低,驱动电压低。因而是一种通常采用的LCD 由于显示能力所限,TN 型的LCD 在大容量显示时无法得到较好的对比度。于是,液晶分子的扭曲角度从90°被改为110°.我们把这种类型的LCD 叫做HTN (高级扭曲向列型)。HTN 型的LCD 比TN 的LCD 动态驱动性能优良,可用于DUTY 为1/8 ∽ 1/16驱动性能优良。 由于显示能力所限,TN 型的LCD 在大容量显示时无法得到较好的对比度。于是,液晶分子的扭 曲角度从90°被改为210°~ 255°.我们把这种类型的LCD 叫做STN (超级扭曲向列型)。STN 型的LCD 比TN 的LCD 动态驱动性能优良,可用于大型显示。如640 X 480象素(点)等等 在STN 用于大型显示时,会出现色彩问题。FTN 型LCD 则可以实现黑白显示,并具有更好的对比度 在STN 用于大型显示时,会出现色彩问题。FTN 型LCD 则可以实现黑 白显示,并具有更好的对比度 正性 负性

发光二极管资料

发光二极管资料 一、生产工艺 1. 工艺: a)清洗:采用超声波清洗PCB或LED支架,并烘干。 b)装架:在LED管芯(大圆片)底部电极备上银胶后进行扩张,将扩张后的管芯(大圆片)安置在刺晶台上,在显微镜下用刺晶笔 将管芯一个一个安装在PCB或LED支架相应的焊盘上,随后进行烧结使银胶固化。 c)压焊:用铝丝或金丝焊机将电极连接到LED管芯上,以作电流注入的引线。LED直接安装在PCB上的,一般采用铝丝焊机。(制作白光TOP-LED需要金线焊机) d)封装:通过点胶,用环氧将LED管芯和焊线保护起来。在PCB板上点胶,对固化后胶体形状有严格要求,这直接关系到背光源成品 的出光亮度。这道工序还将承担点荧光粉(白光LED的任务。 e)焊接:如果背光源是采用SMD-LED或其它已封装的LED,则在装配工艺之前,需要将LED焊接到PCB板上。 f)切膜:用冲床模切背光源所需的各种扩散膜、反光膜等。 g)装配:根据图纸要求,将背光源的各种材料手工安装正确的位置。 h)测试:检查背光源光电参数及出光均匀性是否良好。 包装:将成品按要求包装、入库。 二、封装工艺 1. LED 的封装的任务 是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。关键工序有装架、压焊、封装。 2. LED 封装形式 LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸,散热对策和出光效果。LED按封装形式分类有Lamp-LED TOP-LED、Side-LED 、SMD-LED、High-Power-LED 等。 3. LED 封装工艺流程 4.封装工艺说明 1. 芯片检验 镜检:材料表面是否有机械损伤及麻点麻坑(lockhill ) 芯片尺寸及电极大小是否符合工艺要求 电极图案是否完整 2. 扩片 由于LED芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约0.6mm。也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。 3. 点胶 在LED支架的相应位置点上银胶或绝缘胶。(对于GaAs SiC导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。对于蓝宝石 绝缘衬底的蓝光、绿光LED芯片,采用绝缘胶来固定芯片。) 工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。 4. 备胶

全球LED驱动IC大全及规格书

全球LED驱动集萃 目录 台湾地区部分: (3) 点晶科技股份有限公司 (3) 台湾聚积科技公司 (3) 台湾广鹏(富晶)科技公司 (4) 台湾台晶科技 (4) 台湾易亨电子公司 (4) 台湾圆创科技股份有限公司 (4) 台湾晶锜科技公司 (5) 天鈺科技股份有限公司 (5) 台湾飞虹积体电路有限公司 (5) 台湾芯瑞科技股份有限公司 (5) 台湾茂达电子公司 (5) 日本部分: (5) 东芝公司 (5) 松下电器产业株式会社半导体社 (6) 美国部分: (6) IR国际整流器公司 (6) ON安森美半导体 (6) 美国超科公司(S UPERTEX) (6) TI美国德州仪器公司屏幕驱动部分 (7) TI美国德州仪器公司白光LED驱动器 (7) 美国美信集成产品公司白光LED驱动器 (8) 美国美信集成产品公司高亮度LED驱动器 (8) 美国国家半导体公司新产品: (9) 美国国家半导体公司白色LED低功率驱动部分 (9) 美国国家半导体公司照明管理单元(LMU) (10) 美国凌特公司白光背光及背光指示部分: (11) 美国凌特公司全彩背光部分: (11) 美国凌特公司大电流驱动及LED闪光灯部分: (12) 飞兆半导体公司 (12) ADI美国模拟器件公司 (13) 美国SIPEX公司 (13) 美国PI(P OWER I NTEGRATIONS)公司 (13) 美国PI(P OWER I NTEGRATIONS)公司数据手册 (13) 美国PI(P OWER I NTEGRATIONS)公司IC产品系列参考 (13) 美国加州Z YWYN 公司(美商齐荣)小屏背光部分 (14) 美国加州Z YWYN 公司(美商齐荣)大尺寸嵌入式背光部分 (14)

