当前位置:文档之家› (完整版)二次函数图像对称变换前后系数的关系(专题)

(完整版)二次函数图像对称变换前后系数的关系(专题)

(完整版)二次函数图像对称变换前后系数的关系(专题)
(完整版)二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系

课时学习目标:

1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。

2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。

3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。

学习重点:

利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。。

学习难点:利用图像认识总结函数性质变化规律。 一、复习预备

1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。

2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。

3.已知函数y= x 2 -2x -3 ,

(1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的?

(2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;

(5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积;

(6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0.

4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。 例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a

其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个.

二、归纳二次函数y=ax2+bx+c(a≠0)的图像

2-的关系

与系数a、b、c、ac

b4

三、二次函数图像对称变换前后系数的关系探究

例1. 某抛物线和函数y= -x2 +2x -3的图象关于y轴成轴对称, 请你求出该抛物线的关系式。

例2. 某抛物线和函数y= -x2 +2x -3的图象关于x轴成轴对称, 请你求出该抛物线的关系式。

例3.某抛物线和函数y= -x2 +2x -3的图象关于原点成中心对称,请你求出该抛物线的关系式。

例4.某抛物线和函数y= -x2 +2x -3的图象关于顶点坐标成轴对称, 请你求出该抛物线的关系式。

例5.某抛物线和函数y= -x2 +2x -3的图象关于点(3,2)成中心对称, 请你求出该抛物线的关系式。

函数y= ax2 +bx+c的图象对称变换后,解析式系数变化规律:

四、达标检测

1. 二次函数y= ax2 +bx+c(a≠0)的图象如图所示,则点A(a,b)在( )

A.第一象限

B. 第二象限

C. 第三象限

D. 第四象限

2.二次函数y= ax2 +bx+c(a≠0)的图象如图所示,则下列条件不正确的是( )

A.a<0,b>0,c<0

B.b2-4ac<0

C.a+b+c<0

D.a-b+c>0

(1) (2)

3.二次函数y= 6x2 +7x -3的图象关于x轴对称的图象解析式为___________,

关于y轴对称的图象解析式为________________,关于坐标原点对称的解析式___________________.

二次函数图象变换规律

一、二次函数图象的平移变换 (1)具体步骤:

先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:

(2)平移规律:在原有函数的基础上“左加右减,上加下减”.

二、二次函数图象的对称变换

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

2. 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

3. 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

无论抛物线作何种对称变换,形状不变,a 不变.求抛物线的对称抛物线的表达式时,先确定已知抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,再写出其对称抛物线的表达式.

【习题分类】

一、二次函数图象的平移变换

1、函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤是:( )

A. 右移两个单位,下移一个单位

B. 右移两个单位,上移一个单位

C. 左移两个单位,下移一个单位

D. 左移两个单位,上移一个单位

2、函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤

是( )

A. 右移三个单位,下移四个单位

B. 右移三个单位,上移四个单位

C. 左移三个单位,下移四个单位

D. 左移四个单位,上移四个单位

3、二次函数2241y x x =-++的图象如何移动就得到2

2y x =-的图象( )

A. 向左移动1个单位,向上移动3个单位.

B. 向右移动1个单位,向上移动3个单位.

C. 向左移动1个单位,向下移动3个单位.

D. 向右移动1个单位,向下移动3个单位.

4、将函数2y x x =+的图象向右平移()0a a >个单位,得到函数232y x x =-+的图象,则a 的值为( )

A .1

B .2

C .3

D .4

5、把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是235y x x =-+,则a b c ++=________________.

6、对于每个非零自然数n ,抛物线()()

2211

11n y x x n n n n +=-

+

++与x 轴交于n n A B 、两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++…的值是( )

A .

