当前位置:文档之家› 《管壳式换热器》GB151-1999

《管壳式换热器》GB151-1999

《管壳式换热器》GB151-1999
《管壳式换热器》GB151-1999

GB151-1999《管壳式换热器》概况作者资料

(这条文章已经被阅读了1530次) 时间:2004/09/12 01:33pm来源:tigerliu521

GB151-1999《管壳式换热器》概况

兰州石油机械研究所教授级高级工程师朱巨贤

管壳式换热器以其对温度、压力、介质的适应性,耐用性及经济性,在换热设备中始终占有约70%的主导地位。因此管壳式换热器的标准化工作为世界各工业发达国家所重视,也为ISO国际标准化组织的所重视。因此出现了TEMA、API660、JISB8249等一批管壳式换热器标准,ISO目前也正在与API联手并会同有关国家编ISO管壳式换热器标准。

我国自二十世纪七十年代开始相继编制了JB1147《管壳式换热器制造技术条件》、《钢制管壳式换热器设计规定》及GB151-89《钢制管壳式换热器》,并在历经十年后出现了修改较大、与国际先进标准接轨更好的、但同时由于出版等原因未能按时出版的GB151-1999《管壳式换热器》及其英文版,现就GB151-1999版修订概况介绍如下:

一、取消了“钢制”增加了铝、铜、钛有色金属

取消“钢制”这在我国压力容器标准体系中是个较大的变化,也是向国际先进标准靠拢迈出的重要一步。有色金属制管壳式换热器国内过去有着众多的使用业绩,而随着工业向深度发展,石油化工向深加工要效益,有色金属制管壳式换热器今后会有良好的发展前景,但过去一直没有有色金属制管壳式换热器的设计、制造、检验与验收的综合性标准,GB151-1999版解决了这一问题。下面简要地介绍一下铝、铜、钛的情况: 1.铝及铝合金a.在空气和许多化工介质中有着良好的耐蚀性;b.在低温下具有良好的塑性和韧性;c.有良好的成型及焊接性能; d.设计参数:P≤8MPa,-269oC≤t≤200oC。

2.铜及铜合金a. 有优良的耐蚀性(如海军铜具有良好的耐海水腐蚀性);b.具有良好的导热性能;c.有良好的低温性能;d.有良好的成型性能,但焊接性能稍差;e.设计参数:纯铜t≤150oC;铜合金t≤200oC;

f.有GB8890《热交换器用铜合金管》标准。

3.钛、钛合金a.具有适应面广的极佳的抗腐蚀性能;b.密度小(4510kg/m3),强度高(相当于20R);

c.有良好的低温性能(TA1可用到-268 oC);

d.表面光洁、粘附力小,且表面具有不湿润性;

e.有GB3625《换热器及冷凝器用钛及钛合金管》标准;

f.单位重量价格高,比一般钢材高20倍,但综合指数价格比(密度小且Φ25管可用δ=1.0或1.5mm壁厚)约为6-8倍,若设备寿命为8年时,钛及钛合金是最佳换热管。

二、扩大了适用范围

本修订版参照TEMA-1999年版,扩大了适用范围:

a.PN≤35MPa;

b.DN≤2600mm;

c.PN×DN≤1.75×104MPa×mm

无论是TEMA-1988年版或GB151-89年版,其适用范围定得比较窄是避免浪费,因此超参数范围的换热器建议用更为精确的分析设计;从而造成了许多大直径、低压力或高压力中小直径的换热器,无法使用常规设计方法;但采用分析设计时会形成设计费用高、制造费用高的负效应,因此压力容器和的换热器究竟是用常规设计、制造,还是采用分析设计、制造,最终应落实到经济对比上。正是根据这一点,TEMA-1999、GB151-1999才扩大了DN及DN×PN的乘积,从而既解决了大直径低压力的设计问题,又解决了高压力中低直径如加氢换热器设计的问题。

三、管板计算有了较大的变化

1.给出了a,b,c,d,e,f六种管板与相关元件(换热管、壳体、法兰)的连接型式,概括了所有换热器的管板结构型式,能准确地引导设计者进行选择及计算。

2.U形管式换热器管板计算有了较大的变化:根据大量的试验研究,清华大学和北京石化工程公司推出了更为精确的计算式。

3.不适用部分在标准或标准释义中有了交待。

a.不布管区较大(K>1.0)时,按JB4732-92附录I进行设计;

b.管板与法兰搭焊的型式按JB4732-92附录I计算;

c.非轴对称及管板内有大小不同的管孔时,不属GB151管辖。

四、给出了孔桥宽度计算式

GB151-89版根据不同的管板厚度,以表格的形式给出了标准孔桥宽B及最小孔桥宽度Bmin,增加了铝、铜、钛后形成了管孔规格多且不同厚度的管板,要用插入法不方便,故GB151-1999采用了公式计算的方法,同时取消了Bmin数量为5个的限制(但仍保留了小于等于4%的要求)。

五、修改了部分计算公式

1.平盖计算公式

在平盖强度计算式中原GB151-89版中,只给出了一个公式,然后分操作与预紧二种不同工况只比较特征系数K值,这种做法在力学分析上是站不住脚的,因为操作与预紧除了K值不同外,其许用应力也是不同的,故GB151-1999版给出了操作与预紧二种不同状态的计算式。

2.浮头法兰

根据BS5500及JISB8275的有关条文,介于平盖同样的理由,修改了浮头法兰计算式,取消了Mp-操作,Mo-预紧二者大者代入公式的传统做法,而是分别按操作与预紧二种工况计算浮头法兰厚度。