LED发光二极管

姓名:刘玉东学号:2111403132 电子与通信工程2班 LED(发光二极管) 摘要 发光二极管LED是一种能发光的半导体电子元件。是一种透过三价与五价元素所组成的复合光源这种电子元件早在1962年出现,早期只能发出低光度的红光,被hp买价专利后当作指示灯利用。之后发展出其他单色光的版本,时至今日能发出的光已遍及可见光、红外线及紫外线,光度也提高到相当的光度。而用途也由初时作为指示灯、显示板等;随着白光发光二极管的出现,近年续渐发展至被用作照明。 1.LED图片 2.LED的发展史 20世纪50年代,英国科学家发明了第一个具有现代意义的LED,并于60年代面世,但此时的LED只能发出不可见的红外光。在60年代末,发明了第一个可以发出可见的红光的LED。到了七八十年代,又发明出了可以发出橙光、绿光、黄光的LED。90年代由日亚化学公司研制出了超高亮度的蓝色LED,并产生了通过用蓝色管芯和加光荧光粉可以发出任何可见颜色的光的技术。在1998年,发白光的LED 开发成功。 3.LED的分类 (1)普通单色发光二极管 (2)高亮度发光二极管 (3)超高亮度发光二极管 (4)变色发光二极管 (5)闪烁发光二极管 (6)电压控制型发光二极管 (7)红外发光二极管 (8)负阻发光二极 4.LED的结构及发光原理 LED结构图如图1所示发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结(如图2所示)。当给发光二极管加上正向电压后,从p区注入到n区的空穴和由n区注入到P区的电子在p-n结处复合,产生自发辐射,同时以光子的方式释放出能量,从而把电能转换为光能。 当LED处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半

ULN2803发光二极管驱动芯片

Octal High Voltage,High Current Darlington Transistor Arrays ULN2803APG/AFWG DESCRIPTIONS: The eight NPN Darlington connected transistors in this family of arrays are ideally suited for interfacing between low logic level digital circuitry (such as TTL, CMOS or PMOS/NMOS) and the higher current/voltage requirements of lamps, relays, printer hammers or other similar loads for a broad range of computer, industrial, and consumer applications. All devices feature open–collector outputs and free wheeling clamp diodes for transient suppression DIP18 SOP18 The ULN2803 is designed to be compatible with standard TTL families while the ULN2804 is optimized for 6 to 15 volt high level CMOS or PMOS. PIN CONNECTION TIGER ELECTRONIC CO.,LTD

