当前位置:文档之家› 计算方法归纳部分

计算方法归纳部分

计算方法归纳部分
计算方法归纳部分

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

计算方法公式总结

计算方法公式总结 绪论 绝对误差 e x x *=-,x *为准确值,x 为近似值。 绝对误差限 ||||e x x ε*=-≤,ε为正数,称为绝对误差限 相对误差* r x x e e x x * *-== 通常用r x x e e x x *-==表示相对误差 相对误差限||r r e ε≤或||r r e ε≤ 有效数字 一元函数y=f (x ) 绝对误差 '()()()e y f x e x = 相对误差 ''()()()()()()() r r e y f x e x xf x e y e x y y f x =≈= 二元函数y=f (x 1,x 2)

绝对误差 1212 12 12 (,)(,) () f x x f x x e y dx dx x x ?? =+ ?? 相对误差 121122 12 12 (,)(,) ()()() r r r f x x x f x x x e y e x e x x y x y ?? =+ ?? 机器数系 注:1. β≥2,且通常取2、4、6、8 2. n为计算机字长 3. 指数p称为阶码(指数),有固定上下限L、U

4. 尾数部 120.n s a a a =±,定位部p β 5. 机器数个数 1 12(1)(1)n U L ββ-+--+ 机器数误差限 舍入绝对 1|()|2 n p x fl x ββ--≤ 截断绝对|()|n p x fl x ββ--≤ 舍入相对1|()|1||2 n x fl x x β--≤ 截断相对1|()|||n x fl x x β--≤ 九韶算法 方程求根 ()()()m f x x x g x *=-,()0g x ≠,*x 为f (x )=0的m 重根。 二分法

四年级简便运算

四年级下册简便计算归类总结简便计算 84x101 (300+6)x12 504x25 25x(4+8) 78x102 125x(35+8) 25x204 (13+24)x8 99x64 99X13+13 99x16 25+199X25 638x99 32X16+14X32 999x99 78X4+78X3+78X3 125X32X8 3600÷25÷4 25X32X12 5 8100÷4÷75 88X125 3000÷125÷8 72X125 1250÷25÷5 2 273-73-27

847-527-273 278+463+22+37 732+580+2 68 1034+780320+102 425+14+186 214-(86+1 4) 787-(87-29) 365-(65+118) 455-(155+23 0) 576-285+85 825-657+57 690-177+77 755-287+87 871-299 157-99 363-199 968-599 178X101-178 83X1 02-83X2 17X23-23X7 35X127-35X16-11X35 64÷(8X2)

1000÷(125X4) 375X(109-9) 456X(99+1) 容易出错类型(共五种类型) 600-60÷1520X4÷20 X4 736-35X20 25X4÷25X4 98-18X5+2 5 56X8÷56X8 280-80÷ 412X6÷12X6 175-75÷25 25X8÷25 80-20X2+6 0 36X9÷36X9 36-36÷6-6 25X8÷(25X 8) 100+45-100+45

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

简便方法计算方法总结

简便方法计算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。 【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。 1、加法交换律 定义:两个数交换位置和不变, 公式:A+B =B+A, 例如:6+18+4=6+4+18 2、加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。 公式:(A+B)+C=A+(B+C), 例如:(6+18)+2=6+(18+2) 3、引申——凑整 例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚才“多加的”要“减掉”。“多减的”要“加上”! (二)运用乘法的交换律、结合律进行简算。 1、乘法交换律 定义:两个因数交换位置,积不变. 公式:A×B=B×A 例如:125×12×8=125×8×12 2、乘法结合律 定义:先乘前两个因数,或者先乘后两个因数,积不变。 公式:A×B×C=A×(B×C), 例如:30×25×4=30×(25×4) (三)运用减法的性质进行简算,同时注意逆进行。 1、减法 定义:一个数连续减去两个数,可以先把后两个数相加,再相减。 公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】 例如:20-8-2=20-(8+2) (四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。 1、除法 定义:一个数连续除去两个数,可以先把后两个数相乘,再相除。 公式:A÷B÷C=A÷(B×C), 例如:20÷8÷1.25=20÷(8×1.25)