六、修改了换热器级别的内涵

1.GB151-89由于换热管精度问题把换热器分为I、II级而其全部差异只反映在管束上,所以GB151-1999改称I、II级管束。

2.由于高合金钢取消了普通精度级,新增加的铝、铜、钛换热管全部采用较高精度或高精度级,故在GB151-1999版中,I 、II级管束只反映在碳素钢和低合金钢管上。

七、增加了奥氏体不锈钢焊管

根据我国奥氏体不锈钢焊管的技术与装备的进步,GB151-1999允许使用奥氏体不锈钢焊管为换热管且控制如下:

a.P≤6.4MPa;

b.不得用于极度危害介质;

c.φ=0.85。控制P≤6.4MPa只是个过渡措施,待有一定业绩后拟取消。

八、增加了换热管与管板的焊接型式

由于温度及压力的增高,GB151-89版的管头焊接型已不够用,故增加了要求高的连接型式。同时在换热管与管板的焊接工艺评定中,明确了强度焊的定义,即参照ASME明确规定了强度焊定义为:换热管与管板连接中承受换热管剪切强度的焊缝长度不小于1.4倍的管子壁厚。

九、焊接接头系数φ

GB150-1998回避了无法进行无损检测时的φ值,但GB151对于固定管板换热器最后一道B类焊接接头是回避不了的,故规定了“对于无法进行无损检测的固定管板式换热器,壳程圆筒的环向焊接接头,当采用氩弧焊打底或沿焊接接头根部全长有紧贴的金属垫板时,其焊接接头系数为φ=0.6”,这个φ=0.6是无法检查而必须靠施焊人员严格按照焊接工艺施焊来保证的。

十、修订了部分制造内容

1.取消了GB151-89 4.13中“支座、垫板、补强圈和壳体塔接缝与任意相邻焊缝的距离,以及接管与壳体连接接头与任意相邻接接头的距离均不小于三倍的壳体壁厚且不小于50mm”的不合理要求。

2.放宽了U形弯管中小R的椭圆度要求,并规定Ri<2.5do时,U形弯管的椭圆度按小于等于15%验收。

管壳式换热器的制造检验要求

管壳式换热器的制造检验 要求 The final revision was on November 23, 2020

管壳式换热器的制造、检验要求 作为压力容器管壳式换热器制造、检验及验收应符合GB150的要求,但同时也要符合换热器本身的特殊要求。 一、焊接接头分类 与一般压力容器类似,管壳式换热器也将主要受压部分的焊接接头分为A、B、C、D四类,如图7-1所示(教材P192)。 A类接头为筒体、前后管箱或膨胀节的轴向焊缝; B类接头为筒体、前后管箱或膨胀节的周向焊缝或带径发兰与接管的对接环向焊缝; C类接头为筒体或前后管箱与无径发兰或无径发兰与接管的平焊环向焊缝; D类接头为接管与筒体或前后管箱的环向焊缝。 二、零部件制造要求 1.管箱与壳体 壳体内径允许偏差: 对于用板材卷制的壳体,起内径允许偏差可通过控制外圆周长的方式加以控制,外圆周长的允许上偏差为10mm,下偏差为零。 2.圆度: 壳体同一断面上的最大直径和最小直径之差e应符合以下要求: 对于公称直径DN(以mm为单位)不大于1200mm的壳体:e≤min(%DN,5)mm;对于公称直径DN(以mm为单位)大于1200mm的壳体:e≤min(%DN,7)mm。 3.直线度:

壳体沿圆周0°、90°、180°、270°四个部位(即通过中心线的水平面和垂直面处)测量的壳体直线度允许偏差应满足以下要求: 当壳体总长L≤6000mm时,直线度允许偏差≤min (L/1000, mm; 当壳体总长L>6000mm时,直线度允许偏差≤min (L/1000,8) mm。 热处理要求`:碳钢、低合金钢制的焊有分程隔板的管箱和浮头平盖、侧向开孔超过1/3圆筒内径的管箱,焊后需作清除应力处理,有关密封面在热处理后加工。 4.其它要求: 壳体在制造中应防止出现影响管束顺利安装的变形。有碍管束装配的焊缝应磨至与母材表面平齐。接管、管接头等不应伸出管箱、壳体的内表面。 (解释圆度、直线度) 5.换热管 (1)换热管的拼接: 当换热管需拼接时其对接接头应作焊接工艺评定。对于直管,同一根换热管的对接焊缝不得超过一条;对于U形管,对接不得超过两条,拼接管段的长度不得小于300mm,U形管段及其相邻的至少50mm直管段范围内不得有拼接焊缝。 换热管拼接接头的对接错边量不超过管壁厚度的15%,且小于,拼接后的直线度以不影响穿管为准。 对接后的换热管按表7-7选取钢球直径进行通球检查,以钢球通过为合格 换热管拼接接头应进行射线抽样检测,抽样数量应不少于接头数量的10%且不少于一条,满足JB4730中的Ⅱ级为合格,如有一条焊缝不合格,则应加倍抽样,仍出现不合格焊缝时,则应100%检查。。对接后的换热管应以2倍的设计压力为试验压力进行液压试验。