20092008 B .20082009 C .20102009 D .2009

2010

7、把抛物线2y x =-向左平移1个单位,向上平移3个单位,则平移后抛物线的解析式为( )

A .()213y x =---

B .()2

13y x =-+- C .()2

13

y x =--+ D .()2

13

y x =-++

8、将抛物线22y x =向下平移1个单位,得到的抛物线是( )

A .()221y x =+

B .()2

21y x =- C .221y x =+ D .221y x =-

9、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A. 232y x =- B. 23y x = C. 23(2)y x =+ D. 232y x =+

10、一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.

11、如图,ABCD Y 中,4AB =,点D 的坐标是(0,8),以点C 为顶点的抛物线2y ax bx c =++ 经过x 轴上的点A ,B .

⑴ 求点A ,B ,C 的坐标.

⑵ 若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.

12、抛物线254y ax x a =-+与x 轴相交于点A B 、,且过点()54C ,. ⑴ 求a 的值和该抛物线顶点P 的坐标.

⑵ 请你设计一种平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线的解析式.

二、二次函数图象的对称变换 1、函数2y x =与2y x =-的图象关于______________对称,也可以认为2y x =是函数2y x =-的图象绕__________旋转得到. 2、已知二次函数221y x x =--,求: ⑴关于x 轴对称的二次函数解析式; ⑵关于y 轴对称的二次函数解析式; ⑶关于原点对称的二次函数解析式.

3、在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )

A .22y x x =--+

B .22y x x =-+-

C .22y x x =-++

D .22y x x =++

4、已知二次函数2441y ax ax a =++-的图象是1c .

⑴ 求1c 关于()10R ,成中心对称的图象2c 的函数解析式; ⑵ 设曲线12c c 、与y 轴的交点分别为A B ,,当18AB =时,求a 的值.

5、已知抛物线265y x x =-+,求

⑴ 关于y 轴对称的抛物线的表达式; ⑵ 关于x 轴对称的抛物线的表达式; ⑶ 关于原点对称的抛物线的表达式.

6、设曲线C 为函数()20y ax bx c a =++≠的图象,C 关于y 轴对称的曲线为1C ,1C 关于x 轴对称的曲线为2C ,则曲线2C 的函数解析式为________________.

7、对于任意两个二次函数:()2211112222120y a x b x c y a x b x c a a =++=++≠,,当12a a =时,

我们称这两个二次函数的图象为全等抛物线,现有ABM ?,()()1010A B -,

,,,记过三点的二次函数抛物线为“C W W W ”(“□□□”中填写相应三个点的字母).

⑴ 若已知()01M ,,ABM ABN ??≌(图1),请通过计算判断ABM C 与ABN C 是否为全等抛物线;

⑵ 在图2中,以A B M 、、三点为顶点,画出平行四边形.

① 若已知()0M n ,

,求抛物线ABM C 的解析式,并直接写出所有过平行四边形中三个顶点且能与ABM C 全等的抛物线解析式.

② 若已知()M m n ,,当m n 、满足什么条件时,存在抛物线ABM C ?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.若存在,请写出所有满足条件的抛物线“C W W W ”;若不存在,请说明理由.

8、已知:抛物线2:(2)5f y x =--+. 试写出把抛物线f 向左平行移动2个单位后,所得的新抛物线1f 的解析式;以及f 关于x 轴对称的曲线2f 的解析式.画出1f 和2f 的略图, 并求:

⑴ x 的值什么范围,抛物线1f 和2f 都是下降的;

⑵ x 的值在什么范围,曲线1f 和2f 围成一个封闭图形;

⑶ 求在1f 和2f 围成封闭图形上,平行于y 轴的线段的长度的最大值.

二次函数图形变换综合压轴题

1、在平面直角坐标系xoy 中,抛物线322

--=mx mx y (m ≠0)与x 轴交于A (3,0),B 两

点.

(1)求抛物线的表达式及点B 的坐标.

(2)当-2<x <3时的函数图像记为G ,求此时函数y 的取值范围.

