当前位置:文档之家› 分散剂对悬浮法制备聚苯乙烯的影响及形貌分析

分散剂对悬浮法制备聚苯乙烯的影响及形貌分析

分散剂对悬浮法制备聚苯乙烯的影响及形貌分析
分散剂对悬浮法制备聚苯乙烯的影响及形貌分析

高抗冲聚苯乙烯的制备

高抗冲聚苯乙烯的制备 一、聚苯乙烯的发展及高抗冲聚苯乙烯的简介 苯乙烯树脂是五大通用性合成树脂之一,一般按产量仅次于PE、PVC和PP而居第四位。 苯乙烯发展初期,只生产通用型聚苯乙烯。其质硬而脆、机械强度不高、耐热性较差,且易燃。为此人们做了大量的改进工作,形成了高抗冲聚苯乙烯、可发性聚苯乙烯、丙烯晴-苯乙烯共聚物等为代表的庞大的苯乙烯树脂体系。 高抗冲聚苯乙烯是一种橡胶粒径约为2um,分散在透明聚苯乙烯基质中形成的复合材料。它具有尺寸稳定、电绝缘性好、易于加工、成本低廉、综合性能优良等优点,从而在包装、器械、家电及玩具等领域被广泛使用,消耗量逐年增加。高抗冲聚苯乙烯一般是用橡胶状丁二烯聚合物补强的聚苯乙烯。它可为混合物或接枝共聚物,前者很少引起聚苯乙烯性能的变化,或者根本没有变化,而后者则根据参入的聚丁二烯量在抗冲击强度及其他性能方面显出很大的改善,用橡胶改善聚苯乙烯大大增加了高抗冲聚苯乙烯的应用范围。 二、原理及制备 聚苯乙烯的接枝共聚共混方法主要有乳液―悬浮方法、本体—悬浮方法和连续本体方法等。其中乳液—悬浮方法由于经济╱性能指标较差已经逐渐被淘汰。本体—悬浮方法是发展较晚的一种方法,但由于设备利用率低,工艺流程长,能耗大,生产成本较高,此法一趋淘汰。 1、工业制法 本体法聚合时,首先将橡胶溶解于苯乙烯单体中。在与聚合反应转化至6%—10%时,就开始形成两相,即PS相和橡胶相。这样,苯乙烯中的PS相和苯乙烯中的橡胶相达到一定的相体积比时,在切应力搅拌存在下,即发生相变。此时,橡胶在反应系统中的相容性降低,因橡胶析出而体系粘度骤降,而切应力的存在使橡胶颗粒分散为切断小粒,这便是本体聚合法生产HIPS的关键所在。反应由苯乙烯本体聚合和橡胶苯乙烯聚合两种方式同时进行,经过四个聚合釜连续反应,转化率达75%~80%时,将聚合物送入脱气槽,脱去未反应的单体,再经挤压抽条、冷却、造粒、包装即得成品。 步骤:⑴聚合:由预聚和终聚两部分组成,预聚在较低的温度(如90℃)并伴有良好的搅拌条件下进行;终聚则在较高温度下进行(如120℃),通过加入溶剂来降低反应体系的粘度。⑵后处理:在高温、高真空的操作条件下,脱除熔体中的溶剂和残留单体。 2、实验室制备方法: 原料:聚苯乙烯、SBS弹性体、顺丁橡胶、硼酸锌、钛白粉等。 仪器设备:高速混合机、螺杆挤出机、热压成型、悬臂式冲击机。 试样准备

聚苯乙烯交联微球的制备.

聚苯乙烯交联微球的制备 【原理】 悬浮聚合是在悬浮体系中进行的一种聚合方法。以苯乙烯为例,这是一种比较活泼的单体,容易进行聚合反应。苯乙烯在水中的溶解度很小,将其倒入水中,体系分成两层,进行搅拌时,在剪切力作用下,单体层分散成液滴,界面张力使液滴保持球形,而且界面张力越大,形成的液滴越大,因此在作用方向相反的搅拌剪切力和界面张力作用下,液滴达到一定的大小和分布。这种液滴在热力学上是不稳定的,当搅拌停止后,液滴将凝聚变大,最后再次与水分层,同时,聚合到一定程度以后的液滴中溶有黏性聚合物也可以使液滴相互黏结。因此,在悬浮聚合体系中还需要加入分散剂,常用的分散剂有明胶,聚乙烯醇、聚甲基丙烯酸钠、纤维素衍生物或碳酸镁、磷酸钙等。 本实验是在油溶性引发剂过氧化二苯甲酰存在下,用悬浮聚合方法进行的苯乙烯与二乙烯苯的共聚反应,在液滴中的自由基聚合机理如图3-1。所得产物为白色小珠,可作为苯乙烯型阳(阴)离子交换树脂的母体(称为白珠)。其中二乙烯苯起着交联作用,使聚合物其有网状结构,二乙烯苯的用量改变就会显著影响聚苯乙烯微球的交联度,从而影响微球的性能。 此外,聚合物微球的粒径主要是通过调节悬浮聚合的反应条件、分散剂种类与比例来实现。

图3-1 过氧化二苯甲酰引发苯乙烯自由基聚合机理 【仪器及试剂】 1.实验仪器 三口烧瓶(250mL)1只机械搅拌器1套球形冷凝管1支温度计(100℃)1支恒温水浴锅1套表面皿1个烧杯(100mL)1个量筒(25mL,10 mL)各1个(公用)滴管1根布氏漏斗1个抽滤瓶1个滤纸等若干

2.实验试剂 苯乙烯(除去阻聚剂)20 mL 二乙烯苯(除去阻聚剂) 3 mL 过氧化二苯甲酰(BPO,重结晶)0.4 g 明胶0.5 g 去离子水100 mL 次甲基兰水溶液(0.5%) 3~5滴 【步骤】 1.如图3-2所示,将冷凝管、温度计和搅拌装置安装于三口烧瓶上,检查搅拌器运转是否正常。 图3-2 聚苯乙烯交联微球的合成装置图 2.在三颈瓶中加入0.5 g明胶和100 mL去离子水。开动搅拌器,升温至50 ℃左右,待明胶完全溶解后,加入3~5滴次甲基兰水溶液。 3.将0.3 g BPO,20 mL苯乙烯和3 mL二乙烯苯加入100 mL烧杯中,轻轻振荡,待BPO完全溶解后,将其加入到三口瓶中。此时注意控制搅拌速度和滴加速度,滴加不宜太快。待滴加完成后,通冷凝水,稳定搅拌速度,升温至70 ℃反应1小时,之后再升温至95 ℃继续反应2小时左右。观察体系的颜色变化。 4.反应到生产的球体彼此不粘结,而又比较硬时为止。可用吸管吸取一点反应