液晶显示器工作原理

液晶显示器工作原理 现在市场上的液晶显示器都采用了TFT液晶面板,这种液晶面板的是目前最先进的液晶显示器技术,从结构上看,液晶屏由两片线性偏光器和一层液晶所构成。其中,两片线性偏光器分别位于液晶显示器的内外层,每片只允许透过一个方向的光线,它们放置的方向成90度交叉(水平、垂直),也就是说,如果光线保持一个方向射入,必定只能通过某一片线性偏光器,而无法透过另一片,默认状态下,两片线性偏光器间会维持一定的电压差,滤光片上的薄膜晶体管就会变成一个个的小开关,液晶分子排列方向发生变化,不对射入的光线产生任何影响,液晶显示屏会保持黑色。一旦取消线性偏光器间的电压差,液晶分子会保持其初始状态,将射入光线扭转90度,顺利透过第二片线性偏光器,液晶屏幕就亮起来了。当然这是一个很简单的原理模型,真正的液晶显示器内还有更复杂的电路结构。 红绿蓝三原色大家都知道,当这三种颜色同时混合时就会产生白色,这当然实在三原色强度一样的情况下才能够显示器纯正的白色,这样,从图中我们可以看见液晶面板的每一个像素中都有三种原色,这三种原色如果强度不同变化就可以产生不同的混色效果,这样全屏就有1024×768这样的像素,所以真实分辨率就是1024×768。低端的液晶显示板,各个基色只能表现6位色,即2的6次方=64种颜色.可以很简单的得出,每个独立像素可以表现的最大颜色数是64×64× 64=262144种颜色,高端液晶显示板利用FRC技术使得每个基色则可以表现8位色,即2的8次方=256种颜色,则像素能表现的最大颜色数为 256×256×256=16777216种颜色.这种显示板显示的画面色彩更丰富,层次感也好.现在基本上显示器都拥有FRC技术,可以显示器16777216种颜色 什么是TFT-LCD 其中彩色LCD又分为STN和TFT两种屏,其中TFT-LCD是英文Thin Film Transi stor-Liquid Crystal Display的缩写,即薄膜晶体管液晶显示器,也就是大家 常说的真彩液晶显示屏,显示效果较好;而DSTN-LCD,即双扫瞄液晶显示器,则是STN-LCD的一种显示 液晶是一种介于液体和固体之间的特殊物质,它具有液体的流态性质和固体的光学性质。当液晶受到电压的影响时,就会改变它的物理性质而发生形变,此时通过它的光的折射角度就会发生变化,而产生色彩。 液晶屏幕后面有一个背光,这个光源先穿过第一层偏光板,再来到液晶体上,而当光线透过液晶体时,就会产生光线的色泽改变,从液晶体射出来的光线,还得必须经过一块彩色滤光片以及第二块偏光板。由于两块偏光板的偏振方向成90度,再加上电压的变化和一些其它的装置,液晶显示器就能显示我们想要的颜色了。 液晶显示有主动式和被动式两种,其实这两种的成像原理大同小异,只是背光源和偏光板的设计和方向有所不同。主动式液晶显示器又使用了fet场效晶体管以及共通电极,这样可以让液晶体在下一次的电压改变前一直保持电位状态。这样主动式液晶显示器就不会产生在被动式液晶显示器中常见的鬼影、或是画面延迟的残像等。现在最流行的主动式液晶屏幕是tft(thin film transistor薄

LED发光二极管工作原理、特性及应用演示教学

LED发光二极管工作原理、特性及应用 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

LED发光二极管工作原理及检测方法

LED发光二极管工作原理及检测方法 发光二极管LED(Light-EmittingDiode)是能将电信号转换成光信号的结型电致发光半导体器件。 1、发光二极管LED主要特点 (1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED 平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1 所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。当IF>10mA时,m=1,式(L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音