(3)在(2)的条件下,将图像G 在x 轴上方的部分沿x 轴翻折,图像G 的其余部分保

持不变,得到一个新图像M.若经点C(4,2)的直线y=kx+b (k ≠0)与图像M 在第三象限内有两个公共过点,结合图像求b 的取值范围.

2、已知关于x 的一元二次方程0132

=-+-k x x 有实数根,k 为正整数.

(1)求k 的值;

(2)当此方程有两个不为0的整数根时,将关于x 的二次函数

132

-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式;

(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的

其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.

3、已知:抛物线C1:5442-++=a ax ax y 的顶点为P,与x 轴相交于A,B 两点(点A 在点B 的左边),点B 的横坐标是1

(1)求抛物线的解析式和顶点坐标;

(2)将抛物线沿x 轴翻折,再向右平移,平移后的抛物线C2的顶点为M ,当点P ,M 关于点B 成中心对称时,求平移后的抛物线C2的解析式;

(3)直线y=-5

3

x+m 与抛物线C1,C2的对称轴分别交于点E,F ,设由点E ,P ,F ,M 构成的

四边形的面积为S ,试用含m 的代数式表示S 。

4、将抛物线沿c1:3

1

312+-

=x y 沿x 轴翻折,得拋物线c2,如图所示. (1)请直接写出拋物线c2的表达式.

(2)现将拋物线C1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E . ①当B ,D 是线段AE 的三等分点时,求m 的值;

②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.

5、将抛物线沿c1:3

y沿x轴翻折,得拋物线c2,如图所示.

=x

-

32+

(1)请直接写出拋物线c2的表达式.

(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.

①当B,D是线段AE的三等分点时,求m的值;

②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

二次函数图像与系数关系

二次函数图象与系数的关系 知识点 一、二次函数错误!未找到引用源。的图象与性质 二次函数错误!未找到引用源。图象可由抛物线错误!未找到引用源。平移个单位,再平移个单位而得到. 平移规律如下: (1)平移时与上、下、左、右平移的先后顺,既可以先左右移再上下移,也可以先上下移再左右移; (2)抛物线的移动主要看的移动,即在平移时只要抓住的位置变化就可以了; (3)平移规律:“上加下减,左加右减”. (4)抛物线错误!未找到引用源。经过反向平移也可以得到错误!未找到引用源。; (5)抛物线错误!未找到引用源。的对称轴是直线,顶点坐标是. 二次函数错误!未找到引用源。的性质列表如下: 函数 错误!未找到引 用源。的符号 错误!未找到引用源。错误! 未找到引用源。 错误!未找到引用源。错误! 未找到引用源。 图象 开口方向 对称轴 顶点坐标 最值

函数的增减性 二、错误!未找到引用源。与错误!未找到引用源。的互相转化 1.通过、可以将错误!未找到引用源。化为错误!未找到引用源。. 2.利用可以将错误!未找到引用源。转化为错误!未找到引用源。.简记为“一提,二配,三计算”.即错误!未找到引用源。错误!未找到引用源。. 因此,二次函数错误!未找到引用源。的图象是一条抛物线,它的对称轴是直线,顶点坐标 是. 三、二次函数错误!未找到引用源。的图象及性质 函数 错误!未找到引用源。的符号错误!未找到引用源。错误!未找 到引用源。 错误!未找到引用源。错误!未找 到引用源。 图象 开口方向 对称轴 顶点坐标 增减性 最值 拓展:对于抛物线错误!未找到引用源。. (1)若已知在直线错误!未找到引用源。的一侧,图象上升或下降,(能/不能)确定直线错误!未找到引用源。是该抛物线的对称轴. (2)若已知在直线错误!未找到引用源。的两侧,图象一侧上升而另一侧下降,则(能/不能)确定该直线

二次函数的对称轴(学练结合)