苯乙烯悬浮聚合及性能

苯乙烯悬浮聚合及性能 一、实验目的 1.学习悬浮聚合的实验方法,了解悬浮聚合的配方及各组分的作用。 2.了解控制粒径的成珠条件及不同类型悬浮剂的分散机理。 二、实验原理 悬浮聚合是由烯类单体制备高聚物的重要方法之一。由于水为分散介质,聚合热可以迅速排除,因而反应温度容易控制;生产工艺简单;制成的成品呈均匀颗粒状,故又称为珠状聚合;产品不经造粒即可直接成型加工。 悬浮聚合是将单体以微珠形式分散于介质中进行的聚合。从动力学的观点来看,悬浮聚合与本体聚合完全一样,每一个微珠相当于一个小的本体。悬浮聚合克服了本体聚合中散热困难的问题,但因珠粒表面附有分散剂,使纯度降低。当微珠聚合到一定程度时,珠子内粒度迅速增大,珠与珠之间很容易碰撞粘结,不易成珠子,甚至粘成一团,为此必须加入适量分散剂,选择适当的搅拌器和搅拌速率。由于分散剂的作用机理不同,在选择分散剂的种类和确定分散剂用量时,要随聚合物种类和颗粒要求而决定,如颗粒大小、形状、树脂的透明性和成膜性能等。同时也要注意合适的搅拌强度的转速,水与单体比等。 实验要求聚合物体具有一定的粒度。粒度的大小通过调节悬浮聚合的条件来实现。苯乙烯(ST)通过聚合反应生成聚苯乙烯(PS),反应式如下: 通常的聚苯乙烯为非晶太无规聚合物,具有优良的绝热、绝缘和透明性,长期使用温度0-70℃,胆脆,低温易开裂。此外还有全同和间同立构聚苯乙烯。全同聚合物有高度结晶性,聚苯乙烯材料包括普通聚苯乙烯、发泡聚苯乙烯(EPS)、高抗冲聚苯乙烯(HIPS)及间规聚苯乙烯(SPS)。普通聚苯乙烯树脂属于无定型高分子聚合物,聚苯乙烯大分子链的侧基为苯环,大体积侧基为苯环的无规排列决定了聚苯乙烯的物理化学性质,如透明度高、刚度大、玻璃化温度高、性脆等。其制品具有极高的透明度,透光率可达90%以上,电绝缘性能好,易着色,加工流动性好,刚性好及耐化学腐蚀性好等;不足之处在于性脆,抗冲击性能的低,易出现应力开裂,耐热性差及不耐沸水等。可发泡聚苯乙烯未在普通聚苯乙烯中浸渍低沸点的物理发泡剂制成,加工过程中受热发泡,专用于制作泡沫塑料产品。高抗冲聚苯乙烯为苯乙烯和丁二烯的共聚物,丁二烯为分散相,提高了材料的抗冲击强度,但产品不透明。间规聚苯乙烯为间同结构,采用茂金属催化剂生产,是近年来发展的聚苯乙烯新品种,性能好,属于工程塑料。聚苯乙烯经常被用来制作泡沫塑料制品。聚苯乙烯还可以和其他橡胶类型高分子材料共聚生成各类不同力学性能的产品。日常生活中常见的应用有各种一次性塑料餐具,透明C盒等。 三、仪器及试剂

聚苯乙烯微球的制备开题报告

河南理工大学本科毕业设计(论文)开题报告 题目名称高电荷聚苯乙烯微球的制备 学生姓名周有为专业班级化工07-2班学号 3 一、选题的目的和意义 粒径单分散的乳胶粒在许多领域有极其重要的用途,如在医学上可于作临床诊断和免疫分析试剂的载体,在测试上可用作光散射及电镜的尺度基准。随着信息技术的发展,人们迫切需要利用这种单分散的、直径在纳米~亚微米范围的颗粒来制备胶体晶体(Colloidal Crystalline Array),即胶体颗粒在空间呈体心立方或面心立方堆砌的、可以对可见光及近红外波段产生Bragg衍射的一种类似晶体的物质。这种胶体晶体不仅可以制备多种光学器件,还可以制备光子晶体(Photonica Crystal),用于光学集成线路。一般对要用于胶体晶体的乳胶粒子有如下要求:①粒子表面电荷较多,使粒子间有足够的静电排斥力;②粒径单分散,使得各粒子表面电荷密度基本相等,粒子可能靠自组装成有序结构;③粒子直径在100nm以下,确保晶体有较高的透明度。 在高分子材料中, 单分散性的带电荷的功能性聚合物微球在生物医学、生物传感、免疫技术、蛋白质吸附以及酶的固定化等领域都有广泛地应用。其中阳离子型聚合物微球在分子自组装、细胞检测、DNA 载体、催化剂以及光学材料等方面都具有广泛的应用前景。单分散性较好的聚苯乙烯微球的制备方法主要有分散聚合法、乳液聚合法、无皂乳液聚合法、悬浮聚合法、种子聚合法等。其中悬浮聚合法制备的微球比较大,一般在毫米数量级,不符合可见光区域光子晶体所需要的亚微米或微米级的要求;种子聚合法主要是以制备好的聚苯乙烯微球作为种子制备多孔、高交联微球或者对微球进行进一步的改性功能化的一种方法。因此分散聚合法、乳液聚合法和无皂乳液聚合法成为制备高电荷聚苯乙烯微球的有效方法。 本论文的研究目的是制备纳米量级单分散PS微球,本论文拟采用分步乳液聚合法,重点研究影响微球表面电荷密度、粒径和单分散性的主要因素。 二、国内外文献综述 从文献的内容看,高电荷微纳米级的PS微球的制备方法主要是分散聚合法、乳液聚合法和无皂乳液聚合法三种。本文主要研究分散聚合法、乳液聚合法和无皂乳液聚合法这

苯乙烯悬浮聚合制备聚苯乙烯的合成工艺

目录 第一章概述 1.1聚苯乙烯、可发性聚苯乙烯介绍 (1) 1.2 EPS储存条件 (1) 1.3 EPS生产技术的进展 (2) 1.4 EPS 存在的问题及解决方法 (2) 第二章可发性苯乙烯工艺的设计原理和流程 2.1可发性聚苯乙烯合成的原料 (3) 2.2可发性苯乙烯珠粒制造 (4) 2.3可发性聚苯乙烯塑料成型 (6) 2.4熟化 (7) 2.5成型 (7) 第三章聚苯乙烯珠粒制备的影响因素 1 悬浮分散体系的选择及影响 (7) 2 悬浮分散剂的用量对粒径大小的影响 (8) 3助分散剂的选择与作用 (8) 4.搅拌桨的形式对悬浮聚合的影响 (8) 5 聚合操作因素对产品质量的影响 (8) 6 浸渍条件的影响 (9) 7 后处理的影响 (9) 第四章EPS的性能及用途 4.1 力学性能 (9) 4.2 绝热性能.................... .. (9) 4.3化学性能 (10) 4.4 EPS的用途 (10) 五.总结 (11) 六.参考文献