LED驱动IC

LED显示屏驱动IC|led驱动芯片|led显示屏驱动芯片|led驱动IC介绍|LED显示屏驱动芯片的分类及应用 led 2009-11-17 14:40:45 阅读847 评论0 字号:大中小 1 认识 LED显示屏主要是由发光二极管(LED)及其驱动芯片组成的显示单元拼接而成的大尺寸平面显示器。驱动芯片性能的好坏对LED显示屏的显示质量起着至关重要的作用。近年来,随着LED市场的蓬勃发展,许多有实力的IC厂商,包括***的东芝(TOSHIBA)、索尼(SONY),美国的德州仪器(T1),台湾的聚积(MBl)和点晶科技(SITl)等,开始生产LED专用驱动芯片。 2 驱动芯片种类 LED驱动芯片可分为通用芯片和专用芯片两种。所谓的通用芯片,其芯片本身并非专门为LED 而设计,而是一些具有LED显示屏部分逻辑功能的逻辑芯片(如串-并移位寄存器)。而专用芯片是指按照LED发光特性而设计专门用于LED显示屏的驱动芯片。LED是电流特性器件,即在饱和导通的前提下,其亮度随着电流的变化而变化,而不是靠调节其两端的电压而变化。因此专用芯片一个最大的特点就是提供恒流源。恒流源可以保证LED的稳定驱动,消除LED的闪烁现象,是LED显示屏显示高品质画面的前提。有些专用芯片还针对不同行业的要求增加了一些特殊的功能,如亮度调节、错误检测等。本文将重点 介绍专用驱动芯片。 2.1通用芯片 通用芯片一般用于LED显示屏的低档产品,如户内的单色屏,双色屏等。最常用的通用芯片是74HC595。74HC595具有8位锁存、串—并移位寄存器和三态输出。每路最大可输出35mA的电流(非恒流)。一般的IC厂家都可生产此类芯片。显示屏行业中常用Motorola(Onsemi),Philips及ST等厂家的产 品,其中Motorola的产品性能较好。 2.2专用芯片 专用芯片具有输出电流大、恒流等特点,比较适用于电流大,画质要求高的场合,如户外全彩 屏、室内全彩屏等。 专用芯片的关键性能参数有最大输出电流、恒流源输出路数、电流输出误差(bit-bit,chip-chip)和 数据移位时钟等。 ●最大输出电流 目前主流恒流源芯片的最大输出电流多定义为单路最大输出电流,一般在90mA左右。恒流是专用芯片的最根本特性,也是得到高画质的基础。而每个通道同时输出恒定电流的最大值(即最大恒定输出电流)对显示屏更有意义,因为在白平衡状态下,要求每一路都同时输出恒流电流。一般最大恒流输出电流 小于允许最大输出电流。

LCD内部结构图

液晶显示器内部结构图 [图片] TFT-LCD的三段主要的制程: 前段Array 前段的Array 制程与半导体制程相似,但不同的是将薄膜电晶体制作于玻璃上,而非矽晶圆上。 中段Cell 中段的Cell ,是以前段Array的玻璃为基板,与彩色滤光片的玻璃基板结合,并在两片玻璃基板间灌入液晶(LC)。 后段Module Assembly (模组组装) 后段模组组装制程是将Cell制程后的玻璃与其他如背光板、电路、外框等多种零组件组装的生产作业。 薄膜晶体管液晶显示器(TFT-LCD)模块 TFT-LCD 前段制程——Array TFT-LCD的制造过程可分为三大阶段: 前段Array, 中段Cell以及后段模块组装。前段的 Array 制程与半导体制程相似,但不同的是将薄膜晶体管制作于玻璃上,而非硅晶圆上。 TFT-LCD 中段制程—— Cell 中段的Cell ,是以前段TFT Array的玻璃为基板,与彩色滤光片的玻璃基板结合,并在两片玻璃基板间滴上液晶后贴合,再将大片玻璃切割成面板。

TFT-LCD 后段制程——模块组装 后段模块组装制程, 是将Cell贴合并切割后的面板玻璃, 与其他组件如背光板、电路、外框等多种零组件组装的生产作业。 CF:颜色过滤装置 FPC:柔性电路板(柔性PCB): 简称"软板", 又称"柔性线路板", 也称"软性线路板、挠性线路板"或"软性电路板、挠性电路板", 英文是"FPC PCB"或"FPCB,Flexible and Rigid-Flex". PCBA:英文Printed Circuit Board +Assembly 的简称,也就是说PCB空板经过SMT上件,再经过DIP插件的整个制程,简称PCBA . 薄膜电路 薄膜电路是将整个电路的晶体管、二极管、电阻、电容和电感等元件以及它们之间的互连引线,全部用厚度在1微米以下的金属、半导体、金属氧化物、多种金属混合相、合金或绝缘介质薄膜,并通过真空蒸发、溅射和电镀等工艺制成的集成电路。薄膜集成电路中的有源器件,即晶体管,有两种材料结构形式:一种是薄膜场效应硫化镉或硒化镉晶体管,另一种是薄膜热电子放大器。更多的实用化的薄膜集成电路采用混合工艺,即用薄膜技术在玻璃、微晶玻璃、镀釉和抛光氧化铝陶瓷基片上制备无源元件和电路元件间的连线,再将集成电路、晶体管、二极管等有源器件的芯片和不使用薄膜工艺制作的功率电阻、大容量的电容器、电感等元件用热压焊接、超声焊接、梁式引线或凸点倒装焊接等方式,就可以组装成一块完整的集成电路。 何谓TFT-LCD? TFT-LCD 即是Thin-Film Transistor Liquid-Crystal Display的缩写(薄膜电晶体液晶显示器) TFT-LCD如何点亮? 简单说,TFT-LCD面板可视为两片玻璃基板中间夹着一层液晶,上层的玻璃基板是与彩色滤光片(Color Filter) 结合,而下层的玻璃则有电晶体镶嵌于上。当电流通过电晶体产生电场变化,造成液晶分子偏转,借以改变光线的偏极性,再利用偏光片决定画素(Pixel)的明暗状态。此外,上层玻璃因与彩色滤光片贴合,形成每个画素(Pixel)各包含红蓝绿三颜色,这些发出红蓝绿色彩的画素便构成了面板上的影像画面。