二次函数的对称轴 二次函数的图像是关于某条直线对称的抛物线,这条直线就叫做对称轴。我们用公式这样表示对称轴,直线x=-b/2a,有图像可知,当二次函数图像上两点的纵坐标相等时,那么这两点必然关于对称轴对称,且对称轴为这两点横坐标之和的一半。形如:点 A(x1,y1)、B(x2,y2)在二次函数的图像上,若y1=y2,那么图像的对称轴为 (x1+x2)/2。抛物线的顶点必然通过对称轴。所以可以根据顶点坐标直接求出对称轴。例如已知二次函数的顶点坐标为(x1,y1),那么二次函数的对称轴为直线x=x1。 在平面直角坐标坐标系中,已知两点坐标便可求其连线的中点坐标,例如:已知点 A(x1,y1)、B(x2,y2),则两点连线的中点为 C((x1+x2)/2,(Y1+Y2)/2),一般情况,出题者会结合一次函数,中垂线,三角形,二次函数进行综合考查。

例题演练 1、已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴() A.只能是x=﹣1 B.可能是y轴 C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧 2、已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是() A. 3 B. 4 C. 5 D. 6 3、如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b. (1)求二次函数y1的解析式及点B的坐标; (2)由图象写出满足y1<y2的自变量x的取值范围; (3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系 一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下: 1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:∣a ∣越大,抛物线的张口越小. 2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明02<- a b ,则对称轴在y 轴的左边; b 与a 异号,说明?b 2a >0,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴. 3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0 抛物线与y 轴的交点在y 轴的正半轴; c < 0 抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0,抛物线过原点. 4 a,b,c 共同决定判别式?=b 2?4ac 的符号进而决定图象与x 轴的交点 b 2?4a c >0 与x 轴两个交点 b 2?4a c =0 与x 轴一个交点 b 2?4a c <0 与x 轴没有交点 5 几种特殊情况:x=1时,y=a + b + c ; x= -1时,y=a - b + c . 当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0 当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0. 扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。 一.选择题(共8小题) 1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( ) A .a >0 B .b <0 C .c <0 D .b +2a >0 2.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( ) A .a >0 B .b <0 C .ac <0 D .bc <0. 3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:① abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有 ( ) A .1个 B .2个 C .3个 D .4个 4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0; ②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( ) A .4个 B .3个 C .2个 D .1个 第3题图 第4题图 第5题图 第6题图 5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0; ②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( ) A .1个 B .2个 C .3个 D .4个 6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

二次函数图像与系数的关系

二次函数图像与系数的关系 1. 如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A. 个 B. 个 C. 个 D. 个 2. 小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A. 个 B. 个 C. 个 D. 个 3. 设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A. ①② B. ③④ C. ①④ D. ①③ 5. 已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6. 已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7. 如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A. 个 B. 个 C. 个 D. 个 8. 二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A. 个 B. 个 C. 个 D. 个 9. 如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A. ①③④ B. ①②③ C. ①②④ D. ①②③④ 10. 已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

二次函数的对称性

(一)、教学内容 1.二次函数得解析式六种形式 ①一般式y=ax2 +bx+c(a≠0) ②顶点式(a≠0已知顶点) ③交点式(a≠0已知二次函数与X轴得交点) ④y=ax2(a≠0)(顶点在原点) ⑤y=ax2+c(a≠0) (顶点在y轴上) ⑥y=ax2 +bx (a≠0) (图象过原点) 2.二次函数图像与性质 对称轴: 顶点坐标: 与y轴交点坐标(0,c) 增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大 ?当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小 ☆二次函数得对称性 二次函数就是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应得纵坐标相等那么对称轴: 与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0) 与抛物线y=ax2 +bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2–bx-c(a≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数得对称轴 1、二次函数y=-mx+3得对称轴为直线x=3,则m=________。 2、二次函数得图像上有两点(3,-8)与(-5,-8),则此拋物线得对称轴就是( ) (A) (B) (C) (D) 3、y=2x-4得顶点坐标为___ _____,对称轴为__________。 4、如图就是二次函数y=ax2+bx+c图象得一部分,图象过点A(-3,0),对称轴为x=-1.求 它与x轴得另一个交点得坐标( , ) 5、抛物线得部分图象如图所示,若,则x得取值范围就是( ) A、 B、 C、或 D、或 6、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为 ( ) A、0 B、-1 C、 1 D、2 题型2 比较二次函数得函数值大小 1、、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为 ( ) (A)a+c (B)a-c (C)-c (D)c 2、若二次函数得图像开口向上,与x轴得交点为(4,0),(-2,0)知,此抛物 线得对称轴为直线x=1,此时时,对应得y 1 与y 2 得大小关系就是( ) A.y 1 <y 2 B、 y 1 =y 2 C、 y 1 >y 2 D、不确定 点拨:本题可用两种解法y x O –1 1 3 O –1 3 3 1