第一章概述 1.1聚苯乙烯、可发性聚苯乙烯介绍 聚苯乙烯(PS)包括普通聚苯乙烯(GPPS).可发性聚苯乙烯(EPS).高抗冲聚苯乙烯(HIPS)及间规聚苯乙烯(SPS)。 聚苯乙烯(Polystyrene,简称PS)是一种无色透明的热塑性塑料,质地硬而脆,无色透明,可以和多种染料混合产生不同的颜色。聚苯乙烯大分子链的侧基为苯环,大体积侧基为苯环的无规排列决定了聚苯乙烯的物理化学性质,如透明度高,刚度大,玻璃化温度高,性脆等。其玻璃化温度80~90℃,非晶态密度1.04~1.06克/厘米3,晶体密度1.11~1.12克/厘米3,熔融温度240℃,电阻率为1020~1022欧·厘米。导热系数30℃时0.116瓦/(米·开)。 普通聚苯乙烯的不足之处在于性脆,冲击强度低,易出现应力开裂,耐热性差及不耐沸水等。此外还有全同和间同立构聚苯乙烯。全同聚合物有高度结晶性具有高于100摄氏度的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。 发泡聚苯乙烯又称可发性聚苯乙烯,是由苯乙烯悬浮聚合,再加入发泡剂而制得。白色珠状颗粒,相对密度1.05。热导率低,吸水性小。耐冲击振动、隔热、隔音、防潮、减振。介电性能优良。溶于丙酮、醋酸乙酯、苯、甲苯、二氯乙烷、氯仿、不溶于乙醇、正己烷、环己烷、溶剂汽油等。可发性聚苯乙烯为在普通聚苯乙烯中浸渍低沸点的物理发泡剂制成,加工过程中受热发泡,专用于制作泡沫塑料产品。高抗冲聚苯乙烯为苯乙烯和丁二烯的共聚物,丁二烯为分散相,提高了材料的冲击强度,但产品不透明。间规聚苯乙烯为间同结构,采用茂金属催化剂生产,是近年来发展的聚苯乙烯新品种,性能好,属于工程塑料。 1.2 EPS储存条件 贮存可发性聚苯乙烯树脂的设备要采取良好的接地预防措施,贮存可发性聚苯乙烯树脂的地方要有良好的通风,远离火源、热源,避免阳光直接照射,容器应密封良好,同时贮罐内应通以惰性气体;为保证最终产品质量,可发性聚苯乙烯树脂的贮存温度应保持在20℃;湿度不能太大,并

悬浮聚合

甲基丙烯酸甲酯的悬浮聚合 一、实验目的 1.了解悬浮聚合的配方及各组分的作用; 2.了解不同类型悬浮剂的分散机理、搅拌速度、搅拌器形状对悬浮聚合物粒径等的影响,并观察单体在聚合过程中之演变。 二、实验原理 悬浮聚合是将溶有引发剂的单体在强烈搅拌和分散剂的作用下,以液滴状悬浮在水中而进行的聚合反应方法。悬浮聚合的体系组成主要包括谁难溶性的单体、油溶性引发剂、水和分散剂四个基本分。聚合反应在单体液滴中进行,从单个的单体液滴来看,其组成及聚合机理与本体聚合相同,因此又常称小珠本体聚合。若所生成的聚合物溶于单体,则得到的产物通常为透明、圆滑的小圆珠;若所生成的聚合物不溶于单体,则通常得到的是不透明、不规整的小粒子。悬浮聚合反应的优点是由于有水作为分散介质,因而导热容易,聚合反应易控制,单体小液滴在聚合反应后转变为固体小珠,产物易分离处理,不需要额外的造粒工艺,缺点是聚合物包含的少量分散剂难以除去,可能影响到聚合物的透明性、老化性能等,此外,聚合反应用水的后处理也是必须考虑的问题。 三、仪器与试剂 仪器:装有搅拌器、冷凝管、温度计的三颈瓶(1套),恒温水浴(1套),量筒(25、100 mL 各1 个),抽滤装置(1 套),电动搅拌器有(1套)。

试剂:甲基丙烯酸甲酯(MMA,6mL),蒸馏水(60mL),过氧化苯甲酰(BPO,0.111g),氯化镁(MgCl2)CP级(1M),氢氧化钠(NaOH)CP 级(1M),去离子水(60mL)。 四、实验步骤及现象 仪器安装:安装时搅拌器在烧瓶正中,不要与碰撞,搅拌时要平稳,烧瓶下装有加热水浴,冷凝管可待料加入烧瓶后在安上,其装置如图所示。 1.在装有搅拌器、冷凝管、温度计的三颈瓶中,依次加入1M氯化镁和1M氢氧化钠溶液各5mL。加热水浴至60℃,反应5分钟;同时取新蒸馏的单体12mL于小烧杯中使其先于过氧化二苯混溶,待全部溶解后,用玻璃棒加至烧杯中,剩余的去离子水即为冲洗烧杯用。洗液一并加入烧瓶中,此时应注意调整搅拌器转速,为使单体在水中分散成为大小均匀的珠粒,使反应温度保持在78~80℃,反应约1.5h 。 2.注意观察悬浮粒子的情况,由于聚合物比重增大,球形的聚合物逐渐沉降于烧瓶底部,并且从烧瓶嗅出单体气体很稀,即可升温至85℃熟化半小时左右。

聚苯乙烯-二氧化硅微球的制备

一:实验方案 采用溶胶-凝胶法, 首先利用苯乙烯与3-甲基丙烯酰氧基丙基三甲氧基硅烷( KH-570)化学反应合成共 聚前驱物, 利用TEOS在一定的条件下水解与缩合, 一步合成了有机-无机复合纳米微球。 苯乙烯为天津市福晨化学试剂厂产品, 使用 前用10% 的氢氧化钠水溶液萃取3次, 再用水反 复萃取, 无水硫酸钠干燥48 h后, 在35℃减压蒸 馏, 最后得到的单体在气相色谱上未出现杂质峰, 将纯化的苯乙烯在- 1 ℃下保存待用。3-甲基 丙烯酰氧基丙基三甲氧基硅烷( KH-570) 为天津 市化学试剂一厂产品; Triton X-1为华美生物有 限公司产品;四乙氧基硅烷( TEOS ) 为A ldrich 公司产 品。十二烷基苯磺酸钠( SDS) , 过硫酸钾( PPS ) 等其他试剂均为分析纯试剂, 所用水均为二次蒸 馏水。 二:实验方法 2. 2. 1双端羟基化聚苯乙烯纳米粒子的制备 将0. 8 g十二烷基苯磺酸钠( SDS ), 0. 084 g 碳酸氢钠( NaHCO3 ), 2 mL苯乙烯单体共同溶于 100mL水中, 于油浴7℃, 通N2 的气氛下搅拌 数分钟。待溶液均匀后加入0. 3 g PPS, 反应2 h