《让发光二极管亮起来》公开课教案

《让发光二极管亮起来》教学设计 天台小学许彩珍 教学目标: 1、初步认识发光二极管,了解发光二极管的结构特点。 2、认识二极管电路符号,能设计简单的小夜灯电路图,合理使用电阻原件 保护发光二极管。 3、继续了解简单电路,认识串联电路,能正确连接串联电路,点亮发光二极管。 4、通过点亮发光二极管,使学生喜爱电子技术,乐于探究。 教学重点和难点: 重点:认识发光二极管的特性,能正确连接发光二极管。 难点:能合理使用电阻元件保护发光二极管,能连接多个发光二极管。 教学准备: 材料:红、绿、黄等发光二极管若干,接插件若干,100欧姆电阻若干,不同类型导线若干,电池盒,5号电池4节,黑胶带等。 工具:剪刀。 教学过程: 课前谈话: 同学们请坐好。各小组组长请起立。课前我们来做个小游戏,看黑板上的符号猜元件名称。(电池、开关、灯泡)。让小灯泡亮起来,得用导线将它们连接起来,师画。 电流从电源的正极出发,依次经过开关、灯泡,最后接到电源的负极,形成了电路。这是我们在《让灯泡亮起来》这课中学过的知识,我们先回顾到这里。 一、创设情境,激趣导入 今天老师为大家准备了一些图片,请同学们欣赏。师边播放边介绍,这些屏幕叫LED屏幕,是由一个个发光二极管组成的,它还有一个名字叫“LED”。 LED被誉为21世纪的绿色光源。它色彩鲜艳,使用寿命长达10万个小时,电压一般为 1.5V----2.3V,它高效节能,安全系数高,已被广泛应用于生产和生活中。 这些屏幕中的发光二极管是如何亮起来的呢?这就是这节课我们要探究的内容。 二、认识发光二极管的构造和电路符号 (一)观察发光二极管

1、我们先来认识一下发光二极管。(出示发光二极管)请小组长拿起工具箱里的小塑料袋。组内同学一起看看塑料袋里的发光二极管,研究一下它的结构特点。 2、学生观察,组内交流。 3、汇报。你发现了什么?(发光二极管有一个半透明的草帽状外壳,两根引脚线。引脚线长的是正极,短的是负极。)(观察的很仔细) (二)了解发光二极管与小灯泡的区别 1、上课前我们已经回忆了点亮灯泡的方法,我们可以用两根导线、一节电池让灯泡亮起来,哪位同学愿意上来演示一下。 2、小灯泡已经亮起来了,用这样的方法连接也能让发光二极管也亮起来吗?请这位同学再来试试。 3、你发现什么了?(发光二极管不会亮。)为什么不会亮?电压不够。怎样才会使它亮起来呢?(预设:再加一节电池试试。) (三) 认识电路符号和电阻特点 1、在动手试验前先来看老师画发光二极管的电路图,师画。跟灯泡电路图比较一下,你发现了什么? 2、这是100欧姆的电阻符号。请同学们看书本30面图4---2,这就是电阻。那么为什么要在发光二极管电路中加100欧姆的电阻呢?小组内讨论一下,看哪一组同学最聪明。 3、汇报。(预设:一个发光二极管的能承受电压是1.5—2.3V, 两节电池的电压是3V,电压太大,需要接上100欧姆的电阻限流,保护发光二极管。) 三、合作尝试点亮一个发光二极管 1、按照这个电路图,能不能点亮发光二极管呢?同学们想不想尝试一下?(想) 2、下面我们先来点亮一个发光二极管。先看老师来示范一遍。坐得最端正,听得最认真这一小组,等一下肯定也能最快地点亮发光二极管。师边示范边讲解注意点:试验前先检查电池盒的开关是否处于断开状态。将电阻与电池盒的正极(红色导线)连接,用胶布绝缘,尽量将胶布贴得平整一些,不要露出铁丝。再将电阻的另一头与带有接插件的红色导线连接。装上发光二极管,接着将黑色导