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

计算方法总结

第一章:基本概念 1. 1 2...1 2...1.m m m m n m n x x x x x x x x +++++=±1 2...1 2....m m m m n x x x x x x x +++=± 若1 102 n x x --≤? ,称x 准确到n 位小数,m n x + 及其以前的非零数字称为准确数字。 各位数字都准确的近似数称为有效数,各位准确数字称为有效数字。 2. 1 2...()0.l t f x x x x x β==±? 进制:β,字长:t ,阶码:l ,可表示的总数:12(1)(1)1t U L ββ-?-+?-+ 3.计算机数字表达式误差来源 实数到浮点数的转换,十进制到二进制的转换,结算结果溢出,大数吃小数。 4. 数据误差影响的估计: 121 (,,...)n n i i x x x y y x x ??-≤??∑ 121 (,,...)n n i i i y y x x x x x y x y ?δ-?≤?∑ ,小条件数。 解接近于零的都是病态问题,避免相近数相减。避免小除数大乘数。 5.算法的稳定性 若一个算法在计算过程中舍入误差能得到控制,或者舍入误差的积累不影响产生可靠的计算结果,称算法数值稳定。 第二章:解线性代数方程组的直接法 1.高斯消去法 步骤:消元过程与回代过程。 顺利进行的条件:系数矩阵A 不为零;A 是对称正定矩阵,A 是严格对角占优矩阵。 2.列主元高斯消去法 失真:小主元出现,出现小除数,转化为大系数,引起较大误差。 解决:在消去过程的第K 步,交换主元。 还有行主元法,全主元法。 3.三角分解法 杜立特尔分解即LU 分解。 用于解方程LY b AX b LUX b UX Y =?=→=→? =? ; 用于求1122...nn A LU L U U u u u ====。 克罗特分解:11()()A LU LDD U LD D U --===,下三角阵和单位上三角阵的乘积。 将杜立特尔分解或克罗特分解应用于三对角方程,即为追赶法。 对称正定矩阵的乔列斯基分解,T A GG =,下三角阵及其转置矩阵的乘积;用于求解 AX b =的平方根法。 改进平方根法:利用矩阵的T A LDL =分解。 4.舍入误差对解的影响

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

小学简便计算方法总结

卓立教育-小学数学简便计算方法总结 一、拆分法:为了方便计算或能使计算变得简便,在进行计算时,会将某些数字拆分开来再进行重新组 合,这样的方法叫拆分法。 例题1:101+75=(100+1)+75=100+75+1=176 例题2:125×32=125×8×4=1000×4=4000 例题3:999×999+1999 =999×999+(1000+999)【将1999拆分】 =999×999+999+1000 去括号,并使用交换律交换位置 =999×999+999×1+1000 为使用乘法分配律,故将原式变形,给拆分出来的999乘以1 =999(999+1)+1000 使用乘法分配律,提取999 =999000+1000 =1000000 例题4:33333×66666+99999×77778 此题数字中最为特殊的是77778,我们发现这个数字加上22222正好等于100000,所以最好能从其他数字中拆分出来22222。经过观察,我们发现只有66666可以拆出,所以将66666拆分成22222×3。 原式=33333×3×22222+99999×77778 =99999×22222+99999×77778 =99999(22222+77778) =9999900000 例题5:13000÷125=13×1000÷125=13×8=104 例题6:19881988÷20002000 = 1988×10001÷2000×10001 =1998÷2000,即 二、归零法:为了方便计算或能使计算变得简便,在进行计算时,要在计算式中加上一个数再减去同一 个数的方法叫归零法。(即等于加了个“0”,所以叫归零法) 例题1:++++++ =+++++++- 在上式中,我们加了一个又减去了一个,等于没加没减。这样一来,除最后一项之外,每一项与前一项相加就会等于前一项。则: =1- 三、凑整法:为了方便计算或能使计算变得简便,在进行计算时,要通过“凑”的方式让计算式中出现 整百、整千、整万等数字。 例题:99999+9999+999+99+9 =(99999+1)+(9999+1)+(999+1)+(99+1)+(9+1)- (加了5个1,所以减去5) =100000+10000+1000+100+10-5 =111110—5 =111105 四、代入法:为了方便计算或能使计算变得简便,在进行计算时,把一些相同项用字母代替的方法。例题:﹙++﹚×﹙++﹚-﹙+++﹚×﹙+﹚