后加入2 mL KH-570, 让其继续反应12 h,。用1倍甲醇将羟基化聚苯乙烯 水胶乳稀释, SDS、苯乙烯单体和低聚物可溶于甲 醇。羟基化聚苯乙烯颗粒凝集析出, 离心分离, 用甲醇和蒸馏水反复洗涤, 烘干待用。 2. 2. 2聚苯乙烯/二氧化 硅( PS /SiO2 )纳米复合微球的制备 采用溶胶-凝胶法, 称取0. 2 g 羟基化聚苯乙 烯纳米粒子, 将其溶解于2 mL的甲苯中,加入2 mL TEOS, 370uL T ritonX-100,反应5h。于另一100 mL 的锥形瓶 中, 加入50mL的无水乙醇, 10 mL 25% 氨水, 搅 拌数分钟后, 两锥形瓶液体混合, 继续搅拌24 h, 离心分离, 烘干待用。 采用溶胶-凝胶法制备纳米复合材料, 首先将 共聚前驱物( PS- OH ) 溶解于甲苯中, 再加入 TEOS, 表面活性剂及非水溶性染料苯基卟啉, 使 之构成了一个稳定的乳液体系。当与乙醇混合 时, 在表面活性剂的作用下两体系很均匀地混合 在一起, 修饰了羟基的聚苯乙烯由于带有亲水性 基团- OH, 在乙醇体系中很容易分散开, 不会发 生团聚。利用TEOS 水解与缩合作用形成PS /sio2纳米复合粒子.

悬浮聚合法制备聚苯乙烯珠粒

化学综合实验二 悬浮聚合法制备聚苯乙烯珠粒 实验目的: 1、巩固萃取、水洗分离的基本操作 2、巩固化学品称量的基本操作 3、学会PVA悬浮分散剂的实验室制备方法 4、学会悬浮聚合法制备聚苯乙烯珠粒的实验室制备方法 5、了解悬浮聚合的一般原理 实验原理: 1、苯乙烯的纯化 加入5%氢氧化钠水溶液萃取主要是利用酚与强碱相互作用的反应原理,除去原料单体苯乙烯中的阻聚剂(对苯二酚),再进行水洗目的在于除去残留在苯乙烯中的碱液。 2、悬浮分散剂的制备原理 聚乙烯醇(PVA),聚醋酸乙烯酯部分或完全水解制得,它是一类水溶性高分子。但高分子在溶剂中的溶解不同于小分子,高分子的溶解过程首先是小分子扩散到大分子链间,使高分子形体溶涨,高分子链间作用力减弱;随着溶涨程度进一步加深,高分子链活动性变大,最终导致高分子化合物溶解,成为均一透明的高分子溶液。 磷酸钙作为分散剂必须是是一种具有一定活性的无机细微粉末。为了提高分散效果,一般采用氯化钙溶液和磷酸钠溶液直接反应制备。 3、悬浮聚合法制备聚苯乙烯珠粒的原理 (1)悬浮聚合是将不溶于水的单体以小液滴状悬浮在水中进行的聚合,这是自由基聚合一种特有的聚合方法。 (2)基本组分有单体、引发剂、水、悬浮剂等。 (3)悬浮剂是一类能将油溶性单体分散在水中形成稳定悬浮液的物质,例如聚乙烯醇,悬浮机理就是吸附在液滴表面,形成一层保护膜。

碳酸钙、碳酸镁、硫酸钡、磷酸钙、滑石粉、高岭土、硅藻土、白垩等。所制备聚合物粒子粒度均匀、表面光滑、透明度好;粉末越细,分散和保护能力越强,得到的聚合物粒子越细;因此,通常采用在水中进行化学反应的方法临时制备。用量为体系总水量的 0.1% - 1% 。无机分散剂的悬浮机理就是吸附在液滴表面,形成一层隔离层,如图所示: 单体液滴在搅拌和分散剂作用下形成较稳定的悬浮液滴而聚合的过程,原理如图所示: (4)悬浮聚合得到的粒状树脂,粒径在0.01 ~ 5 mm 范围。一般情况下单体是

甲基丙烯酸甲酯的悬浮聚合实验报告

甲基丙烯酸甲酯的悬浮聚合实验报告 实验十四甲基丙烯酸甲酯的悬浮聚合一、实验目的 1.掌握高分子悬浮聚合的原理和特点。2.掌握通过悬浮聚合法制备聚甲基丙烯酸甲酯的操作过程。二、实验原理悬浮聚合是将溶有引发剂的单体在强烈搅拌和分散剂的作用下,以液滴状悬浮在水中而进行的聚合反应方法。悬浮聚合的体系组成主要包括谁难溶性的单体、油溶性引发剂、水和分散剂四个基本成分。聚合反应在单体液滴中进行,从单个的单体液滴来看,其组成及聚合机理与本体聚合相同,因此又常称小珠本体聚合。若所生成的聚合物溶于单体,则得到的产物通常为透明、圆滑的小圆珠;若所生成的聚合物不溶于单体,则通常得到的是不透明、不规整的小粒子。悬浮聚合反应的优点是由于有水作为分散介质,因而导热容易,聚合反应易控制,单体小液滴在聚合反应后转变为固体小珠,产物易分离处理,不需要额外的造粒工艺,缺点是聚合物包含的少量分散剂难以除去,可能影响到聚合物的透明性、老化性能等,此外,聚合反应用水的后处理也是必须考虑的问题。三、主要仪器与试剂(1)仪器装有搅拌器、冷凝管、温度计的三颈瓶(1 套),恒温水浴(1 套),量筒(10mL、100 mL 各1 支),抽滤装置计(1 套),。(2)试剂甲基丙烯酸甲酯(MMA,10mL),蒸馏水(60mL),过氧化苯甲酰(BPO,0.07g),1%聚乙烯醇水溶液(20mL)。第2 页共3 页四、流程图、实验步骤及现象(1)流程图搅拌加热