管壳式换热器的机械设计

第七章管壳式换热器的机械设计 本章重点:固定管板式换热器的基本结构 本章难点:管、壳的分程及隔板 建议学时:4学时 第一节概述 一、定义:换热器是用来完成各种不同传热过程的设备。 二、衡量标准: 1.先进性—传热效率高,流体阻力小,材料省; 2.合理性—可制造加工,成本可接受; 3.可靠性—强度满足工艺条件。 三、举例 1.冷却器(cooler) 1)用空气作介质—空冷器aircooler 2)用氨、盐水、氟里昂等冷却到0℃~-20℃—保冷器deepcooler 2.冷凝器condenser 1)分离器 2)全凝器 3.加热器(一般不发生相变)heater 1)预热器(preheater)—粘度大的液体,喷雾状不好,预热使其粘度下降; 2)过热器(superheater)—加热至饱和温度以上。 4.蒸发器(etaporater),—发生相变 5.再沸器(reboiler) 6.废热锅炉(waste heat boiler) 看下图说明其结构及名称

四、管壳式换热器的分类 1、固定管板式换热器: 优点:结构简单、紧凑、布管多,管内便于清洗,更换、造价低,应用广泛。管坏时易堵漏。缺点:不易清洗壳程,一般管壳壁温差大于50℃,设置膨胀节。 适用于壳程介质清洁,不易结垢,管程需清洗以及温差不大或温差虽大但是壳程压力不大的场合。 2、浮头式换热器: 管束可以抽出,便于清洗;但这类换热器结构较复杂,金属耗量较大。 适用于介质易结垢的场合。 3、填料函式换热器: 造价比浮头式低检修、清洗容易,填料函处泄漏能及时发现,但壳程内介质由外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。适用于低压小直径场合。 4、U型管式换热器:

管壳式换热器的设计与制造

管壳式换热器的设计与制造 摘要:换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备,在日常的设计和制造 中正常碰到。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的 30%~40%左右,近年来随着节能技术的发展,应用领域不断扩大,利用换热器进 行高温和低温热能回收带来了显著的经济效益。目前,在换热设备中,使用量最 大的是管壳式换热器。 关键词:管板换热管折流板与折流杆防冲板导流筒管束组装压力试验下面就管壳式换热器特有的几个主要零部件在设计和制造过程中的计算、选材中的要求作一些介绍。 1 管板 1.1 管板材料 管板是换热器的主要受压元件之一,一般情况下用锻件优于用钢板,但用锻件的成本要高很多,故在条件不苛刻时用板材作管板依然很多。一般规定如下: 1)钢板厚度δ>60mm时,宜采用锻件。 2)管板以凸肩形式与圆筒相对接时,必须采用锻件。 3)采用钢板作管板时,厚度大于50mm的Q245R、Q345R,应在正火状态下使用。 1.2 管板的计算 管板的结构复杂,影响管板的因素很多,重点考虑一下因素: 1)把实际的管板简化为受到规则的排列的管孔削弱、同时又被管子加强的等效弹性基础上的均质等效圆平板。 2)管板周边部分较窄的不布管区按其面积简化为圆环形实心板。 3)管板边缘可以有各种不同形式的连接机构,各种型式可能包含有壳程圆筒、管箱圆筒、法兰、螺栓、垫片等多种原件。 4)考虑法兰力矩对管板的作用。 5)考虑换热管与壳程圆筒的热膨胀差所引起的温差应力,还应考虑管板上各点温度差所引起的温度应力。 6)计算由带换热管的多孔板折算为等效实心板的各种等效弹性常数与强度参数。 1.3 管板的制造 1)管板可以拼接,只是对拼接接头应进行100%射线或超声检查,应按JB4730射线检测不低于Ⅱ级,或超声检测中的Ⅰ级为合格。 2)除不锈钢外,拼接后管板应作消除应力热处理。 3)对于堆焊复合管板,堆焊前应作堆焊工艺评定;基层材料的待堆焊面和复层材料加工后的表面,应按JB4730进行表面检测,检测结果不得有裂纹、成排气孔,并应符合Ⅱ级缺陷显示;不得采用换热管与管板焊接加桥间隙补焊的方法进行管板堆焊。 4)孔桥宽度偏差应符合GB151中的规定。 5)管孔表面粗糙度:①当换热管与管板焊接连接时,管孔表面粗糙度Ra值不大于25μm。②当换热管与管板胀接连接时,管孔表面粗糙度Ra值不大于12.5μm。

管壳式换热器 GB151讲义

管壳式换热器 GB151-1999 一.适用范围 1.型式 固定——P t 、P S 大,△t 小 浮头、U 形——P t 大,△t 大 * 一般不用于MPa P D 5.2>,易燃爆,有毒,易挥发和贵重介质。 结构型式:外填料函式、滑动管板填料函、双填料函式(径向双道) 2.参数 41075.1,35,2600X PN DN MPa P mm D N N ≤?≤≤。参数超出时参照执行。 D N :板卷按内径,管制按外径。 3.管束精度等级——仅对CS ,LAS 冷拔换热管 Ⅰ级——采用较高级,高级精度(通常用于无相变和易产生振动的场合) Ⅱ级——采用普通级精度 (通常用于再沸,冷凝和无振动场合) 不同精度等级管束在换热器设计中涉及管板管孔,折流板管孔的加工公差。 GB13296不锈钢换热管,一种精度,相当Ⅰ级;有色金属按相应标准。 4.不适用范围 受直接火焰加热、受核辐射、要求疲劳分析、已有其它行业标准(制冷、造纸等)P D <0.1MPa 或真空度<0.02MPa