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

四年级数学简便计算方法汇总

四年级数学简便计算:乘除法篇 一、乘法: 1.因数含有25和125的算式: 例如①:25×42×4 我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42. 同样含有因数125的算式要先用125×8=1000。 例如②:25×32 此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。 例如③:72×125 我们根据125×8=1000将72拆成8×9,原式变成8×125×9。 重点例题:125×32×25 =(125×8)×(4×25) 2.因数含有5或15、35、45等的算式: 例如:35×16 我们根据需要将16拆分成2×8,这样原式变为 35×2×8。因为这样就可以先得出整十的数,运算起来比较简便。 3.乘法分配率的应用: 例如:56×32+56×68 我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68) 如果是56×132—56×32 一样提出56,算是变成56×(132-32) 注意:56×99+56 应想99个56加上1个56应为100个56,所以原式变为56×(99+1) 或者56×101-56 =56×(101-1)另外注意综合运用,例如: 36×58+36×41+36 =36×(58+41+1) 47×65+47×36-47 =47×(65+36-1) 4.乘法分配率的另外一种应用: 例如:102×47 我们先将102拆分成100+2 算式变成(100+2)×47 然后注意将括号里的每一项都要与括号外的47相乘,算式变为: 100×47+2×47 例如:99×69 我们将99变成100-1 算式变成(100-1)×69 然后将括号里的数分别乘上69,注意中间为减号,算式变成: 100×69-1×69 二、除法: 1.连续除以两个数等于除以这两个数的乘积: 例如:32000÷125÷8 我们可以将算式变为32000÷(125×8) =32000÷1000 2.例如:630÷18 我们可以将18拆分成9×2 这时原式变为630÷(9×2) 注意要加括号,然后打开括号,原式变成 630÷9÷2=70÷2 三、乘除综合:

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

数值分析学习方法

第一章 1霍纳(horner)方法: 输入=c + bn*c bn?1*c b3*c b2*c b1*c an an?1 an?2 ……a2 a1 a0 bn bn?1 bn?2 b2 b1 b0 answer p(x)=b0 该方法用于解决多项式求值问题=anxn+an?1xn?1+an?2xn?2+……+a2x2+a1x+a0 ? 2 注:p为近似值 p(x) 绝对误差: ?|ep?|p?p ?||p?p rp? |p| 相对误差: ?|101?d|p?p rp?? |p|2 有效数字: (d为有效数字,为满足条件的最大整数) 3 big oh(精度的计算): o(h?)+o(h?)=o(h?); o(hm)+o(hn)=o(hr) [r=min{p,q}]; o(hp)o(hq)=o(hs) [s=q+p]; 第二章 2.1 求解x=g(x)的迭代法用迭代规则 ,可得到序 列值{}。设函数g 满足 y 定义在得 。如果对于所有 x ,则函数g 在 ,映射y=g(x)的范围 内有一个不动点; 此外,设 ,存在正常数k<1,使 内,且对于所有x,则函数g 在 内有唯一的不动点p。 ,(ii)k是一个正常数, 。如果对于所有 定理2.3 设有(i)g,g ’(iii ) 如果对于所有x在

这种情况下,p成为排斥不动点,而且迭代显示出局部发散 性。波理 尔 查 . 诺 二 分 法 ( 二 分 法 定) <收敛速度较慢> 试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线l与 x轴的交点(c,0)> 应注意 越来越 小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法 . f(pk?1) 其中k=1,2,……证明:用 f(pk?1) 牛顿—拉夫森迭代函数:pk?g(pk?1)?pk?1? 泰勒多项式证明 第三章线性方程组的解法对于给定的解线性方程组ax=b a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2 ? an1x1 ? an2x2 ? ? ? annxn ? bn 一gauss elimination (高斯消元法第一步forward elimination 第二步 substitution 二lu factorization 第一步 a = lu 原方程变为lux=y ; 第二步令ux=y,则ly = b由下三角解出y;第三步 ux=y,又上三角解出x ; 三iterative methods(迭代法) a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2? ) back 初始值 0,x0,?,x0x1n2 四 jacobi method 1.选择初始值 2.迭代方程为 0,x0,?,x0x1n2 k?1? x1k?1 ? x2

小学数学简便计算方法汇总

小学数学简便计算方法汇总 1、提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。 注意相同因数的提取。 例如: ×+× =×(+) 2、借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。 考试中,看到有类似998、999或者等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1—4 3、拆分法 顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和,4和,8和等。分拆还要注意不要改变数的大小哦。 例如: ××25 =8×××25 =8×××25 4、加法结合律

注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: +++ =(+)++ 5、拆分法和乘法分配律结 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、等接近一个整数的时候,要首先考虑拆分。 例如: 34× = 34×(10- 案例再现: 57×101= 6利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083 =(2062x5)+10-10-20+21 7利用公式法 (1) 加法: 交换律,a+b=b+a, 结合律,(a+b)+c=a+(b+c). (2) 减法运算性质:

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

相关主题
文本预览