二次函数的图像与系数的关系

二次函数的图像与系数的关系 1.已知二次函数y=ax 2 +bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c >0;③4a+2b+c >0;④2a+b=0;⑤b 2 >4ac.其中正确的结论的有( ) A. 1个 B. 2个 C. 3个 D. 4个 2.如图,二次函数y =ax 2 +bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( ) A. a >0,b <0,c >0 B. b 2 ﹣4ac <0 C. 当﹣1<x <2时,y >0 D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数 图象,过点A (3,0),二次函数图象的对称轴是直线 x=1,下列结论正确的是( ) A. 2a+b=0 B. ac>0 C. D. 4.已知函数y=mx 2 -6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( ) A. 9 B. 0 C. 9或0 D. 9或1 5.如图,二次函数2 y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <, 0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大

而减小,其中正确的是(). A. ①②③ B. ②③④ C. ③④⑤ D. ①③④ 6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是() A. B. C. D. 7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0; ②9a+c<3b; ③25a+5b+c=0; ④当x>2时,y随x的增大而减小. 其中正确的结论有() A. 1个 B. 2个 C. 3个 D. 4个 8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,?③当-2<x<0时,y<0.正确的个数是()

二次函数系数a、b、c与图像的关系89058

二次函数系数a、b、c与图象的关系知识归纳: 1.a的作用:决定开口方向和开口大小 2.a与b的作用:左同右异(对称轴的位置) 3.c的作用:与y轴交点的位置。 4.b2-4ac的作用:与x轴交点的个数。 5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c), (-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。 针对训练: 1.判断下列各图中的a、b、c及△的符号。 (1)a___0;b___0;c___0;△__0. (2)a___0;b___0;c___0;△__0. (3)a___0;b___0;c___0;△__0. (4)a___0;b___0;c___0;△__0. (5)a___0;b___0;c___0;△__0. 2.二次函数y=ax2+bx+c的图象如图, 用(>,<,=)填空: a___0;b___0;c___0;a+b+c__0;a-b+c__0.

3.二次函数y=ax2+bx+c的图象如图1所示,则下列关于a、b、c间的 关系判断正确的是() A.ab<0 B.bc<0 C.a+b+c>0 D.a-b+c<0 4.二次函数y=ax2+bx+c图象如图,则点A(b2-4ac,-b a )在第象限. 4题图6题图 图6题图 5.已知a<0,b>0,c>0,那么抛物线y=ax2+bx+c的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.已知二次函数y=ax2+bx+c的图像如图所示,判断下列各式的符号: (1)a;(2)b;(3)c;(4)a+b+c;(5)a-b+c;(6)b2-4ac; (7)4ac-b2;(8)2a+b;(9)2a-b 7.练习:填空 (1)函数y=ax2+bx+c(a≠0)的函数值恒为正的条件:,恒 为负的条件:. (2)已知抛物线y=ax2+bx+c的图象在x轴的下方,则方程ax2+bx+c=0 的解得情况为:. (3)二次函数y=ax2+bx+c中,ac<0,则抛物线与x轴有交点。