40mL水调节搅拌速度升温至(78±2)℃,反应约1.5h 升温至70℃2mL1%聚乙烯醇水溶液反应20mL水两次洗涤盛单体的容器所得液体预先已溶解引发剂的甲基丙烯酸甲酯10mL 抽滤洗涤、风干称重珠状物滤液聚合物(2)实验装置图(3)实验步骤及现象实验步骤实验现象 1. 在装有搅拌器、冷凝管、温度计的三颈瓶中,依次加入2mL 1%的聚乙烯醇水溶液、40mL 水,搅拌加热(注意温度不要超过70℃)。加入预先已溶解引发剂的甲基丙烯酸甲酯 l0mL,再用剩余的20mL 水分两次洗涤盛单体的容器,并倒人三颈瓶内,加料完毕后升温至70℃。搅拌加热开始后,不久溶液渐渐变浊,出现油状小液滴。第3 页共3 页 2. 小心调节搅拌速度,观察单体液滴大小,调至合适液滴大小后,保持搅拌速度恒定,将反应温度升至(78±2)℃。反应约1.5h 后,用滴管吸取少量珠状物,冷却后观察是否变硬。若变硬,可减慢或停止搅拌,若珠状物全部沉积,可在缓慢搅拌下升温至85℃继续反应1h,以使单体反应完全。珠状物为硬的白色小珠;减慢搅拌速度,珠状物出现全部沉积现象;在缓慢搅拌下升温至85℃,溶液中珠状物无粘结现象。3. 停止反应,将产物抽滤,聚合物珠粒用水反复洗涤几次后,置于表面皿中自然风干,观察聚合物珠粒形状,称重,计算产率。产物抽滤抽滤后大部分为白色珠状物,形状较小较均匀。五、讨论悬浮聚合是将单体以微

聚苯乙烯微球的制备及其影响因素研究

聚苯乙烯微球的制备及其影响因素研究 [摘要] 以聚乙烯基吡咯烷酮为分散稳定剂,过氧化苯甲酰为引发剂,醇/ 水混合物为分散介质对苯乙烯进行分散聚合,研究了分散稳定剂用量、引发剂浓度、分散介质组成对聚合物微球粒径大小、粒径分布、相对平均分子量及分子量分布系数的影响。 [关键词] 聚苯乙烯微球分散聚合粒径分布相对平均分子量 1.引言 球形聚合物微粒的合成和研究是近几十年来高分子科学中一个新的研究领域。微米级聚苯乙烯微球是一种性能优良的新型功能材料具有以下特点:优良的疏水性,不可生物降解性;不被一般溶剂溶解或溶胀,利于应用和回收;比表面积大,吸附性强,凝聚性好。在环境保护领域有着广泛的应用,主要作为固相萃取和液相色谱的填料用来富集、分离、分析水体中某种或某类污染物。因此,引起了大家的极大关注[1-7]。通过优化分散聚合的工艺参数制备单分散性高分子量窄分子量分布的聚苯乙烯微球,为其进一步的功能化及应用研究具有一定的意义。 2 .实验部分 2.1. 主要试剂 苯乙烯(St):分析纯,天津市北方天一化学试剂,减压蒸馏后使用; 过氧化苯甲酰(BPO): 化学纯,天津市百世化工有限公司,重结晶后使用; 聚乙烯吡咯烷酮(PVP):分析纯,天津市天新精细化工开发中心; 乙醇:分析纯,浓度(95%),天津市红岩化学试剂厂。 2.2 测试仪器 PL50 常温凝胶渗透色谱仪(英国PL公司);测定聚合物的相对平均分子量和分子量分布系数。 Mastesizer 2000 激光粒度分析仪(英国);测定聚合物微球的粒径大小和分布。 2.3 苯乙烯的精制 取一只1000ml分液漏斗,加入500ml的苯乙烯,用5%的氢氧化钠水溶液

悬浮聚合-4.4无机分散剂(P124-P146)

4.4-无机分散剂 4.4.1 一般介绍 粉末状无机分散剂主要用于甲基丙烯酸甲酯,苯乙烯等单体的珠状悬浮聚合的场合。聚合结束后,吸附在聚合物珠粒表面的无机分散剂可以用稀酸洗去,保持聚合物制品的透明性,聚乙烯悬浮聚合很少选用无机分散剂。 在悬浮聚合方法的发展早期,就开始采用无机分散剂,长期来专利文献报道的无机分散剂种类很多,但经逐步淘汰,目前工业上使用的却只留几种。天然无机矿物粉末性能不稳定,首先被淘汰,氢氧化铝,磷酸钙占无机分散剂的主要地位。 无机分散剂单独使用时,要使悬浮液稳定,用量较多,效果也较差,如与少量表面活性剂复合使用,则可显著提高分散稳定效果,并减少用量。无机分散剂/高分子分散剂,/表面活性剂三者复合的当,也能取得良好效果。 无机分散剂是微细粉末,粒子愈细,则一定用量的覆盖面积愈大,悬浮液愈稳定。目前无机分散剂多由相应化学品经复分解沉淀反应就地配制,少量表面活性剂也可在配制时加入。在工艺上,可以用半沉降周期t1/2(min)来评价分散剂的细度或分散液的稳定性。所谓半沉降周期是将分散液倒入100ml量筒内,使其体积恰好到100ml刻度,然后静置,观察清液-浑浊液界面下移情况,当清液界面降到50ml刻度的时间即为t1/2。t1/2愈长,表明分散液愈稳定。 做深入研究时还可以测定单体液滴-固体粉末分散剂的接触角和液滴表面的吸附量,评价悬浮聚合体系的稳定性。所谓吸附量,是吸附前后分散液的浓度差除以吸附前的浓度,以百分比(%)表示。曾有报道,8种无机粉末对苯乙烯悬浮聚合稳定性的影响因素时发现,接触角θ>80。CaCO3,CoO,NiO等,稳定效果良好;50。<θ<80。,如Al2O3,Al(OH)3,ZnS等,也有稳定作用,但要使稳定的最小用量却是前一类的2倍;如θ<50。,如果石墨和高岭土,则将聚结。添加表面活性剂可以改变水-油-固的界面性质,润湿,吸附情况。对于单体-水-分散剂-表面活性剂的不同体系,对接触角大小的要求也不相同,上述数值仅供参考。 4.4.2 氢氧化镁或碱式碳酸镁 碳酸镁溶解度较大,很少用作悬浮聚合分散剂,而选用氢氧化镁或碱式碳酸镁。MgCl2 + 2NaOH→Mg (OH)2 + 2NaCl 碱式碳酸镁实际上是氢氧化镁和碳酸镁的复盐,由碳酸钠水溶液和硫酸镁(或氯化镁)水溶液就地反应而成。 2NaCO3 + 2MgSO4 + H2O →Mg(OH)2.MgCO3+2NaSO4+CO2 2NaCO3+2MgCl2+H2O→Mg(OH)2.MgCO3+NaCl+4NaCl+CO2 两溶液的加料次序,加料速度,搅拌速度,温度等因素对离子细度和悬浮聚合体系的稳定性均有影响。一般先将部分或全部碳酸钠水溶液,(8%-10%)加入配制槽内,保持60到70℃温度,在一定搅拌强度下以适当的速度同时加入余下的碳酸钠溶液和碳酸镁容液,(15%到16%)。加料次序颠倒,加料速度太慢,加料过快而搅拌速度太慢,或温度过高,均使沉淀粒子变粗从而使稳定保护效果变差。 氢氧化镁或碱式碳酸镁多用作甲基丙烯酸甲酯的悬浮(共)聚合,而苯乙烯悬浮聚合则多选用羟基磷酸钙做分散剂。