LED驱动IC大全(精)

Ofweek 光电新闻网 全球LED 驱动IC 规格书下载大全 Ofweek 光电新闻网 目录 台湾地区部 分: ....................................................................................................................................... (4) 点晶科技股份有限公 司 (4) 台湾聚积科技公 司 ........................................................................................................................................... ..4 台湾广鹏(富晶)科技公 司 (5) 台湾台晶科 技 ........................................................................................................................................... .. (5) 台湾易亨电子公 司 ........................................................................................................................................... ..5 台湾圆创科技股份有限公 司 (5)

大功率LED驱动IC选型

大功率LED驱动IC选型 40V低压DC to DC 灯杯、汽车等代表性IC,因其IC种类太多,在此仅介绍具有代表性的IC,供大家交流学习。有些高压IC也可以应用到这个电压范围,在这里就不在重复介绍。 Zetex Semiconductors plc专门设计、生产及推销离散及综合模拟半导体产品,在业界占有领导地占。凭借"标准"组件、方便使用的集成电路及完全自订的集成电路,在通信、家电、汽车、及工业市场,迎战现今电子业开发设计的激烈竞争。低压升压LED恒流器件全系列做的比较出色的公司之一。 下图输入电压范围从0.7 V 到1.6 V 最大输出335mA,符合单节干电池的单颗LED升压型驱动IC,广泛应用于军事应急手持设备方面。 下图输入电压范围从1.6 V 到2.4V 最大输出335mA,符合单节干电池的单颗LED升压型驱动IC. 下图输入电压范围从3.5 V 到4V 最大输出多颗LED驱动线路,符合单节锂离子电池供电的产品。

下图是台湾点晶科技公司一款DD212,可以1.5-5.5V输入电压,2倍压升压输出最大400mA。外围器件是目前最少的之一。 SP6685是一种恒定电流充电泵。主要用于驱动数码相机和摄像手机中的半导体闪光灯.也可用于摄像机断续高亮度照明灯。该充电泵可以设定二种不同的恒定电流值,分别驱动照相机闪光灯和摄像机照明灯。SP6685可以自动转换升压和降压工作状态,确保半导体照明灯(LED)的工作电流与正向电压无关。该电路所需的电流采样基准电压很低(50mV),可以选用阻值很小的表面贴装电阻器。 凌特美信也有相关参品,可到相应网站参考。

PT4105 是一款大功率LED 驱动用18V 降压转换器。它包含一个PWM 控制器、一个高精度的能带隙参考源、一个误差放大器、相位补偿电路、软启动电路、保护电路、IC 使能电路、输入电压检测电路、逻辑控制电路和功率MOS 管。PT4105 采用固定频率的电压模式来调节LED 电流,其200mV 的低反馈电压可降低功耗和提高效率。此外,PT4105 还含有限流功能以及过热保护功能以避免在输出过载时对器件造成损害。 PT4105 是5-18V 输入电压下驱动白光LED 的理想选择。PT4105 可驱动单颗1W(350mA)或3W(700mA)白光或其他颜色的LED。其宽的输入电压范围和高输出电流能力,也可以用来驱动3 颗串联1W 或3W 白光LED,或者串-并组合驱动3x3 颗1W 白光LED,等等。 AMC7150是一款应用非常广泛的LED降压型驱动IC,目前市场上有多家公司替代产品出现,可以应用于驱动3颗以内1LED或1颗3W LED,产品设计中。

相关主题
文本预览
相关文档 最新文档