二次函数图像与系数的关系

教学设计—— 二次函数的系数与图像 长葛六中刘晓金 目标:1、通过观察二次函数的图像的形成过程,导出二次函数的图像与系数的关系。 2、理解和探索相关二次函数的图像之间的关系。 3、会用学习的知识判断相关二次函数的图像之间的关系。 4、运用相关知识解决平移、对称、翻转图像的抛物线解析式。 重点:1、探索和总结二次函数的图像与系数之间的关系。 2、运用相关知识解决问题。 难点:运用相关知识解决问题。 学法:1、通过观察发现相关知识。 2、通过合作探索知识的运用。 教法:运用课件对知识由浅入深地进行展示,不断引导学生观察、探索、总结和应用。 教学过程 一、课堂导入 1、导言:不同的二次函数,图像也不相同,即使有时形状相同,在坐标系中的位置也不尽相同。你知道这是为什么吗?本节我们就一起来探讨一下。 (展示幻灯片1) 2、展示本节教学主要过程。 (展示幻灯片2) 二、师生互动过程 1、a的符号与抛物线开口方向

①、学生在练习本上画出y=x2,y=-x2的草图,观察抛物线的开口方向。 ②、(展示幻灯片3) ③、学生对着幻灯片,检查自己的发现。 ④、总结出:a>0时抛物线开口方向向上,a<0时抛物线开口方向向下。 ⑤、练习在抛物线y=(k-1)x2+x+1中k 时开口向上,k 时开口向下。 2、a的绝对值与图像开口的大小 ①、导言:我们知道二次函数的图像虽然是抛物线,但是形状却不尽相同,这究竟是为什么呢? ②、(展示幻灯片4)引导学生认真观察不同函数图像的形状(开口大小)与什么相关联? ③、引导学生总结出:a的绝对值相等,抛物线开口方向不同,大小相同。 ④、练习k取时,抛物线y=(k+3)x2-x+6可以由抛物线y=2x2变化而来。 3、C与图像和y轴的交点位置 ①、(展示幻灯片5) ②、通过引导学生,使学生总结出:C=0时抛物线与y轴相交于原点;C >0时抛物线与y轴相交于X轴上方;C<0时抛物线与y轴相交于x轴下方。 (C的值决定抛物线与y轴相交的位置) 4、a.b与对称轴的位置 ①、学生写出y=x2, y=x2+2x, y=x2-2x, y=-x2+2x, y=-x2-2x 中各个式子中a、b的值,并计算出ab 的值。 ②、(展示幻灯片6) ③、引导学生探讨幻灯片中各个图像的形成过程,总结出:ab=0时对称轴与y 轴重合;ab>0时对称轴在y轴的左边;ab<0时对称轴在y轴的右边。

二次函数图像和系数的关系

二次函数图像与系数的关系 1.如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A.个 B.个 C.个 D.个 2.小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A.个 B.个 C.个 D.个 3.设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A.①② B.③④ C.①④ D.①③ 5.已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6.已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7.如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A.个 B.个 C.个 D.个 8.二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A.个 B.个 C.个 D.个 9.如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A.①③④ B.①②③ C.①②④ D.①②③④ 10.已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

11. 已知二次函数()的图象如图所示,对称轴为。下列结论中,正确的是 ()。 A. B. C. D. 12. 如图,二次函数()的图象经过点和,下列结论中正确的是()。 A. B. C. D. 13. 如图,二次函数的图象与轴正半轴相交,其顶点的坐标为,下列结论: ①;② ;③;④。其中错误的是()。 A.① B.② C.③ D.④ 14. 如图,抛物线()过点和点,且顶点在第四象限,设, 则的取值范围是()。 A. B. C. D. 15. 已知二次函数的图象如图,则下列叙述正确的是()。 A. B. C. D.将该函数图象向左平移个单位后所得到抛物线的解析式为