+ 二.引用标准 1.压力容器安全技术监察规程——监察范围,类别划分*等 *按管、壳程的各自条件划类,以其中类别高的为准,制造技术可分别要求。 *壳程容积不扣除换热管占据容积计,管程容积=管箱容积+换热管内部容积。壳程容积=内径截面积X管板内侧间长度。 2. GB150-1998《钢制压力容器》——设计界限、载荷、材料及许用应力、 各受压元件的结构和强度计算。 3.有关材料标准。管材、板材、锻件等 4.有关零部件标准。封头、法兰(容器法兰、管法兰)紧固件、垫片、膨胀 节、支座等 三.设计参数 1.有关定义同GB150 2.设计压力Mpa 分别按管、壳程设计压力,并取最苛刻的压力组合(一侧为零或真空)。 管板压差设计仅适用确能保证管、壳程同时升降压,如1)自换热 2)P t P s 均较高,操作又能绝对保证同时升降压。 3.设计温度℃ 0℃以上,设计温度≥最高金属温度。 0℃以下,设计温度≤最低金属温度。 (一般可参照HG20580《设计基础》)

浅谈管壳式换热器的制造工艺(精)

浅谈管壳式换热器的制造工艺 在换热器的制造中,筒体、封头等零件的制造工艺与一般容器制造无异,只是要求不同,其中重点把握材料的检验,管板、折流板管孔的配钻,筒体的焊接,法兰的加工等。纵观其制造工艺,大部分用的是传统工艺,其中焊接占的比例较高,因而必须严格按照焊接工艺施焊,并且对焊缝探伤。 1 检验材料 换热器用的材料中,钢材(钢板、钢管、型材、锻件)的质量及规格应符合下列现行国家标准、行业标准或有关技术条件,钢材应符合GB GB713-2008的要求,钢材的选用应接受国家质量技术监视局颁发《压力容器安全技术监察规程》的监察。其中,受压元件以及直接与受压元件焊接的非受压元件用钢材,必须附有钢厂的钢材质量证实书(或复制件,复制件上应加盖供给部分的印章)。常见的有碳素钢和低合金钢(如Q235-B、Q235-C、Q245R、Q345R等)。根据设备的使用条件,需留意材料的供货状态,如正火状态;必要时复验材料的化学成分和检验其机械性能;进行超声波检验等。 标准规定,压力容器用碳素钢和低合金钢,当壳体厚度大于30mm的Q245R和Q345R,其他受压元件(法兰、管板、平盖等)厚度大于50mm的Q245R和 Q345R,以及厚度大于16mm的15MnVR,应在正火状态下使用;调质状态下和用于多层包扎容器内筒的碳素钢和低合金钢要逐张进行拉力试验和夏比(V型)常温或低温冲击试验。 凡符合下列条件之一的,应逐张进行超声波检测:①艳服介质毒性程度为极度、高度危害的压力容器②艳服介质为液化石油气且硫化氢含量大于100mg/l的压力容器③最高工作压力大于即是10MPa的压力容器④GB150第二章和附录C、 GB151《管壳式换热器》、GB2337《钢制球形储罐》及其他国家标准和行业标准中规定应逐张进行超声波检测的钢板(详见各标准)⑤移动式压力容器。 选材时,经常要对材料焊接试板进行力学性能检验,主要有拉伸试验,弯曲试验和冲击试验。其中弯曲试样按规定要求冷弯到规定角度后,受拉面上不得有沿任何方向单条长度大于3mm的裂纹或缺陷。 常温冲击试验的合格指标:常温冲击功规定按图样或有关技术文件的规定,当不得小于27J(三个标准试样冲击功)。低温冲击功规定值按附录(标准的附录)的有关规定;试验温度下三个试样冲击功均匀值不得低于上述规定值,其中一个试验的冲击功可小于规定值,但不得小于规定值的70%。 2 焊接方式 制造过程中,常用的焊接方法有手工电弧焊、埋弧自动焊、气体保护焊(氩弧焊、CO2保护焊)等。根据不同的材料,不同的厚度,开不同的坡口,采用不同的焊接工艺。手工电弧焊是应用最广泛的焊接方法,其操纵灵活,设备简单,可

管壳式换热器的型号表示方法

6.3.8 管壳式换热器的型号表示方法 (t t s s P N LN XXXDN A I II P d N ----------------或) ---- -- ---- --- ----- ------ ① ② ③ ④ ⑤ ⑥ 1. 1〉第一个字母代表前端管箱形式 2〉第二个字母代表壳体形式 3〉第三个字母代表后端结构形式 2. 公称直径(mm ) 对于釜式重沸器用分数表示,分子为管箱内直径,分母为圆筒内直径 3. 管/壳程设计压力,MPa 。压力相等时只写P t 4. 公称换热面积 ㎡ 5. 当采用Al,Cu,Ti 换热管时,应在LN/d 后面加材料琼等号,如LN/D Cu LN --公称长度 ,m d --换热管外经 mm 6. 管/壳程数。单壳程时 只写N t 7. I----I 级(换热器)管束 采用较高级冷拔换热管,适用于无相变传热和易产生振动场合 II---II 级(换热器)管束 采用普通级冷拔换热管,适用于受沸、冷凝传热和无振动一般场合 例如: (1) 浮头式换热器:S---钩圈式浮头 6500 1.65442.5A E S I ------------ 平盖管箱,公称直径500㎜,管壳程设计压力均为1.6MPa ,公称换热面积254mm ,较高 级冷拔换热器外经25mm,管长6m,4管程但壳程的I 级浮头式换热器 (2) 固定管板式换热器: 2.5970020041.625B E M I ------------ 封头管箱,公称直径700mm,管程设计压力2.5MPa ,壳程设计压力1.6MPa,,公称换热面积2200m , 较高级冷拔换热管外经25mm,管长9mm,4管程,但壳程的固定管板式换热器,M--与B 相似的固定管板(封头)结构。