农药用聚羧酸盐类分散剂

丙烯酸-(甲基)丙烯酸酯共聚物等高分子分散剂属于均聚物或共聚物,通常在分散体系中可以起到空间稳定作用,有的带电高分子还可以通过静电稳定机制提高分散体系的稳定性,因而高分子分散剂比无机、有机小分子分散剂更为有效。聚羧酸盐类分散剂具有长碳链,较多活性吸附点以及能起到空间排斥作用的支链,由于其特殊的结构而对悬浮体系具有很好的分散性能。 聚羧酸类分散剂与传统木质素磺酸盐、萘磺酸盐甲醛缩合物钠盐分散剂相比有以下特点: ①聚羧酸类分散剂对悬浮体系中的离子,pH值以及温度等敏感程度小,分散稳定性高,不易出现沉降和絮凝; ②聚羧酸类分散剂提高了固体颗粒的含量,显著降低分散体系粘度,在高固含量下具有较好流动性,降低了原料成本,减少设备磨损; ③原材料选择范围广,可选择不同种类的共聚单体,分子结构与性能的可设计性强,易形成系列化产品。 聚羧酸类分散剂采用不同的不饱和单体接枝共聚而成,其代表产物繁多,但结构遵循一定规则,即在重复单元的末端或中间位置带有EO,-COOH,-COO-,-SO3-等活性基团。 聚羧酸类分散剂在分子主链或侧链上引入强极性基团:羧基、磺酸基、聚氧化乙烯基等使分子具有梳形结构,分子量分布范围为10000-100000,比较集中于5000左右。疏水基分子量控制在5000-7000左右,疏水链过长,无法完全吸附于颗粒表面而成环或与相邻颗粒表面结合,导致粒子间桥连絮凝;亲水基分子量控制在3000-5000左右,亲水链过长,分散剂易从农药颗粒表面脱落,且亲水链间易发生缠结导致絮凝。聚羧酸类分散剂链段中亲水部分比例要适宜,一般为20%-40%,如果比例过低,分散剂无法完全溶解,分散效果下降;比例过高,则分散剂溶剂化过强,分散剂与粒子间结合力相对削弱而脱落。 聚羧酸类分散剂分子所带官能团如羧基、磺酸基、聚氧乙烯基的数量、主链聚合度以及侧链链长等影响分散剂对农药颗粒的分散性。分子聚合度(相对分子量)的大小与羧基的含量对农药颗粒的分散效果有很大的影响。由于分子主链的疏水性和侧链的亲水性以及侧链(-OCH2CH2)的存在,也起到了一定的立体稳定作用,以防止无规则凝聚,从而有助于农药颗粒的分散。 聚羧酸类分散剂作用机理:水基性制剂形成的悬浮体系中的原药颗粒很小,与分散介质间存在巨大的相界面,裸露的原药颗粒界面间亲和力很强,吸引能很高,易导致原药颗

聚苯乙烯微球的制备

乳液法聚苯乙烯纳米微球的制备 摘要:采用十二烷基硫酸钠为乳化剂、过硫酸盐为引发荆、苯乙烯为单体,在低水油比的条件下,采用乳液聚合方法合成了聚苯乙烯纳米微球,探讨了乳化剂用量、乳化时间、反应温度、引发剂用量和反应时间对单体转化率及产物分子量的影响。结果表明:在低水油比条件下,反应参数对苯乙烯的转化率和聚苯乙烯的分子量具有一定的影响。在最优条件下苯乙烯的转化率达到98%、聚苯乙烯的分子量达到32万。激光粒度分布测试结果显示,所得产物为单分散纳米微球。 作者以十二烷基硫酸钠为乳化剂,在低水油比100:30的条件下,合成了单分散的聚苯乙烯微球,探讨了反应参数对苯乙烯转化率及产物分子量的影响规律。 试剂及仪器 苯乙烯(St),天津市科密欧化学开发中心;磷酸三钠,天津新通精细化工有限公司;十二烷基硫酸钠,天津市化工试剂二厂;过硫酸铵,天津市化学试剂开发公司;无水氯化钙,天津市天达净化材料精细化工厂。以上试剂为分析纯。乌氏粘度计,直径0.5~0.6mm;激光粒度测试仪,ZETASIZER 300HSA,英国MALVERN。 聚苯乙烯(PSt)纳米微球的制备 实验操作 在装有搅拌器、滴液漏斗、温度计和回流冷凝管的三口瓶中加入乳化剂十二烷基磺酸钠(溶于部分蒸馏水)和部分苯乙烯(AR),待乳化剂全部溶解,称1g过硫酸钾(AR),用5mL水溶解于小烧杯中,将此溶解的一半倒入反应的三口瓶中,开动搅拌器,加热恒温槽,反应温度在控制要求左右。然后用滴液漏斗滴加剩余的苯乙烯,滴加速度不宜过快,加完后把余下的过硫酸钾加入反应的三口瓶中,继续加热,使之回流,逐步升温,以不产生大量泡沫为准,最后升到85℃,无回流为止。停止加热,冷却到50℃后,聚苯乙烯样品待后处理。 破乳 将聚苯乙烯的乳液在室温下搅拌,滴加氯化钠水溶液,用蒸馏水稀释,真空抽滤,再把样品放入离心机中离心6min,拿出样品用蒸馏水重复洗涤抽滤3次;再用乙醇洗涤抽滤3次,用恒温水浴锅把多余无水乙醇及水蒸干,晾干,置于105℃烘箱内半小时,干燥得到白色产品。 乳化剂用量对苯乙烯转化率和聚苯乙烯分子量的影响 由图1可见,苯乙烯的转化率随乳化剂用量的增加而提高。这是由于随着乳化剂用量的增加,形成的胶束量增多,在乳液中生成更多活性胶束中心,故苯乙烯转化率提高。聚苯乙烯的分子量随乳化剂用量的增加也呈现增大的趋势。这是