二次函数图像与系数关系含答案

二次函数图像与系数关系 一.选择题(共9小题) 1.(2013?义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中, 正确的是() A.①②B.③④C.①④D.①③ 考点:二次函数图象与系数的关系. 专题:计算题;压轴题. 分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断; ②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入 (3a+b),并判定其符号; ③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值 范围; ④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0), ∴根据图示知,当x>3时,y<0. 故①正确; ②根据图示知,抛物线开口方向向下,则a<0. ∵对称轴x=﹣=1, ∴b=﹣2a, ∴3a+b=3a﹣2a=a<0,即3a+b<0. 故②错误; ③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0), ∴﹣1×3=﹣3, ∴=﹣3,则a=﹣. ∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点), ∴2≤c≤3, ∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣. 故③正确;

④根据题意知,a=﹣,﹣=1, ∴b=﹣2a=, ∴n=a+b+c=c. ∵2≤c≤3, ∴≤c≤4,即≤n≤4. 故④错误. 综上所述,正确的说法有①③. 故选D. 点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定. 2.(2013?烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 考点:二次函数图象与系数的关系. 专题:压轴题. 分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断 ③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的 增大而增大即可判断④. 解答:解:∵二次函数的图象的开口向上, ∴a>0, ∵二次函数的图象y轴的交点在y轴的负半轴上, ∴c<0, ∵二次函数图象的对称轴是直线x=﹣1, ∴﹣=﹣1, ∴b=2a>0,

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系 姓名________ 组号_____ 一、知识基础 1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上, ⑵ 当0a <时,抛物线开口向下, a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。 总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a - <,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a - =,即抛物线的对称轴就是y 轴; 当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a - >,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a - =,即抛物线的对称轴就是y 轴; 当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧. 总结:在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴a b x 2- =在y 轴左边则0>ab ,在y 轴的右侧则0时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;

⑵当0 c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; ⑶当0 c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结:c决定了抛物线与y轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 4.当x=1时,可以求出a+b+c的值;若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0; 当x=-1时,可以求出a-b+c的值;若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0; 思考:x=2时,可以通过函数图象得出哪些值? 5.根的别式b2-4ac,可以用来判断抛物线与x轴的交点个数,当b2-4ac>0时,方程 2 =++=0有两个根,也就是说y=0时,函数在x轴上可以找到2个对应的自变量值,y ax bx c 即断抛物线与x轴有2个交点;同理b2-4ac=0,二次函数图象与x轴有一个交点;b2-4ac <0时,抛物线与x轴没有交点。 二、精典练习 1.(烟台市中考题)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 2、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是() A.5个B.4个C.3个D.2个

二次函数系数abc与图像的关系28318

二次函数系数a、b、c与图像的关系 知识要点 二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0. (2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac <0. (5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号. (6)由对称轴公式x=,可确定2a+b的符号. 一.选择题(共9小题) 1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0 (m≠﹣1). 其中正确的个数是() A.1B.2C.3D.4 2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下 结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号 是() A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下 列四个结论: ①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有() A.1个B.2个C.3个D.4个 4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论: ①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确结论的个数为() A.1B.2C.3D.4 5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1, 且过点(﹣3,0)下列说法: ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点, 则y1>y2. 其中说法正确的是()

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系 课时学习目标: 1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。 2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。 3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。 学习重点: 利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。。 学习难点:利用图像认识总结函数性质变化规律。 一、复习预备 1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。 2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。 3.已知函数y= x 2 -2x -3 , (1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图; (5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积; (6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。 例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a 其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个. 二、归纳二次函数y=ax 2+bx+c(a ≠0)的图像 与系数a 、b 、c 、ac b 42-的关系