管壳式换热器换热管根数的估算

管壳式换热器换热管根数的估算 王 玉 常 阳 支 歆 沈阳仪器仪表工艺研究所 沈阳市 110043 贾书鹏 大连冷冻机股份有限公司 辽宁省大连市 116033 【摘要】根据行业标准JB/T4715-92,JB/T4716-92有关内容绘出公式n=(D/ad)2中系数a的变化曲线,从曲线分析结果中得出一些有价值的结论。 关键词:管壳式换热器 壳径 管径 程数 管数 系数a The Estimate of H eat Exchange Tubes Number in the Tubular H eat Exchanger W ang Yu Chang Yang Zhi Xin Shenyang Institute of Instrumentation Technology,Shenyang110043 Abstract:According to the JB/T4715-92.JB4716-92,the curves of coefficient a in the formula n=(D/ad)2are given,some worthy conclusions are drawn by analyzing the curves. K ey Words:Tubular Heat Exchanger,Diameter of Shell,Diameter of Tube,Number of Passes,Number of Tubes,Coeffi2 cient a. 1 引 言 布管是管壳式换热器设计重要内容之一。通常,在壳径、管径、程数、排列方式确定后,即可按G B151相关内容,手工或计算机自动布管(如化工设备CAD 软件包(V2.0)LBJ38),给出准确管数。 但有时尚未进行到正式设计阶段,无法知道准确管数,能否在已知部分参数的情况下,估算出管数是很有必要的。文献〔1〕介绍一种估算方法: n=(D/ad)2 式中 n———换热管根数; D———管壳式换热器壳内径,mm; d———换热管外径,mm; a———系数,取1.5~1.7。 该公式适用于管心距P=(1.3~1.5)d。其形式简单,但使用的范围、误差、系数a的具体选取办法,文献〔1〕均未介绍,还有,按G B151规定,除小于等于Ф20规格换热管管心距在公式适用范围内,其余管心距均小于1.3d,已超出公式使用范围。 G B151适用的固定管板式、浮头式、U形管式和填料函式换热器,从布管角度讲,固定管板式属一类;U 形管式属一类;浮头式和填料函式属一类。U形管由于受到弯曲半径的限制,分程隔板槽两侧相邻管中心距需按2倍的弯曲半径选取。况且,单根U形管通常包括一个弯管段和两个直管段,管数不到同壳径的固定管板式1/2;浮头式和填料函式受浮头管板和浮头管板裙的影响,布管数大为减少,仅相当于小一规格的固定管板式布管数。因而,固定管板式是同规格中布管密度最大,布管根数最多的一种形式,并且也是最常用的结构形式。本文以行业标准JB/T4715—92“固定管板式换热器型式与基本参数”;JB/T4716—92“立式热虹吸式重沸器型式与基本参数”为基础,探讨公式n =(D/ad)2中系数a的选取办法。 2 标准范围内系数a的变化 2.1 为简化起见,特作如下假设 (1)用钢管(DN159~DN325)制造换热器筒体,钢管壁厚定为10mm。因壳径较小,拉杆孔位数占总管数比例较高,故按G B151规定,拉杆数定为4,另加到管子根数里。 (2)卷制筒体(DN≥400mm)中,除DN400及采用Ф38换热管DN500的拉杆孔数按G B151规定为 12 第1期?管件与设备?

管壳式换热器课程设计

管壳式换热器课程设计 一、管壳式换热器的介绍 管壳式换热器是目前应用最为广泛的换热设备,它的特点是结构坚固、可靠高、适应性广、易于制造、处理能力大、生产成本低、选用的材料范 围广、换热面的清洗比较方便、高温和高压下亦能应用。但从传热效率、结构的紧凑性以及位换热面积所需金属的消耗量等方面均不如一些新型 高效率紧凑式换热器。管壳式换热器结构组成:管子、封头、壳体、接管、 管板、折流板;如图1-1所示。根据它的结构特点,可分为固定管板式、 浮头式、U形管式、填料函和釜式重沸器五类。 二、换热器的设计 2.1设计参数 参数名称壳程管程 设计压力(MPa) 2.6 1.7 操作压力(MPa) 2.2 1.0/0.9(进口/出口) 设计温度(℃) 250 75

操作温度(℃) 220/175(进口、出口) 25/45(进口/出口) 流量(Kg/h) 40000 选定 物料(-)石脑油冷却水 程数(个) 1 2 腐蚀余度(mm) 3 - 2.2设计任务 1. 根据传热参数进行换热器的选型和校核 2.对换热器主要受压原件进行结构设计和强度校核,包括筒体、前端封头管箱、外头盖、封头、法兰、管板、支座等。 3.设计装配图和重要的零件图。 2.3热工设计 2.3.1基本参数计算 2.3.1.1估算传热面积 -=220-45=175 -=175-25=150 因为,所以采用对数平均温度差 算术平均温度差:= P= R= 查温差修正系数表得 因此平均有效温差为0.82 放热量 考虑换热器对外界环境的散热损失,则热流体放出的热量将大于冷流体吸收的热量,即:

取热损失系数,则冷流体吸收的热量: 由可的水流量: ==31372.8 这里初估K=340W/(),由稳态传热基本方程得传热面积: =16.55 2.3.1.2由及换热器系列标准,初选型号及主要结构参数 选取管径卧式固定管板式换热器,其参数见上表。从而查《换热器设计手 册》表1-2-7,即下表 公称直径管程数管子根数中心排管管程流通换热面积换热管长 换热管排列规格及排列形式: 换热管外径壁厚:d=50mm 排列形式:正三角形 管间距: =32mm 折流板间距: 2.1.1.3实际换热面积计算 实际换热面积按下式计算 2.2计算总传热系数,校核传热面积 总传热系数的计算 式中:——管外流体传热膜系数,W/(m2·K); ——管内流体传热膜系数,W/(m2·K);

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

管壳式换热器

课程设计 6 4.3 吨/年热水的管壳式换热器设计 10 姓名郭宁 院系食品工程学院 专业热能与动力工程 年级热能本1201 学号20122916107 指导教师邹欣华 2015年1月20 日

目录 绪论 (1) 1设计任务 (1) 2换热器设计方案的确定 (1) 2.1确定流体的流量、压力、温度、热负荷 (1) 2.2管壳等材料的选择 (1) 3换热器热力计算 (1) 3.1流体物性数据 (1) 3.2传热温差 (2) 3.3传热面积 (2) 4换热器结构设计 (2) 4.1管数和管程数和管束的分程、管子的排列的确定 (3) 4.2管子在管板上的排列方式 (4) 5换热器校核设计 (4) 5.1核算总传热系数 (5) 5.2确定污垢热阻 (6) 5.3核算压强降 (6) 6图纸绘制 (9) 7主要参考文献 (9)

绪论 换热器的发展动向:换热器的传热与流体流动计算的准确性,取决于物性模拟的准确性。因此,物性模拟一直为传热界重点研究课题之一,特别是两相流物性的模拟。两相流的物性基础来源于实验室实际工况的差别。纯组分介质的物性数据基本上准确,但汽油组成物的数据就与实际工况相差较大,特别是带有固体颗粒的流体模拟更复杂。为此,要求物性模拟在手段上更加先进,测试的准确率更高。从而使换热器计算更准确,材料更节省。物性模拟将代表换热器的经济技术水平。 1设计任务 处理能力为6104.3?吨/年热水的管壳式换热器,热水入口温度90℃,出口温度70℃,冷却介质为循环水,入口温度为30℃,出口温度为40℃,允许压强降不大于105Pa 。每年按照320天计算,每天连续24小时运行。 2换热器设计方案的确定 2.1确定流体的流量、压力、温度、热负荷 流量:热水流量6104.3?吨/年=97.122kg/s 冷却水流量=246kg/s 温度:热水入口温度90℃,出口温度70℃,冷却介质为循环水,入口温度为30℃,出口温度为40℃。 热负荷:()()w t t c m Q 7" 2 '11110033.17090420097.122?=-??=-= 2.2管壳等材料的选择 选取规格为25*2.5mm 的无缝钢管,mm d mm d i 20,250== 3换热器热力计算 管程流体的定性温度: 80270 901=+= T ℃ 壳程流体的定性温度: 352 30 402=+=T ℃ 3.1流体物性数据 两流体在定性温度下的物性数据如下: 水35 993.95 4.174 727.4 0.6265 水80 971.8 4.195 355.1 0.674

管壳式换热器制造工艺规程

管壳式换热器制造工艺规程 1. 主题内容与适用范围 本规程规定了管壳式换热器的壳体、管箱、折流板、支持板和管束的制造,以及换热器的组装、耐压试验及油漆包装等内容。 适用于换热器制造。 2.引用标准 GB150-1998《钢制压力容器》 GB151-1999《管壳式换热器》 《压力容器安全技术监察规程》 3. 壳体制造 3.1 壳体的制造除符合本规程外,还应符合《压力容器壳体制造工艺规程》和GB151-1999《管壳式换热器》中的规定。 3.2 圆筒内直径允许偏差 3.2.1 用板材卷制时,内直径允许偏差可通过外圆周长加工以控制,其外圆周长允许上偏差为10mm,下偏差为0。 3.2.2用钢管作圆筒时,其尺寸允许偏差应符合GB/T8163和GB/T14976的规定。在遵循GB151 4.4.2规定时,GB151附录 C的奥氏体不锈钢焊接钢管也可用作圆筒。 3.2.3 圆筒同一断面上最大最小直径之差e≤0.5%DN且当: (1)D N≤1200mm时,其值不大于5mm; (2)D N>1200mm时,其值不大于7mm; 3.2.4 圆筒直线度允许偏差为L/1000(L为圆筒总长)。且当: (1)L≤6000mm时,其值不大于4.5mm; (2) L>6000mm时,其值不大于8mm; 直线度检查应通过中心线的水平和垂直面,即沿圆周0°、90°、180°、270°四个部位测量。 3.3 壳体内壁凡有碍管束顺利装入或抽出的焊缝均应修磨至与母材