《可发性聚苯乙烯(EPS)的生产工艺》

论文题目: 《可发性聚苯乙烯(EPS)的生产工艺》 摘要主要介绍了国内EPS的生产工艺一步法和两步法,并具体对一步法加以着重介绍。 要介绍了国内的生产状况及其用途,指出EPS市场潜力巨大。 关键词可发性聚苯乙烯(EPS)生产工艺回收和环保 1.前言 可发性聚苯乙烯(EPS)具有质轻、价廉、导热率低、吸水性小、电绝缘性能好、隔音、防震、防潮、成型工艺简单等优点,因而被广泛地用作建筑、交通运输等行业的保温绝热、隔音、抗震材料、用作电器、仪表、玻璃制品、电子产品等的缓冲包装材料和食品包装。 自50年代由德国BASF公司开发EPS珠粒生产工艺后,泡沫塑料由于成型工艺及设备简易可行,并可制成各种形状、不同密度的产品,因而发展迅速。现在EPS已成为苯乙烯树脂三大产品(GPPS、HIPS、EPS)中重要的品种之一。国内EPS消费结构,主要是包装和建材,大体比例为包装50%,建材45%,其它5%。随着近年来声像市场,家电市场和快速食品市场的迅猛发展,EPS需求量日益加大。仅据1992年轻工部统计,EPS用于包装方面的需求量就达6.0万t,其中电器包装3.5万t,快餐盒2.5万t。 另外,在建材行业,近年来推出的新型墙体材料,钢板增强EPS板不仅质轻,而且大大减少了建筑的投资,节省能源,施工方便、高效,并能改善居住环境,提高住宅房屋的档次。这种材料大有取代传统建材的趋势。业内人士介绍,我国EPS的年需求量将以20%的速度递增,市场潜力十分巨大。 国内的EPS消费主要集中在江、浙等沿海一带,绝大部分用于包装。由于国家大力发展中西部地区的政策,西北地区的EPS用量也随着电子产业、第三产业、建筑业的蓬勃发展,用于包装及建材的EPS需求量也越来越大,但西北地区目前尚无生产EPS的装置,主要原因是前几年苯乙烯价格的波动及其产量的限制,使很多厂家望而却步,故所用的EPS均需从外地调运。 2. EPS生产主要工艺概况 国外从70年代开始,EPS生产工艺由两步法转向一步法,我国一直延用传统的两步法工艺。两步法工艺能耗高,但由于过程简单、控制容易,因而为一些中小型厂家广泛采用,因此也会长时间地存在下去,通过多年摸索与研究,国产两步法生产也得到改进和完善,在节能降耗方面取得了显著的成绩。如将不符合规格的EPS料返回重新溶解、聚合,不但改善了聚合条件,也使能耗大幅度降低。

甲基丙烯酸甲酯悬浮聚合-李玉超

甲基丙烯酸甲酯的悬浮聚合 李玉超 1. 实验目的 1、掌握高分子悬浮聚合的原理和特点;掌握通过悬浮聚合法制备聚甲基丙烯酸甲酯的操作过程。 2、了解悬浮聚合的配方及各组份的作用,了解不同类型悬浮剂的分散机理、搅拌速度、搅拌器形状对悬浮聚合物粒径等的影响,并观察单体在聚合过程中之演变。 2. 实验原理 悬浮聚合是将单体以微珠形式分散于介质中进行的聚合。悬浮聚合体系主要包括难溶性的单体、油溶性引发剂、水和分散剂四个基本部分。从动力学的观点看,悬浮聚合与本体聚合完全一样,每一个微珠相当于一个小的本体,因此又称为小珠本体聚合。 悬浮聚合克服了本体聚合中散热困难的问题,而且聚合后得到的固体小珠容易分离,不需要额外造粒工艺。缺点是因珠粒表面附有分散剂,使纯度降低。当微珠聚合到一定程度,珠子内粒度迅速增大,珠与珠之间很容易碰撞粘结,不易成珠子,甚至粘成一团,为此必须加入适量分散剂,选择适当的搅拌器与搅拌速度。由于分散剂的作用机理不同,在选择分散剂的各类和确定分散剂用量时,要随聚合物种类和颗粒要求而定,如颗粒大小、形状、树脂的透明性和成膜性能等。同时也要注意合适的搅拌强度和转速,水与单体比等。另外,聚合物包含的少量分散剂难以完全除掉,可能影响材料的透明性和老化等性能。 本实验以氯化镁与氢氧化钠为分散剂进行甲基丙烯酸甲酯的悬浮聚合。 3. 仪器和药品 1) 仪器: 恒温水浴锅;球形冷凝管;机械搅拌器;温度计;三口烧瓶;玻璃棒; 量筒;烧杯;布氏漏斗;抽滤设备;滤纸等 2)药品: 甲基丙烯酸甲酯(MMA)新鲜蒸馏10ml 过氧化二苯甲酰(BPO)重结晶0.07g 聚乙烯醇溶液PVA CP级1M 氯化镁(MgCl2) CP 级1M 氢氧化钠(NaOH) CP 级1M 丙酮AC级 酒精AC级 蒸馏水60ml

分散剂的7种类型

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/ab9678967.html,)分散剂的7种类型 分散剂又称湿润分散剂,它除具有湿润作用外,其活性基团一端能吸附在粉碎成细小微粒的颜料表面,另一端溶剂化进入漆基形成吸附层(吸附基越多,链节越长,吸附层越厚),产生电荷斥力(水性涂料)或熵斥力(溶剂型涂料),使颜料粒子长期分散悬浮于漆基中,避免再次絮凝,因而保证制成的色漆体系的贮存稳定。 分散剂有很多种,初步估算,现存世界上有1000多种物质具有分散作用。现按其结构来区分,可分为以下7种类型。 阴离子型润湿分散剂 大部分是由非极性带负电荷的亲油的碳氢链部分和极性的亲水的基团构成。2种基团分别处在分子的两端,形成不对称的亲水亲油分子结构。它的品种有:油酸钠c17h33coona、羧酸盐、硫酸酯盐(r—o—so3na)、磺酸盐(r—so3na)等。阴离子分散剂相容性好,被广泛应用于水性涂料及油墨中。多元羧酸聚合物等也可应用于溶剂型涂料,并作为受控絮凝型分散剂广泛使用。 阳离子型润湿分散剂 非极性基带正电荷的化合物,主要有胺盐、季胺盐、吡啶鎓盐等。阳离子表面活性剂吸附力强,对炭黑、各种氧化铁、有机颜料类分散效果较好,但要注意其与基料中羧基起化学反应,还要注意不要与阴离子分散剂同时使用。 非离子型润湿分散剂