二次函数的图象和性质对称性

1.2.8 二次函数的图象和性质——对称性 教学目标: 1.能从数和形两个角度认识函数的奇偶性,掌握判断函数是奇函数还是偶函数的方法; 2.理解函数的奇偶性将有助于函数图象的绘制简化函数性质研究的工作量; 3.通过代数推理手段理解二次函数图象的对称性,提高抽象、概括、推理能力; 4.进一步领悟数形结合的思想方法。 教学重点: 1.函数的奇偶性定义的形成与应用; 2.认识二次函数图象的对称轴,以及二次函数的对称性的应用。 教学难点: 1. 用数量关系刻画函数奇偶性与二次函数的对称性; 2. 综合利用函数的奇偶性与单调性研究函数。 教学过程: 一. 复习提问 1. 叙述函数单调性的定义,以及描述二次函数单调性与最值的定理。(口头提问) 2. 课本53页练习(三位同学上黑板练习) (1)写出函数232-=x y 的图象的开口方向,顶点坐标,并作出草图; (2)写出函数2)3(--=x y 的图象的开口方向,顶点坐标,并作出草图; (3)已知函数m x x x f +-= 42)(2,当m 在什么范围内变化时,函数的定义域为全 体实数? 二.二次函数的图象和性质——对称性。(板书) 我们接着上次研究二次函数的图象和性质。两个内容:从解析式看函数的奇偶性;二次函数图象的对称性。 1. 从解析式看函数的奇偶性。 从练习(1),我们看到函数232-=x y 的图象关于y 轴对称。想想看,可以把图象具有这种性质的函数叫什么函数?(偶函数) 让我们看看二次函数n m x a x f +-=2)()(),0(R x a ∈≠在什么情况下是偶函数?二 次函数c bx ax x f ++=2)(),0(R x a ∈≠。通过计算机演示,把m 调到0,得到n ax x f +=2)(的图象。把b 调到0,得到c ax x f +=2)(的图象。 由图象看,它关于y 轴对称,此函数为偶函数。现在问,不画图能不能从函数的解析式看出一个函数是偶函数?类似地,我们知道,如果一个函数的图象关于原点对称,这个函数叫奇函数。能不能从函数的解析式看出一个函数是奇函数?如果能,函数图象画出

二次函数图象特征与系数关系专题

二次函数图象特征与系数关系专题 一、知识要点: 二次函数y=ax2+bx+c(a ≠ 0)系数符号的确定 3、C 由抛物线与y 轴的交点确定:交点在 y 轴的丿正半轴, 则 d 负半轴, 则"O 4、 b2-4ac 的符号由抛物线与 X 轴(或坐标轴)的交点个数确定: 。个交点,b 2-4ac?O ; y = O 时,方程有两个不相等 实数根 ① 与X 轴的交点个数1个交点,b 2-4ac=O ; y =O 时,方程有两个相等实 数根 没有交点,b 2-4ac O; y =O 时,方程无实数根 3个交点,b 2 - 4ac a O ; ② 与坐标轴交点个数 2个交点,b 2 - 4ac = O ; 1 个交点,b 2-4ac O; 5、 根据函数图象的具体情况取特殊值,确定代数式符号: 常见①x=1时,a +b +c 的符号;②x=-1时,a -b+ C 的符号;③x=2时,4a+2b+c 的符号;④ x=-2 时,4a-2b+c 的符号; ......... . K 6、 由对称轴公式X=- 一,可确定2a+b 的符号或对称轴有具体数值是确定相关代数式的符 2a 号;如:X=- =-时,可确定4a-3b 的符号;有时与相关成立的等式或不等式结合,确 2a 3 定运算后代数式的符号。 二、专题练习 ①b 2-4ac >O :② abc >O :③ 8a+c >O ;④ 9a+3b+c V O 2 3、 如图3,二次函数y=ax +bx+c 的图象中,根据图中信息,下列结论正确是( ) 1、a 由抛物线开口方向确定 开口向上=a a O 开口向下=a γ O K 2、b 由对称轴X=-和a 的符号确定 2a So, IaY 0, b 2a Y O 」 a ■ 0, a 0, 2 1.如图1 ,是二次函数y=ax +bx+c ( a ≠0的图象,根据图中信息,下列结论正确是( ) ① a b C >O ; ② b< a+ c ;③2a+b=O :④a +b

相关主题
文本预览
相关文档 最新文档