表面齐平。 3.4 壳体长度公差按GB/T1804-2000中m级规定。 3.5 接管、补强圈与壳体装配,须待壳体与法兰的两道环缝焊接完毕后,再划线开孔。装配接管法兰及补强圈,先从壳体内部将接管焊到壳体上,并对正接管以千斤顶或支撑胎具在壳体内部顶住,然后在外面焊接接管及补强圈。 4. 管箱制造 4.1 管箱短节与管箱法兰组对时,应以法兰背面为基准。法兰的螺栓孔在施工图样无规定时均应跨中,如施工图样有规定时,按图样要求加工。 4.2 管箱法兰密封面及隔板密封面应在接管、补强圈等零部件与管箱组焊完毕并经热处理后再进行加工。 4.3 管箱接管开孔划线时,应使短节纵焊缝处于水平位置。 4.4 管箱隔板装配前,应将管箱内部环缝凸起处铲平,然后再组装焊接隔板。 4.5 焊接管箱隔板时,焊缝应与法兰端面齐平,不得凹下。 4.6 碳钢、低合金钢制的焊有分程隔板的管箱和浮头盖以及管箱的侧向开孔超过1/3圆筒内径的管箱,应在施焊后作消除应力的热处理。奥氏体不锈钢制管箱、浮头盖一般不作焊后消除应力热处理(图样、工艺文件另有规定的除外)。 5. 管板的制造工艺要求 5.1 管板、管箱盲板若用钢板制作时,非加工面(一般为管板、管箱盲板内侧表面)不平度不得超过以下规定值,否则应进行校平:(1)D N<1000mm时,≯2mm; (2)D N≥1000mm时,≯3mm; 5.2 拼接管板的焊缝应进行100%的射线或超声检测,按JB4730规定的Ⅱ级或Ⅰ级为合格,除不锈钢外,拼接后的管板还应作消除应力

管壳式换热器采购技术规范

中国石化物资采购技术条件标准 管壳式换热器采购技术规范 (暂行) SPTS-EQ02-T001 2013-05-18发布 2013-06-01实施 中国石油化工集团公司

SPTS‐EQ02‐T001 目 录 前言 (1) 1 范围 (2) 2 规范性引用文件 (2) 3 总则 (3) 4 设计审查 (3) 5 材料 (3) 5.1 通用要求 (3) 5.2 受压元件材料 (4) 5.3 非承压件材料 (4) 5.4 换热管 (5) 5.5 垫片 (5) 5.6 紧固件 (5) 6 设计 (5) 7 制造 (9) 7.1 通用要求 (9) 7.2 材料标记 (9) 7.3 排版 (9) 7.4 零件加工 (9) 7.5 壳体 (10) 7.7 焊接 (11) 7.8 热处理 (11) 7.9 不锈钢复合钢板壳体 (11) 8 检验与验收 (12) 9 文件要求 (14) 10 涂敷与运输包装 (15) 附录 (16) I

前 言 为保障中国石油化工集团公司工业装置的安全可靠长周期运行,按照“高标准,严要求,保安全”的原则,特组织制定中国石油化工集团公司静设备采购技术标准。 本标准规定了适用于中国石油化工集团公司工业装置的管壳式换热器(以下简称“换热器”)的设计、制造、检验与验收的要求。 本标准按照GB/T 1.1-2009《标准化工作导则 第1部分:标准的结构和编写》给出的规则起草。 本标准由中国石油化工集团公司物资装备部管理和解释。 本标准在实施过程中,如发现需要修改补充之处,请将意见和有关资料提供给管理单位和主编单位,以便今后修订时参考。 管理单位:中国石油化工集团公司物资装备部

管壳式换热器工作原理和结构

管壳式换热器工作原理和结构 来自网络2010-3-2 15:17:39 admin 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,管壳式换热器在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常管壳式换热器的工作压力可达4兆帕,工作温度在200℃ 以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图1 [固定管板式换热器]

为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃)。 管壳式换热器特点:管壳式换热器是换热器的基本类型之一,19世纪80年代开始就已应用在工业上。这种换热器结构坚固,处理能力大、选材范围广,适应性强,易于制造,生产成本较低,清洗较方便,在高温高压下也能适用。但在传热效能、紧凑性和金属消耗量方面不及板式换热器、板翅式换热器和板壳式换热器等高效能换热器先进。 管壳式换热器分类:管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填函式换热器和双管板换热器等。前3种应用比较普遍。

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构 随着科技高速发展的今天,换热器已广泛应用国内各个生产领域,换热器跟人们生活息息相关。换热器顾名思义就是用来热交换的机械设备。换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。换热器分为很多类型,管壳式换热器是很普遍的一种。管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。本文对管壳式换热器的原理进行简单介绍。 一、管壳式换热器的工作原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m (℃)。 二、管壳式换热器的形式与结构 管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为固

管壳式换热器设计论文

摘要 管壳式换热器具有可靠性高、适应性广等优点,在各工业领域中得到最为广泛地应用。 本文设计的换热设备是化工生产中应用的管壳式换热器中的浮头式换热器。壳程介质为苯,壳程设计压力分别为0.0462MPa;管程介质为冷却水,管程设计压力为0.473MPa;传热面积为74.42 m。操作时管程内的水冷却壳程内的物料。设计方法采用压力容器的常规设计方法,按照GB150-89《钢制压力容器》、 GB151-89《钢制管壳式换热器》等技术法规执行,设计内容主要包括设计方案的选择、壳程和管程强度及结构设计、传热系数设计、以及换热器其它零部件设计等。设计计算结果准确,图纸符合国家机械制图标准要求,传热效果满足要求。 尽管本设备结构复杂,造价高;但是能承受较高压力,适用于壳侧走易结垢的介质,管、壳程温差较大的场合,是当今化工生产中使用较多的换热设备之一。 关键词:物料衡算;导热系数;换热面积