在水中不电离、不带电荷,在颜料表面吸附比较弱,主要在水系涂料中使用。主要分为乙二醇性和多元醇型,降低表面张力和提高润湿性。与阴离子型分散剂配合使用作为润湿剂或乳化剂,广泛应用于水性色浆、水性涂料及油墨中。 两性型润湿分散剂 是由阴离子和阳离子所组成的化合物。典型应用的是磷酸酯盐型的高分子聚合物。这类聚合物酸值较高,可能会影响层间附着力。 电中性型润湿分散剂 分子中阴离子和阳离子有机基团的大小基本相等,整个分子呈现中性,但却具有极性。如油氨基油酸酯c18h35nh3oocc17h33等均属于这种类型,在涂料中应用相当广泛。 高分子型超分散剂 高分子型分散剂最为常用,稳定性也最佳。高分子型分散剂也分为多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯或聚酯型高分子分散剂等,由于它们的锚定基团一头与树脂缠绕吸附,另一头又与颜料粒子包附,因此贮存稳定性是比较好的。 受控自由基型超分散剂

综述(1)-聚苯乙烯

聚苯乙烯的功能聚合物的制备方法及应用 综述 摘要 作为聚合物之一的聚苯乙烯的应用范围很广,其衍生物种类繁多,聚苯乙烯可用于合成不同的功能聚合物,不同的功能聚合物具有不同的合成方法和不同的功能应用,本综述就聚苯乙烯的不同功能聚合物的普遍制备方法和应用前景和意义作简要概述。 关键词 聚苯乙烯衍生物制备方法应用概述 (一)侧链带8-羟基喹啉的聚苯乙烯 1.侧链带8-羟基喹啉的聚苯乙烯的制备方法 以邻苯二甲酰亚胺钾盐为亲核取代试剂,通过盖布瑞尔反应(Gabrielaction),将氯甲基聚苯乙烯(CMPS)转变为氨甲基聚苯乙烯。 首先研究了采用相转移化体系并通过亲核取代反应,制备氨甲基聚苯乙烯的前驱体—苯二甲酰亚胺基甲基聚苯乙烯的过程。相转移催化剂将邻苯二甲酰亚胺负离子从水相中转移至油相,与氯甲基聚苯乙烯亲核取代,顺利地将氯甲基聚苯乙烯大分子链上的氯甲基转变成了甲基化的邻苯二甲酰亚胺基,生成了邻苯二甲酰亚胺基甲基聚苯乙烯(PIPS)。 在通过相转移催化制备PIPS的基础上,采用胶束催化体系,在酸性条件下,进行了PIPS的水解反应,将苯二甲酰亚胺基甲基聚苯乙烯转变为氨甲基聚苯乙烯(AMPS)。

最后以N,N-二甲基甲酰胺为溶剂,使氨甲基聚苯乙烯与5-氯甲基-8-羟基喹啉进行均相反应,成功地制备了侧链带8-羟基喹啉的聚苯乙烯(PS8q),AMPS转化率达78%,即实现了8-羟基喹啉的高分子化。 2 侧链带8-羟基喹啉的聚苯乙烯的研究背景及意义 在所有7种羟基喹啉中,8-羟基喹啉是唯一可与金属离子生成螯合物的物质[1],长期以来,它在医药工业、农业以及分析测试等方面获得了广泛的应用[2],如在分析化学领域,作为一种性能优异的螯合剂、萃取剂和金属离子指示剂,可用于溶剂萃取、吸光度分析[3]、荧光分析等[4]。基于8-羟基喹啉出色的螯合性能、尤其是其对过渡金属离子和重金属离子所具有的特殊优越的螯合性能,促使人们付出巨大的努力去研究它的高分子化方法以便更好的利用其螯合性能。8-羟基喹啉高分子化产物在有机电致发光,螯合树脂等众多科技领域都具有广阔的应用前景。 (二)遇水崩解型聚苯乙烯 1 遇水崩解型聚苯乙烯的制备方法 采用反相乳液聚合法合成了一系列不同吸水倍率的聚丙烯酸钠吸水树脂和以丙烯酸钠为主的多元共聚吸水树脂。将制备的吸水树脂与苯乙烯、表面活性剂(Span-80)组成聚合体系,用过氧化苯甲酞引发进行原位共混聚合,制得遇水崩解型聚苯乙烯。同时,采用“两步法”发泡工艺,制取崩解型聚苯乙烯的泡沫制品。 对于聚苯乙烯/聚丙烯酸钠共混物而言,随着分散剂Span-80含

聚苯乙烯交联微球的制备

实验三. 聚苯乙烯交联微球的制备 【实验目的】 1.了解苯乙烯自由基聚合的基本原理以及悬浮聚合的原理。 2.学习悬浮聚合的操作方法,了解配方中各组分的作用。 3.通过对聚合物颗粒均匀性和大小的控制,了解分散剂、升温速率、搅拌形式与搅拌速率对悬浮聚合的重要性。 【实验原理】 悬浮聚合是在悬浮体系中进行的一种聚合方法。以苯乙烯为例,这是一种比较活泼的单体,容易进行聚合反应。苯乙烯在水中的溶解度很小,将其倒入水中,体系分成两层,进行搅拌时,在剪切力作用下,单体层分散成液滴,界面张力使液滴保持球形,而且界面张力越大,形成的液滴越大,因此在作用方向相反的搅拌剪切力和界面张力作用下,液滴达到一定的大小和分布。这种液滴在热力学上是不稳定的,当搅拌停止后,液滴将凝聚变大,最后再次与水分层,同时,聚合到一定程度以后的液滴中溶有黏性聚合物也可以使液滴相互黏结。因此,在悬浮聚合体系中还需要加入分散剂,常用的分散剂有明胶,聚乙烯醇、聚甲基丙烯酸钠、纤维素衍生物或碳酸镁、磷酸钙等。 本实验是在油溶性引发剂过氧化二苯甲酰存在下,用悬浮聚合方法进行的苯乙烯与二乙烯苯的共聚反应,在液滴中的自由基聚合机理如图3-1。所得产物为白色小珠,可作为苯乙烯型阳(阴)离子交换树脂的母体(称为白珠)。其中二乙烯苯起着交联作用,使聚合物其有网状结构,二乙烯苯的用量改变就会显著影响聚苯乙烯微球的交联度,从而影响微球的性能。 此外,聚合物微球的粒径主要是通过调节悬浮聚合的反应条件、分散剂种类与比例来实现。

图3-1 过氧化二苯甲酰引发苯乙烯自由基聚合机理 【实验仪器及试剂】 1.实验仪器 三口烧瓶(250mL)1只机械搅拌器1套球形冷凝管1支温度计(100℃)1支恒温水浴锅1套表面皿1个烧杯(100mL)1个量筒(25mL,10 mL)各1个(公用)滴管1根布氏漏斗1个抽滤瓶1个滤纸等若干

相关主题
文本预览
相关文档 最新文档