Abstract The fixed tube-sheet exchanger is adopted in industry field extensively with the merits of high reliability and extensive applicability The shell type adopted in chemical production was used as the heat exchange equipment in this paper, and adopted floating-head type heat exchanger. The shell medium was Benzene, and the design pressure was 0.0462MPa , the tube medium was Process water , and the design pressure was 0.473MPa and the heat transfer area was 74.42 m. The material of shell was cooled by the water of tube . The ordinary design method of pressure vessel was adopted in this paper , and based on the GB150-98 《Steel Pressure Vessel》, GB151-99 《Steel shell and tube exchanger》, and the main design contents contained that the choice of designproposal , strength of shell and tube, structure design, heat transfer coefficient design, and the design of other accessories . The design calculation result was correct , the woring drawings met the national mechanical charing requirement.And the heat transfer satisisfied the requirements . Though the structure of floating-head type heat exchanger was complex; had the higher manufacturing cost it could bear the hight pressure , and the pipe was easy changed and the shell medium was the same with clean , applied in the condition of higher temperature difference between shell and tube ,deposited medium flowing in side, and became the most usually heat transfer equipment in chemical production recently Keywords: material balance;conductivity factor;heat transfer area

管壳式换热器设计要点

课程设计 设计题目:管壳式水-水换热器 姓名 院系 专业 年级 学号 指导教师 年月日

目录 1前言 (1) 2课程设计任务书 (2) 3课程设计说明书 (3) 3.1确定设计方案 (3) 3.1.1选择换热器的类型 (3) 3.1.2流动空间及流速的确定 (3) 3.2确定物性数据 (3) 3.3换热器热力计算 (4) 3.3.1热流量 (4) 3.3.2平均传热温度差 (4) 3.3.3循环冷却水用量 (4) 3.3.4总传热系数K (5) 3.3.4计算传热面积 (6) 3.4工艺结构尺寸 (6) 3.4.1管径和管内流速 (6) 3.4.2管程数和传热管数 (6) 3.4.3平均传热温差校正及壳程数 (7) 3.4.4传热管排列和分程方法 (7) 3.4.5壳体内径 (7) 3.4.6折流板 (8) 3.4.7接管 (8) 3.5换热器核算 (8) 3.5.1热量核算 (8) 3.5.2换热器内流体的流动阻力 (12) 3 .6换热器主要结构尺寸、计算结果 (13) 3.7换热器示意图、管子草图、折流板图 (14) 4设计总结 (15) 5参考文献 (16)

1前言 在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,成为热交换器。热交换器在工业生产中的应用极为普遍,例如动力工业中锅炉设备的过热器、省煤器、空气预测器,电厂热力系统中的凝汽器、除氧器、给水加热器、冷水塔;冶金工业中高炉的热风炉,炼钢和轧钢生产工艺中的空气和煤气预热;制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,都是热交换器的应用实例。在化学工业和石油化学工业的生产过程中,应用热交换器的场合更是不胜枚举。在航空航天工业中,为了及时取出发动机及辅助动力装置在运行时产生的大量热量;热交换器也是不可或缺的重要部件。 根据热交换器在生产中的地位和作用,它应满足多种多样的要求。一般来说,对其基本要求有: (1)满足工艺过程所提出的要求。热交换强度高,热损失少。在有利的平均温度下工作。 (2)要有与温度和压力条件相适应的不易遭到破坏的工艺结构,制造简单,装修方便,经济合理,运行可靠。 (3)设备紧凑。这对大型企业,航空航天、新能源开发和余热回收装置更有重要意义。 (4)保证低的流动阻力,以减少热交换器的消耗。 管壳式换热器是目前应用最为广泛的一种换热器。它包括:固定管板式换热器、U 型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。管壳式换热器由管箱、壳体、管束等主要元件构成。管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。

管壳式换热器工作原理、分类及其特点

管壳式换热器工作原理、分类及其特点 管壳式换热器(shell and tube heat exchanger)又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。 1.1管壳式换热器工作原理 管壳式换热器一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。进行换热的冷热两种流体,一种在管内流动,称为管程流体(图1中蓝色箭头示意);另一种在管外流动,称为壳程流体(图1中红色箭头示意)。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。 流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。 图1管壳式换热器工作原理示意图 1.2管壳式换热器分类 1.2.1 固定管板式换热器 固定管板式换热器的两端管板,采用焊接与壳体联成一体,结构简单。由于两个管

板被换热管互相支撑,与其他管壳式换热器相比,管板最薄。当管束与壳体之间的温差太大而产生不同的膨胀时,常会使管子与管板的接口脱开,发生介质泄漏,因此当只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高时,可在壳体上安装膨胀节,以减小热应力。 1.2.2 浮头式换热器 浮头式换热器的两断管板只有一端管板与壳体焊接固定,另一端的管板可在壳体内自由浮动,完全消除了热应力,该端成为浮头。整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。 1.2.3 U型管换热器 U型管换热器的每根换热管皆弯成U形,管子的两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器由于壳体和管子分开,管束可以自由伸缩,热补偿性能好,结构比浮头式简单,但管程不易清洗。U型管式换热器一般用于高温高压的情况下,尤其当压力较高时,在弯管段壁厚要加厚,以补偿弯管后管壁的减薄。

相关主题
文本预览
相关文档 最新文档